UNIVERSIDAD NACIONAL DANIEL ALCIDES CARRIÓN FACULTAD DE INGENIERÍA DE MINAS ESCUELA DE FORMACIÓN PROFESIONAL DE INGENIERIA DE MINAS

TESIS

Análisis comparativo del uso de la emulsión gasificante (San - g) y el Slurrex - g, en la voladura, en compañía minera Coimolache S.A.

Unidad Tantahuatay

Para optar el título profesional de:

Ingeniero de Minas

Autor:

Bach. Jhunyor Gerson CAPCHA SANTOS

Asesor:

Ing. Toribio GARCÍA CONTRERAS

Cerro de Pasco - Perú - 2023

UNIVERSIDAD NACIONAL DANIEL ALCIDES CARRIÓN FACULTAD DE INGENIERÍA DE MINAS ESCUELA DE FORMACIÓN PROFESIONAL DE INGENIERIA DE MINAS

TESIS

Análisis comparativo del uso de la emulsión gasificante (San – g) y el Slurrex – g, en la voladura, en compañía minera Coimolache S.A.

Unidad Tantahuatay

Sustentada y aprobada ante los miembros del jurado:

Mg. Edwin Elias SANCHEZ ESPINOZA
PRESIDENTE

Mg. Teodoro Rodrigo SANTIAGO ALMERCO
MIEMBRO

Mg. Raúl FERNÁNDEZ MALLQUI MIEMBRO

Universidad Nacional Daniel Alcides Carrión Facultad de Ingeniería de minas Unidad de Investigación de la Facultad de Ingenieria de Minas

INFORME DE ORIGINALIDAD Nº 094-JUIFIM-2022

La Unidad de Investigación de la Facultad de Ingenieria de Minas de la Universidad Nacional Daniel Alcides Carrión ha realizado el análisis con exclusiones en el Software Turnitin Similarity, que a continuación se detalla:

Presentado por:

Bach. Jhunyor Gerson CAPCHA SANTOS

Escuela de Formación Profesional

Ingenieria de Minas

Tipo de trabajo: Tesis

Título del trabajo

"Análisis comparativo del uso de la emulsión gasificante (San-G) y el Slurrex-G, en la voladura, en Compañía Minera Coimolache S.A. Unidad Tantahuatay".

Asesor:

Ing. Toribio GARCIA CONTRERAS

Índice de Similitud:

9%

Calificativo

APROBADO

Se adjunta al presente el informe y el reporte de evaluación del software similitud.

Cerro de Pasco, 08 de noviembre 2022

Dr. Agustín Arturo AGUIRRE ADAUTO Jefe de la Unidad de Investigación de la Facultad de

Ingeniería de Minas

DEDICATORIA

Dedico mi tesis principalmente a Dios, por darme la fuerza necesaria para culminar esta meta.

A mis padres, por todo su amor y por motivarme a seguir hacia adelante.

AGRADECIMIENTO

Un agradecimiento especial a mis Docentes, que sus palabras fueron sabias, sus conocimientos rigurosos y precisos, a ustedes mis ingenieros queridos, les debo mis conocimientos. Donde quiera que vaya, los llevaré conmigo en mí transitar profesional.

Su grano de conocimientos, germinó en el alma y el espíritu. Gracias por su paciencia y entendimiento, por compartir sus conocimientos de manera profesional e invaluable, por su dedicación perseverancia y tolerancia

RESUMEN

El presente trabajo de investigación que tiene como título: "ANÁLISIS COMPARATIVO DEL USO DE LA EMULSIÓN GASIFICANTE (SAN – G) Y EL SLURREX – G, EN LA VOLADURA, EN COMPAÑÍA MINERA COIMOLACHE S.A. UNIDAD TANTAHUATAY". Se ha establecido como objetivo principal Comparar los resultados al usar emulsiones San – G, a cambio de Slurrex – G, en la Empresa Minera Coimolache, Unidad Tantahuatay. Respecto a la metodología, la investigación realizada es aplicada, y el diseño Concordando con el tipo, nivel de investigación nuestro diseño es experimental correspondiendo al enfoque cuantitativo, En cuanto al nivel de la investigación será aplicativo, la investigación será de tipo experimental Finalizando la investigación, vemos que en todos los indicadores del slurrex-g sea mejorado los indicadores lo que no sucede con el SAN-G.

En conclusión, se obtiene con ambos productos similares fragmentaciones, en cuanto al factor de carga con la emulsión san-g se tiene una menor carga de 12.5% que con el slurrex-g, y en la carga lineal fue menor en los slurrex-g.

Palabras Claves: Emulsión SAN-G, SLURREX-G, fragmentación, factor de carga, voladura.

ABSTRACT

This research work entitled: "COMPARATIVE ANALYSIS OF THE USE OF GASIFYING EMULSION (SAN - G) AND SLURREX - G, IN THE VOLADURA, IN COMPAÑÍA MINERA COIMOLACHE S.A. TANTAHUATAY UNIT ". The main objective has been established to compare the results when using San - G emulsions, in exchange for Slurrex - G, in the Coimolache Mining Company, Tantahuatay Unit. Regarding the methodology, the research carried out is applied, and the design According to the type, research level, our design is experimental corresponding to the quantitative approach. As for the research level, it will be applicative, the research will be experimental. , we see that in all the indicators of the slurrex-g the indicators are improved, which is not the case with the SAN-G.

In conclusion, with both products similar fragmentations are obtained, as for the load factor with the san-g emulsion there is a lower load of 12.5% than with the slurrexg, and in the linear load it was lower in the slurrex-g.

Key Words: SAN-G emulsion, SLURREX-G, fragmentation, load factor, blasting.

INTRODUCCIÓN

El presente trabajo de investigación que lleva por título "ANÁLISIS COMPARATIVO DEL USO DE LA EMULSIÓN GASIFICANTE (SAN – G) Y EL SLURREX – G, EN LA VOLADURA, EN COMPAÑÍA MINERA COIMOLACHE S.A. UNIDAD TANTAHUATAY. se llevó a cabo porque en Compañía Minera Coimolache la voladura que se realiza no está dando los resultados esperados debido a una fragmentación no adecuada, lo cual ocasiona altos costos, bajo rendimiento en el carguío, limpieza de las labores.

El problema que se está presentando como dijimos es una voladura de un rendimiento bajo; esto debido al tipo de emulsión que se viene empleando slurry-g, y está trayendo consecuencias como altos costos, bajo rendimiento de carguío, limpieza y alta fragmentación.

Para lo cual proponemos realizar un comparativo con la emulsión san-g APU y el slurry que se viene usando, para poder optimizar la voladura del tajo.

En lo referido a la estructura del trabajo, se realizará por capítulos de la siguiente manera:

En el capítulo I se refleja el planteamiento del estudio que abarca el planteamiento del problema, Problema General y específicos, Objetivo general y específicos, justificación e importancia, hipótesis y descripción de las variables. Delimitación de la investigación y limitaciones.

A su vez, el Capítulo II, en el Marco Teórico encontrara lo antecedentes de diferentes empresas que han logrado implementar el uso de estas emulsiones. Se analizará las bases teóricas, diferentes términos básicos que se utilizan

El Capítulo III, trata sobre la Metodología, que contiene el método de investigación utilizado, el nivel y tipo de investigación, el diseño de la investigación, la

población y muestra, las Técnicas e instrumentos de recolección de datos y el procesamiento de Datos.

En el Capítulo IV encontraremos los Resultados obtenidos de las pruebas realizadas en las etapas realizadas.

Por último, en las conclusiones se muestran los resultados encontrados en cuanto al grado de fragmentación, factor de carga, costo, carga lineal empleada con cada agente de voladura. También se encontrarán las recomendaciones y referencias bibliográficas de todos los autores utilizados para esta investigación.

El autor.

INDICE DEDICATORIA AGRADECIMIENTO RESUMEN ABSTRACT INTRODUCCIÓN **INDICE** CAPÍTULO I PROBLEMA DE INVESTIGACIÓN Identificación y determinación del problema......1 CAPÍTULO II MARCO TEÓRICO

	2.2.1. Aspectos Generales de la Unidad Tantahuatay	6
	2.2.2. Fundamentos sobre explosivos	8
	2.2.3. Explosivos industriales	10
	2.2.4. Emulsión San – G -APU	15
2.3.	Definición de términos básicos	16
2.4. Formulación de la Hipótesis		18
	2.4.1. Hipótesis general	18
	2.4.2. Hipótesis Especificas	18
2.5.	Identificación de Variables	18
	2.5.1. Variables para la hipótesis general	18
	2.5.2. Variables para la hipótesis especificas	18
2.6.	Definición operacional de variables e indicadores	19
	CAPÍTULO III	
	METODOLOGÍA Y TÉCNICAS DE INVESTIGACIÓN	
3.1.	Tipo de Investigación	20
3.2.	Nivel de investigación	20
3.3.	Métodos de investigación	20
3.4.	Diseño de investigación	21
3.5.	Población y muestra	21
	3.5.1. Población	21
	3.5.2. Muestra	21
3.6.	Técnicas e instrumentos de recolección de datos	21
	3.6.1. Técnicas	21
	3.6.2. Instrumentos	22

3.8.	Tratamiento estadístico
3.9.	Orientación ética filosófica y epistémica
	CAPITULO IV
	RESULTADOS Y DISCUSIÓN
4.1.	Descripción del trabajo de campo
	4.1.1. Parámetros de voladura
4.2.	Presentación, análisis e interpretación de resultados
	4.2.1. Presentación de resultados
4.3.	Prueba de Hipótesis
4.4.	Discusión de Resultados
CON	ICLUSIONES
REC	OMENDACIONES
BIBI	LIOGRAFÍA
ANE	XOS

ÍNDICE DE TABLAS

Tabla N° 1. Características técnicas	16
Definición operacional de variables e indicadores	19
Tabla N° 2. Operacionalización de variables	19
Tabla N° 3. Análisis de fragmentación 2020	28
Tabla N° 4. Material volado	29
Tabla N° 5. Malla se perforación promedio de producción	30
Tabla N° 6. Análisis de fragmentación	31
Tabla N° 7. Fragmentación acumulada	32
Tabla N° 8. Factor de carga	33
Tabla N° 9. Resumen de disparos SAN-G MAYO 2020	34
Tabla N° 10. Resumen de disparos SLURREX-G MAYO 2020	34
Tabla N° 11. Kilos de emulsión de SAN-G	35
Tabla N° 12. Kilos de SLURREX-G	35
Tabla N° 13. Kilos de emulsión de SAN-G	36
Tabla N° 14. Kilos de emulsión de SAN-G	36
Tabla N° 15. Kilos de emulsión de SAN-G	36
Tabla N° 16. Kilos de emulsión de SAN-G	37
Tabla N° 17. Kilos de emulsión de SAN-G	37
Tabla N° 18. Kilos de emulsión de SAN-G	38
Tabla N° 19. mejora al usar slurrex – g	38
Tabla N° 20 Comparación entre emulsión SAN-G v SLURREX-G	42

ÍNDICE DE FIGURAS

Figura 1: Ubicación	7
Figura 2: Combustión del explosivo	9
Figura 3: Deflagración del explosivo	9
Figura 4: Detonación del explosivo.	10
Figura 5: Malla 6.30 m. x 5.50 m.	23
Figura 6: Taladros amortiguadores	24
Figura 7: Taladros cargados con SAN-G	25
Figura 8: Taladros cargados con SLURREX-G	26
Figura 9: Análisis de fragmentación 2020	28
Figura 10: Factor de carga	29
Figura 11: Costo total en Perforación y voladura vs Fragmentación	30
Figura 12: Resumen de fragmentación Coimolache	32
Figura 13: Factor de carga	33
Figura 14: Material de taco ahora	39
Figura 15: material de taco antes	40
Figura 16: Proyección de la roca	40
Figura 17: Sobre rotura	41
Figura 18: Taladros de producción cargados	41

CAPÍTULO I

PROBLEMA DE INVESTIGACIÓN

1.1. Identificación y determinación del problema

La actividad minera a nivel mundial y en américa es una de las industrias que se encuentra en permanente desarrollo tecnológico y uno de sus procesos la perforación y voladura es el que más se ha tecnificado y desarrollado así tenemos países como Estados Unidos, Canadá, Australia, Francia, Suecia y en América, Chile, México, Brasil, Perú, donde el grado de desarrollo de la perforación y voladura es una de las más modernas y avanzadas lo cual permite seguir operando los proyectos mineros.

En Compañía Minera Coimolache la voladura que se realiza no está dando los resultados esperados debido a una fragmentación no adecuada, lo cual ocasiona altos costos, bajo rendimiento en el carguío, limpieza de las labores.

El problema que se está presentando como dijimos es una voladura de un rendimiento bajo; esto debido al tipo de emulsión que se viene empleando slurryg, y está trayendo consecuencias como altos costos, bajo rendimiento de carguío, limpieza y alta fragmentación.

Para lo cual proponemos realizar un comparativo con la emulsión san-g APU y el slurry que se viene usando, para poder optimizar la voladura del tajo.

1.2. Delimitación de la investigación

1.2.1. Delimitación espacial

La investigación se llevará a cabo en la Compañía Minera Coimolache, unidad Tantahuatay, ubicado en los distritos de Hualgayoc y Chugur, en la provincia de Hualgayoc, región Cajamarca.

1.2.2. Delimitación temporal

El desarrollo del proyecto llevo un tiempo de 6 meses de agosto a diciembre del 2020

1.3. Formulación del problema

1.3.1. Problema general

¿Qué resultados de la voladura se obtendrá al usar emulsiones San – G, a cambio de Slurrex – G, en la Empresa Minera Coimolache, Unidad Tantahuatay?

1.3.2. Problemas específicos

- a) ¿Qué grado de fragmentación se obtiene al usar emulsiones San G,
 a cambio de Slurrex-G,en la Empresa Minera Coimolache, Unidad
 Tantahuatay?
- b) ¿Cómo varían los costos y el factor de carga al usar emulsiones San G, a cambio de Slurrex-G, en la Empresa Minera Coimolache –
 Unidad Tantahuatay?

1.4. Formulación de objetivos

1.4.1. Objetivo general

Comparar los resultados al usar emulsiones San – G, a cambio de Slurrex – G, en la Empresa Minera Coimolache, Unidad Tantahuatay

1.4.2. Objetivos específicos

- a) Determinar el grado de fragmentación que se obtiene al usar emulsiones San G, en la Empresa Minera Coimolache, Unidad Tantahuatay
- b) Determinar los costos y el factor de carga al usar emulsiones San G,
 en la Empresa Minera Coimolache Unidad Tantahuatay

1.5. Justificación de la investigación

La presente investigación justifica su realización porque nos permitirá obtener información sobre el uso del San – G, al comparar con el Slurrex – G y ver si su empleo puede remplazar a dicho agente de voladura para mejorar la fragmentación, el factor de carga y los costos en dicha mina

Importancia y Alcance de la investigación

El estudio es de alcance correlacional, ya que se analizarán los consumos durante los años de producción, el movimiento de los materiales y así determinar el destino de estos, para poder reducir el valor de inventario.

1.6. Limitación de la investigación

Las limitaciones que podemos encontrar al realizar la investigación, lo hemos tenido al realizar las pruebas de voladura porque estábamos sujetos a las actividades y trabajos en cuanto a voladura que realizaba la empresa, en el resto de las otras actividades no hemos tenido inconvenientes, al contrario, tuvimos el apoyo de la empresa y su personal.

CAPÍTULO II

MARCO TEÓRICO

2.1. Antecedentes de estudio

Al realizar la revisión de la literatura sobre el problema de investigación vemos que hay información abundante sobre voladura en tajo abierto, pero muy poco referente al uso de emulsiones San – G, de las cuales podemos mencionar.

- La tesis que tiene como título "Aplicación de emulsión gasificada (san-g) y su factibilidad en el rendimiento de columna explosiva de la compañía minera "la zanja" Cajamarca 2014" (MAMANI, 2018), tiene como objetivo la optimización del uso de la emulsión San -G, es de tipo aplicativo, de nivel explicativo, descriptivo y correlacional, un diseño experimental, y como conclusión destaca el ahorro en explosivo de 0.05 \$/T, significando al mes 99,113 \$/T y de 1,189,355 \$/T, también menciona que se ha reducido la fragmentación
- En la tesis cuyo título es "Emulsión gasificada en reemplazo de heavy anfo para reducir el P80 en la fragmentación e incrementar la productividad en carguío, acarreo y chancado en mina Shougang Hierro Perú" de (ALCALDE, 2019), cuyo objetivo fue el de reducir el grado de fragmentación del mineral

usando las emulsiones gasificadas SAN G APU, usando como método experimental y de análisis comparativo, como conclusiones se tiene:

Al usar la emulsión San- G APU se obtiene una reducción de la fragmentación de la roca de 24 % con respecto al Heavy anfo 55, disminuyendo de 9.46" a 7.18" en roca muy dura.

El costo de explosivo promedio al usar emulsiones San- G es de .217 \$/T comparado con 0.231 \$/T representando un ahorro de 6.1%

 La tesis que lleva por título "Uso de emulsión gasificable para reducir costos de perforación-voladura en minería superficial y subterránea" de (GUERRA, 2013), cuyo objetivo fue el de reducir los costos de perforación y voladura al usar emulsiones gasifícables.

Como conclusiones tenemos, se obtuvo una mejor fragmentación utilizando la emulsión gasificable que el explosivo anfo pesado, se consiguió una granulometría de 0 a 2.35 % con relación al anfo pesado que es de 6.80%, los porcentajes de finos menores a 2" es de 44.60% con la emulsión gasificable y con anfo pesado de 35.5%, se registró un ahorro de 0.1041 \$/T para mineral y de 0.0228 \$/T para desmonte

• La tesis cuyo título es "Evaluación técnica – económica y ecológica de la aplicación de emulsión gasificable en lugar de heavy anfo tradicional en mina Apumayo" (CHAMBI, 2018),su finalidad fue el d analizar y evaluar el uso de Sang – G y Heavy 73 – G, con el Heavy anfo, para lo cual se realizarán varias pruebas de voladura.

Llegando a las siguientes conclusiones: El factor de potencia promedio obtenido es d 0.45 kg/T por debajo al usar Heavy anfo que es de 0.51 kg/T

disminuyendo en un 11.7%, El costo de Voladura representa una disminución de 8.3% de 0.24 \$ a 0.22 \$,.

En la tesis cuyo título es "reemplazo de la emulsión matriz mex 60/40 por la emulsión frotis advantage gasificada 65/35, para mitigar la emisión de gases nitrosos en la unidad de producción lagunas norte"(CASIANO, 2018), se ve que su objetivo fue el de realizar una comparación del uso de dos emulsiones el Fortis Advantage gasificado 65/35 y la emulsión matriz mex 60/40 cuyo proveedor es la empresa Orica.

Como resultados tenemos: en cuanto a gases nitrosos se redujo la producción de dichos gases con el uso de la emulsión Fortis Advantage gasificado 65/35. Referente a la fragmentación se redujo el P80 de 6.17" a 5.77", referente a los costos el ahorro fue de 0.038 \$/T, concluyendo que los resultados de la emulsión Fortis Advantage 65/35 es superior a la emulsión matriz mex 60/40 en los aspectos técnicos, económicos y ambientales.

2.2. Bases Teóricas – Científicas

2.2.1. Aspectos Generales de la Unidad Tantahuatay

Ubicación

La Compañía Minera Coimolache S.A. Unidad Tantahuatay dedicado a la explotación de oro, se ubica en los distritos de Hualgayoc y Chugur, en la provincia de Hualgayoc, región Cajamarca. Inició operaciones en 2011. Buenaventura opera la mina, (CALUA, 2019)

Accesibilidad

A la Unidad Tantahuatay se puede llegar por vía terrestre partiendo de la ciudad de Lima hasta Cajamarca recorriendo 858 km. aproximadamente, luego recorrer unos 24 km. por la carretera asfaltada Cajamarca – Bambamarca, de allí

dirigirse a la ciudad de Hualgayoc, y tomar la vía que conduce hacia la mina, (CALUA, 2019)

SANTA CRUZ DE SUCCHUBAMBA

CHOTANO

Pircos

Catache

CUENCA

CHOTANO

Pulan

Catache

Cuenca

Chose

Comun Shayur

Corona

Colquirrum

Tantahuarray

Corona

Colquirrum

Corona

Colquirrum

Corona

Cuenca

Corona

Colquirrum

Corona

Corona

Colquirrum

Corona

Colquirrum

Corona

Colquirrum

Corona

Colquirrum

Corona

Colquirrum

Corona

Colquirrum

Corona

Corona

Colquirrum

Colquirrum

Corona

Colquirrum

Colquirru

Figura 1: Ubicación

Fuente: propia

Minado:

"El minado se realiza en dos tajos en explotación: Tantahuatay 2 y Ciénaga Norte. Las distancias de acarreo hacia el pad de lixiviación y depósito de material estéril en el caso de Tantahuatay 2 son de 2.4 km y 0.7 km, y en el caso de Ciénaga Norte son de 9 km y 0.7 km, respectivamente. El carguío de material se realiza a través de excavadoras de 3 m3 y el transporte con camiones de 20 m3 de capacidad" (CALUA, 2019)

Metalurgia:

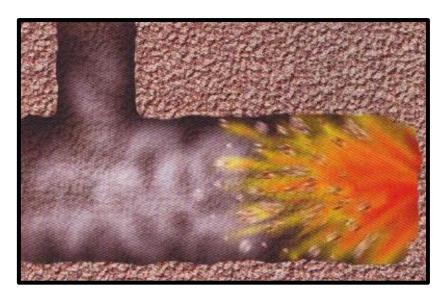
El proceso metalúrgico de Coimolache consiste en la lixiviación de mineral rom (producto de la voladura en el tajo abierto) en la pila de lixiviación

con solución cianurada. En la planta se realizan dos procesos: Merrill Crowe (precipitación con zinc) y ADR (adsorción, desorción y regeneración con carbón activado). Toda la producción de Coimolache se convierte en barras doré (oro y plata) que son posteriormente comercializadas, (CALUA, 2019).

2.2.2. Fundamentos sobre explosivos

Explosivos

Son sustancias químicas que reaccionan ante un estímulo, generando altas temperaturas y altas presiones en el taladro lo cual van ejercer un efecto rompedor, como lo define el (Instituto Geológico y Minero de España, 1987) "mezcla de sustancias, unas combustibles y otras oxidantes, que, iniciadas debidamente, dan lugar a una reacción exotérmica muy rápida que genera una serie de productos gaseosos a alta temperatura, químicamente más estables, y que ocupan un mayor volumen" (Instituto Geológico y Minero de España, 1987, p 131).


Procesos de reacción del explosivo

Al producirse la reacción química del explosivo se produce tres momentos de reacción química y estos son la combustión, deflagración y la detonación.

Combustión

Se define como (**EXSA**, **s.f.**) "reacción química capaz de desprender calor pudiendo o no, ser percibida por nuestros sentidos, y que presenta un tiempo de reacción bastante lento" (El manual práctico de voladura, p.11).

Figura 2: Combustión del explosivo

Fuente: propia

Deflagración

Definida por (EXSA, s.f.) "Es un proceso exotérmico en el que la transmisión de la reacción de descomposición se basa principalmente en la conductividad térmica" (manual práctico de voladura, p.9). Este fenómeno se asocia con una combustión inmediata.

Figura 3: Deflagración del explosivo

Fuente: Propia

Detonación

Considerado como (**EXSA**, **s.f.**) "proceso físico químico caracterizado por su gran velocidad de reacción y por la formación de gran cantidad de productos gaseosos a elevada temperatura, que adquieren una gran fuerza expansiva que se traduce en presión sobre el área circundante" (El manual práctico de voladura, p..9).

Mecanismo de detonación

El mecanismo del material a explotar se produce cuando, se crea la onda de choque por detonador, el cual avanza a lo largo de todo el taladro a una velocidad alta; en la parte posterior al frente del impacto (FC) aparece la zona de reacción recientemente formada (ZR) es de esta manera que se genera el característico plano de Chapman – Jouget (PCJ), donde se forma la zona de detonación (ZE) con temperaturas y presión muy elevadas (**EXSA**, s.f. p.10)

Todo lo anterior se puede observar en la figura siguiente:

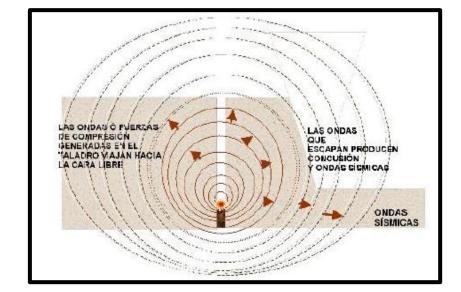


Figura 4: Detonación del explosivo

2.2.3. Explosivos industriales

En la industria "tenemos dos categorías

Altos explosivos, sensibles al fulminante N° 8,

Agentes de voladura, no sensibles al fulminante N° 8,

Altos explosivos, sensibles al fulminante N° 8" (EXSA, s.f.) "

Dinamita

Tenemos tres clases de dinamita, dinamita pulverulenta, semigelatinosa, gelatinosa.

Dinamita pulverulenta

Compuesta por nitrato de amonio, combustible y un sensibilizador, en el manual de voladura menciona las siguientes dinamitas pulverulentas "Exadit 45, Exadit 60 y Exadit 65 con densidades de 1,00 a 1,05 g/cm3 y velocidades de 3 400 a 3 600 m/s), de consistencia granular fina, adecuada para rocas friables, blandas, en taladros secos" (EXSA, s.f., pág. 26).

Dinamita – Famesa pulvurelenta

Dinamita Semigelatinosa

Según el Manual Práctico de Voladura tenemos, "Semexsa 45, Semexsa 60, Semexsa 65 y Semexsa 80 (con densidades de 1,08 a 1,2 g/cm3 y velocidades

de 3 500 a 4 500 m/s), de consistencia granular o pulverulenta, adecuada para rocas semiduras y húmedas" (EXSA, s.f., pág. 26)

Dinamita – Famesa Semigelatina

Dinamita gelatinosa

Contienen mayor cantidad de nitroglicerina y nitrocelulosa, el manual práctico de voladura manifiesta "Gelatina Especial 75 y 75 BN; Gelatina Especial 90 y 90 BN; Gelignita y Gelatina Explosiva (con densidades de 1,3 a 1,5 g/cm3 y velocidades de 5 000 a 6 500 m/s) de consistencia plástica", (EXSA, s.f., pág. 26)

Dinamita - Famesa gelatinosa

Agentes de voladura, no sensibles al detonador

Hidrogeles o Slurries

Son agentes de voladura que no tienen dinamita en su composición, ni reaccionan al fulminante N° 8, considerados como; "agentes de voladura hidrogel, slurries o papillas explosivas, ara que explosionen requieren de un boster o cebo, usado en trabajos de tajo abierto en taladros de medio y gran diámetro, colocándose al fondo o como carga completa, en la industria encontramos slurrex 40, 60 con densidades de 11,15, a 1.30 g/cm3, cuyas velocidades es de 4200 a 5100 m/s y una presión de detonación de 58 a 82 kbar" (EXSA, s.f., pág. 28)

Emulsiones

Posee las mismas características de los slurries, con la diferencia de que su viscosidad puede ser graduada como se menciona en (EXSA, s.f.) "similar a una leche de magnesia hasta una viscosidad semejante a una margarina", (EXSA,

s.f., pág. 28). es fácilmente manejable con el anfo formando el anfo pesado, su comercialización es encartuchado o a granel.

Agentes mixtos

Aquí encontramos con emulsión/ANFO o ANFOS Pesados, (EXSA, s.f.) nos dice que "son mezcla de emulsión y ANFO en diferentes proporciones" (EXSA, s.f., pág. 28). con estos agentes se consigue bajar los costos y potencia de una emulsión, darle mayor resistencia frente al agua, se prepara en diferentes proporciones de acuerdo a los requerimientos desde 10% a 90% de emulsión y el resto ANFO, se comercializa en forma encartuchada o a granel.

Agentes de voladura NCN GRANULARES, SECOS

ANFO

Definido como "En su generalidad se componen de nitrato de amonio sensibilizado por un agregado orgánico, líquido o sólido generalmente no explosivo. El nitrato debe ser perlado y suficientemente poroso para garantizar la absorción y retención del agregado combustible" (EXSA, s.f., pág. 29). Además, presenta una sensibilidad al detonador N°8, y se requiere un cebado para ser detonado, no tienen resistencia al agua, también nos dice (EXSA, s.f.) que "El ejemplo más típico es el ANFO convencional (94,4% nitrato de amonio 5,6% fuel oil N° 2) con 2 500 a 3 000 m/s de velocidad y 45 kbar de presión" (EXSA, s.f., pág. 29).

Explosivos para minería de carbón

"Especialmente preparados para uso de minas de carbón con ambiente inflamable, su principal característica es la baja temperatura de explosión, la que se obtiene con la adición de componentes o aditivos inhibidores de llama, como algunos cloruros, En los de seguridad reforzada o de

intercambio iónico se consigue rebajar la temperatura de explosión con ingredientes que al reaccionar en el momento de la detonación forman el inhibidor, con mayor poder refrigerante" (Bernaola, Castilla, & Herrera, 2013, pág. 106).

Pólvora negra

Es usado en trabajos como "en cantería de bloques y pizarras para ornamentación, Sin embargo, conviene aclarar que no es un explosivo propiamente dicho, puesto que nunca llega a detonar, sino que deflagra únicamente" (Bernaola, Castilla, & Herrera, 2013, pág. 106).

2.2.4. Emulsión San – G -APU

Descripción

La emulsión SAN-G APU conocido como **Emulsión/Hidrogel a granel no sensibilizada** es definido como "La emulsión G es una emulsión gasificable formada por una solución microscópica oxidante dispersa en una fase combustible continua y estabilizada por un emulsificante" (ESCRIBA, 2018, pág. 15)

El San-g APU es sensibilizado con soluciones gasificantes o con anfo en diferentes proporciones antes de colocar en los taladros.

Características

"Para uso en minería superficial, con temperaturas de 0 °C y 40 °C

Cargado a los taladros con camiones fábrica de FAMESA EXPLOSIVOS

S.A.C

- Usado en terrenos secos, húmedos, inundados, de diferente dureza
- Son explosivos seguros porque no es un explosivo antes de ingresar al taladro.

- Puede ser cargado a diferentes densidades y energías
- Se puede ampliar la malla de perforación y reducir costos
- El carguío a los taladros es sencillo y en menor tiempo por su practicidad"

(FAMESA EXPLOSIVOS S.A.C., 2018)

Características técnicas

Presenta las siguientes características técnicas:

Tabla N° 1. Características técnicas

Densidad relativa de la matriz (g/cm³)	1,32 ± 3%	
Densidad relativa de la matriz sensibilizada (g/cm³)	0,80 a 1,20	
Viscosidad de la matriz en condiciones normales, (cP) (*)	Min. 12 000	
Velocidad de detonación de la matriz sensibilizada (m/s) (**)	4 800 a 5 800	
Presión de detonación (kbar)	51 a 98	
Energía (kcal/kg)	805	
Volumen normal de gases (L/kg)	1 025	
Potencia relativa en peso (%) (***)	90	
Potencia relativa en volumen (%) (***)	152	
Resistencia al agua	Excelente	
Categoría de humos	Primera	
Diámetro crítico (mm)	76 (3 pulgadas)	
Tiempo de permanencia en el taladro (días)	7	
(*) Medido en el viscosímetro BROOKFIELD HA DVII a 50 RPM. (**) Confinado en tubo de PVC de 6 pulgadas de diámetro. (***) Potencias relativas referidas al ANFO, con potencia convencional de 100.		

(FAMESA EXPLOSIVOS S.A.C., 2018)

Presentación

La forma como se distribuye a las diferentes minas es: "La emulsión San -GAPU se presenta a granel y es transportada en forma segura en camiones cisternas" (FAMESA EXPLOSIVOS S.A.C., 2018)

2.3. Definición de términos básicos

Dentro de los términos que tendremos en cuenta en el desarrollo de la tesis son los siguientes:

Potencia explosiva: Definido como (Bernaola, Castilla, & Herrera, 2013) "la capacidad que posee el explosivo para quebrantar y proyectar la roca. En realidad, se trata de la energía del mismo aprovechada en la voladura. Esta característica depende fundamentalmente de la composición de explosivo" (Bernaola, Castilla, & Herrera, 2013, pág. 71).

Velocidad de detonación: Entendiéndose como "la velocidad a la que la onda de detonación se propaga a través del explosivo, y por lo tanto es el parámetro que parámetro que define el ritmo de liberación de energía" (EXSA, s.f., pág. 40)

Resistencia al agua: "Es la capacidad para resistir una prolongada exposición al agua sin perder sus características. Varía de acuerdo con la composición del explosivo y generalmente está vinculada a la proporción de nitroglicerina o aditivos especiales que contengan", (Instituto Geologico y Minero de España, 1987, pág. 111).

Densidad: "Es la relación entre la masa y el volumen de un cuerpo, expresado en g/cm3 ...en los explosivos tiene influencia determinante sobre la velocidad de detonación y la sensibilidad" (**EXSA**, s.f., pág. 47)

Sensibilizantes y sensibilidad: Definido como "aditivos para explosivos a granel se utilizan para que una formulación detone más fácilmente. Los más comunes son la nitroglicerina, TNT, micro esferas, aluminio, nitrato de hexamina, ceniza liviana o carbón en polvo fino, y cualquiera agente reducidor" (ENAEX, s.f., pág. 9).

Camiones fábrica de FAMESA: Cuya característica principal es que están, "provistos de un sistema de gasificación de la emulsión matriz, constituido por una unidad de programación lógica (PLC) que permite programar la cantidad

de emulsión matriz, Anfo, solución gasificante y agua a dosificar" (FAMESA EXPLOSIVOS S.A.C., 2018).

2.4. Formulación de la Hipótesis

2.4.1. Hipótesis general

Los resultados de la voladura al usar emulsiones San - G, a cambio de Slurrex - G, deben ser favorables, en la Empresa Minera Coimolache, Unidad Tantahuatay

2.4.2. Hipótesis Especificas

- a) El grado de fragmentación que se obtiene al usar emulsiones San G,
 deben ser menores que al usar Slurrex-G, en la Empresa Minera
 Coimolache, Unidad Tantahuatay
- b) Los costos y el factor de carga deben ser menores al usar emulsiones
 San G, en comparación con el Slurrex-G, en la Empresa Minera
 Coimolache Unidad Tantahuatay

2.5. Identificación de Variables

2.5.1. Variables para la hipótesis general

Variable Independiente

emulsiones San – G, Slurrex-G

Variable Dependiente

voladura

2.5.2. Variables para la hipótesis especificas

Hipótesis específica a.

Variable Independiente

emulsiones San – G, Slurrex-G

Variable Dependiente

fragmentación

Hipótesis especifica b.

Variable Independiente

emulsiones San – G, Slurrex-G

Variable Dependiente

costos y el factor de carga

2.6. Definición operacional de variables e indicadores

Tabla N° 2. Operacionalización de variables

Operacionalización de variables					
Hipótesis	Variables	Indicadores			
Hipótesis General	V.I. emulsiones	Emulsiones San – G,			
Los resultados de la voladura al	V.D. voladura	- Slurrex-G			
usar emulsiones San – G, a cambio					
de Slurrex – G, deben ser					
favorables, en la Empresa Minera					
Coimolache, Unidad Tantahuatay					
Hipótesis Especificas	Hipótesis a:				
a. El grado de fragmentación que se	Variable independiente: emulsiones	-Fragmentación – P80 pulg.			
obtiene al usar emulsiones San – G,	San – G, Slurrex-G	-Factor de carga – kg/Tn,kg/tal			
deben ser menores que al usar	Variable Dependiente:	-Malla de perforación –			
Slurrex-G, en la Empresa Minera	Fragmentación	B = 5.5n m			
Coimolache, Unidad Tantahuatay	Hipótesis b:	E = 6.30 m			
b. Los costos y el factor de carga	Variable independiente: emulsiones	-Costo - \$/Tn			
deben ser menores al usar	San – G, Slurrex-G	-Densidad de carga – kg/m3			
emulsiones San - G, en	Variable Dependiente:				
comparación con el Slurrex-G, en	costos y el factor de carga				
la Empresa Minera Coimolache –					
Unidad Tantahuatay					

CAPÍTULO III

METODOLOGÍA Y TÉCNICAS DE INVESTIGACIÓN

3.1. Tipo de Investigación

Mi investigación será de tipo no experimental debido a que no vamos a manipular los valores de la variable independiente como la malla de perforación, el tipo de emulsión, la densidad para ver cómo se comporta la variable dependiente en este caso la voladura sino vamos a recoger y observar los resultados de la voladura.

3.2. Nivel de investigación

En cuanto al nivel de la investigación será aplicativo porque vamos a aplicar conocimientos sobre voladura en cuanto a emulsiones tanto el SAN-G APU como el SLURRY-G y ver los resultados de la voladura

3.3. Métodos de investigación

El método que nos apoyaremos en la realización de nuestra investigación son los métodos inductivo deductivo, análisis y síntesis y observación insitu

3.4. Diseño de investigación

Concordando con el tipo, nivel de investigación nuestro diseño es no experimental correspondiendo al enfoque cualitativo porque no vamos a realizar pruebas de voladura

3.5. Población y muestra

3.5.1. Población

La población está constituida por todas las labores superficiales (bancos) donde se realizan perforaciones de taladros, de la Empresa Minera Coimolache Unidad Tantahuatay

3.5.2. Muestra

La muestra está constituida por los bancos 1010, 1011, 1012

3.6. Técnicas e instrumentos de recolección de datos

Las técnicas e instrumentos que se empleó en nuestra investigación fueron:

3.6.1. Técnicas

Como técnica se empleó el procedimiento de trabajo de campo, que consistió en:

- Planificación del trabajo a realizar
- Capacitación del personal
- Selección de los instrumentos, materiales a emplear
- Planificación de las pruebas de voladura
- Ejecución de las pruebas de voladura
- Verificación y recojo de datos
- Evaluación de la información (datos)
- Resultados

- Informe

3.6.2. Instrumentos

Entre los instrumentos de recolección de datos tenemos:

- Lugar de las pruebas (bancos o labores)
- Equipos de Perforación
- Materiales de voladura
- Computadora, impresoras
- Cámara fotográfica
- Útiles de oficina
- EPP para trabajo de campo

3.7. Técnicas de procesamiento y análisis de datos

Como técnicas de procesamiento y el análisis que le dimos a nuestra investigación fue, terminado las pruebas de voladura programada se procedió a realizar el análisis de los datos obtenidos en base a la información recogida, haciendo uso del análisis de documentos, las observaciones que se tuvo en el campo lo cual obran como informe, para poder los resultados obtenidos.

3.8. Tratamiento estadístico

En la ejecución de la tesis se utilizarán gráficos estadísticos en la aplicación de Microsoft Excel

3.9. Orientación ética filosófica y epistémica

En cuanto a la parte ética de nuestra investigación procedimos teniendo en cuenta la veracidad de los hechos, respetando la privacidad de información que indicaba la empresa, y en muchos casos guardando la reserva de información.

CAPITULO IV

RESULTADOS Y DISCUSIÓN

4.1. Descripción del trabajo de campo

4.1.1. Parámetros de voladura

Malla de perforación

a. Taladros de producción

Actualmente en Compañía Minera Coimolache se viene utilizando una malla de perforación de 6.3 m. de espaciamiento por 5.5 m. de burden.

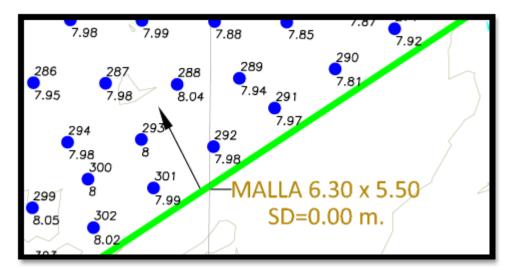


Figura 5: Malla 6.30 m. x 5.50 m.

Fuente: propia

Debido a la baja dureza de la roca, no se considera necesario realizar sobre perforación de los taladros. Durante el minado de los proyectos volados se observan los pisos dentro de los límites establecidos por mina (+/- 0.15 m).

b. Taladros amortiguados (Buffer)

En los taladros cercanos a los taludes y crestas se realizan taladros amortiguados para cuidar el nivel y desplazamiento de material, con la siguiente configuración.

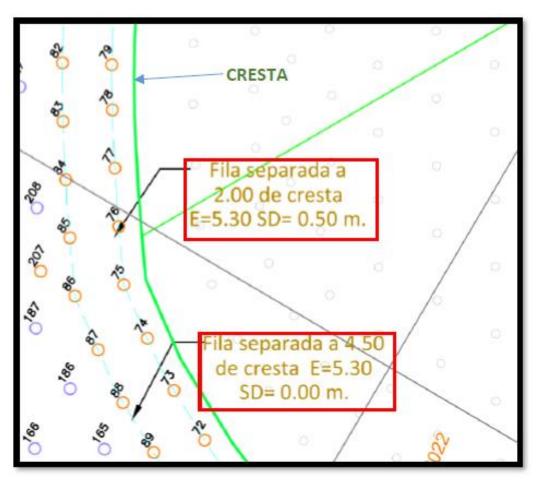
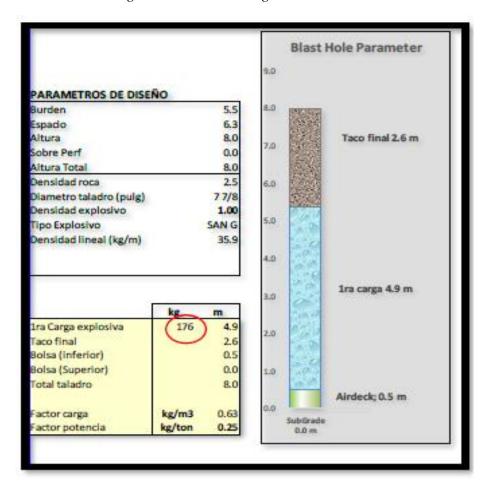


Figura 6: Taladros amortiguadores

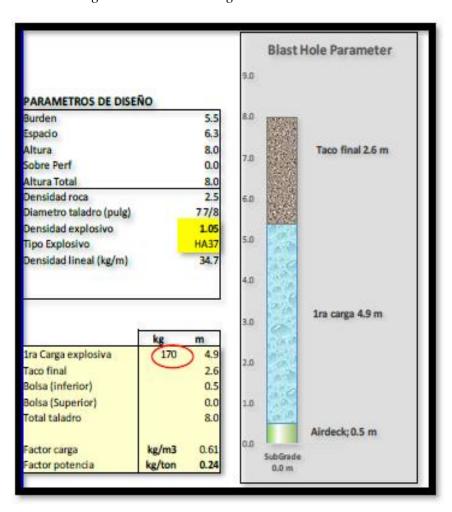

Diseños de carga

a) Diseño de carga taladros de producción.

Taladros cargados con emulsiones SAN - G

Taladros cargados con SAN-G (1.0 gr/cc)

Figura 7: Taladros cargados con SAN-G



Para el cálculo de carga de SAN-G se estima una pérdida de explosivo por ensanchamiento y agrietamiento del taladro del 14 %.

Taladros cargados con SLURREX G

Taladros cargados con SLURREX - G

Figura 8: Taladros cargados con SLURREX-G

Para el cálculo de carga de Slurrex G se estima una pérdida de explosivo por ensanchamiento y agrietamiento del taladro del 5 %.

4.2. Presentación, análisis e interpretación de resultados

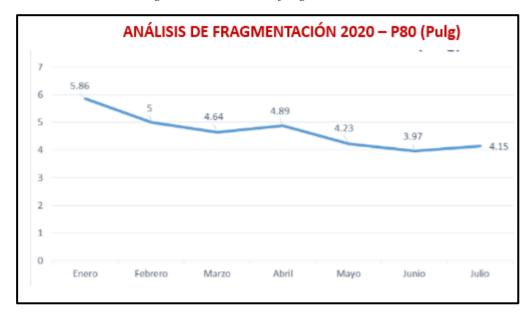
4.2.1. Presentación de resultados

La investigación se realizó en dos etapas, la primera etapa comprendió un periodo de seis meses de enero a julio del 2020, donde se evaluaron la fragmentación, el factor de carga, la malla de perforación y el costo.

La segunda etapa también tuvo un periodo de seis meses de agosto a diciembre del 2020, evaluándose la fragmentación, el factor de carga.

Finalizando con un análisis comparativo de las pruebas con la emulsión SAN-G y la emulsión SLURREX - G, en la cual se tuvo en cuenta la densidad de carga lineal, cantidad de explosivo por taladro, la fragmentación, también se evaluó el material de taco, la proyección de la roca.

a) Primera etapa


Análisis de fragmentación:

Se realiza mediante registros fotográficos, los mismos que fueron procesados en el software Split Desktop, usualmente los resultados del análisis son mostrados mediante el P80, el cual indica el tamaño de tamiz al cual pasaría el 80% del material analizado.

Tabla N° 3. Análisis de fragmentación 2020

ANÁLISIS DE FRAGMENTACIÓN 2020				
MES	<u>N°</u> DE FOTOS ANALIZADAS	P80 (Pulg)		
Enero	148	5.86		
Febrero	116	5		
Marzo	118	4.64		
Abril	159	4.89		
Mayo	83	4.23		
Junio	107	3.97		
Julio	98	4.15		

Figura 9: Análisis de fragmentación 2020

Factor de carga:

El factor de carga indica el peso de explosivo utilizado para romper una tonelada de roca.

Tabla N° 4. Material volado

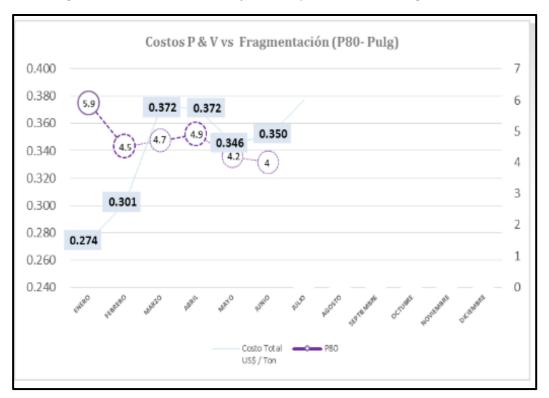
	MATERIAL VOLADO				
MES	Ton.Rotas	BCMRotos	F.C.Kg/Ton		
ENERO	952,743.18	376,578.33	0.23		
FEBRERO	1,093,151.00	432,075.49	0.28		
MARZO	1,355,209.00	535,655.73	0.31		
ABRIL	1,031,450.00	407,687.75	0.31		
MAYO	1,192,063.00	471,171.15	0.29		
JUNIO	741,035.00	292,899.21	0.27		
JULIO	1,123,989.00	449,595.60	0.29		

Figura 10: Factor de carga

El factor de carga ha venido aumentado desde enero para conseguir una mejor fragmentación del material volado.

Mallas de perforación promedio de producción:

En el presente año se ha trabajado con las siguientes mallas de perforación en los taladros de producción.


Tabla N° 5. Malla se perforación promedio de producción

MALLAS DE PERFORACIÓN PROMEDIO DE PRODUCCIÓN				
MES	BURDEN (m)	ESPACIAMIENTO (m)	DIAMETRO (pulg)	
ENERO	6.3	7.3	7 7/8 "	
FEBRERO	5.5	6.3	7 7/8 "	
MARZO	5.3	6.1	7 7/8 "	
ABRIL	5.3	6.1	7 7/8 "	
MAYO	5.3	6.1	7 7/8 "	
JUNIO	5.3	6.1	7 7/8 "	
JULIO	5.3	6.1	7 7/8 "	

Se puede observar que la malla de perforación se ha reducido en 15.87% con respecto a enero.

Costo total en Perforación y voladura vs Fragmentación

Figura 11: Costo total en Perforación y voladura vs Fragmentación

El presente grafico muestra como los costos totales en perforación y voladura por tonelada de material volado han aumentado desde Enero a Junio (De 0.274 a 0.35 \$/Ton de material volado) , por lo cambios anteriormente

descritos. Gracias a ello se ha venido reduciendo el tamaño de los fragmentos producto de la voladura (De un P80 de 5.9" a 4").

Como se sabe una mayor fragmentación en la etapa de voladura conlleva a una disminución global del costo total en mina, lo que compensa sobradamente el aumento en el gasto de explosivos

b) Segunda etapa

Análisis de fragmentación:

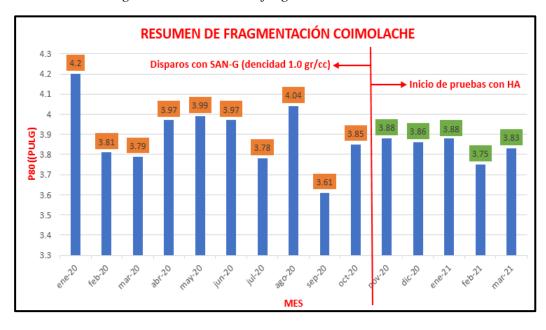
Se realizó la toma de fotos para el análisis de la fragmentación en la descarga del Pad de lixiviación, de acuerdo a los polígonos extraídos del tajo.

Para el análisis se usó el software Split desktop y se utiliza como indicador el P80 (Tamaño al cual el 80% del material tiene un diámetro igual o inferior). Se obtuvieron los siguientes resultados:

• Análisis de fragmentación

De acuerdo al análisis de fragmentación en el mes de marzo se obtuvieron los siguientes resultados:

Tabla N° 6. Análisis de fragmentación

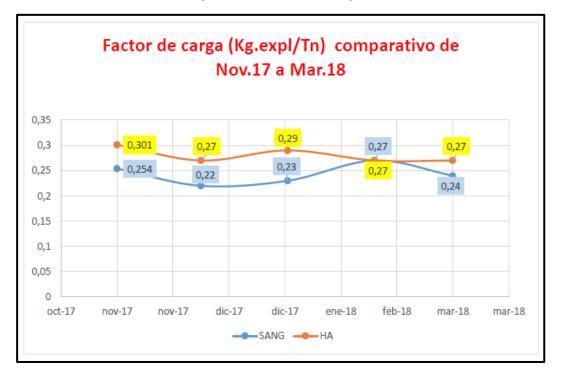

Explosivo	Número de fotos analizadas	P80 promedio (pulg)	P90 promedio (pulg)
HA 37	54	3.87	5.33
SANG (desnidad 1.0 gr/cc)	36	3.78	5.35
TOTAL	90	3.83	5.34

A continuación, se muestran los resultados de fragmentación acumulados

Tabla N° 7. Fragmentación acumulada

	P80 (pulg) Enero- Coimolache			
Mes	Número de fotos	P80 Promedio ponderado/foto (pulg)		
ene-20	88	4.2		
feb-20	76	3.81		
mar-20	117	3.79		
abr-20	86	3.97		
may-20	102	3.99		
jun-20	76	3.97		
jul-20	87	3.78		
ago-20	75	4.04		
sep-20	89	3.61		
oct-20	81	3.85		
nov-20	60	3.88		
dic-20	68	3.86		
ene-20	71	3.88		
feb-20	82	3.75		
mar-20	93	3.83		

Figura 12: Resumen de fragmentación Coimolache


Factor de carga (Peso de explosivo/Tonelada de roca):

Se define como factor de carga a la cantidad de explosivo necesario para romper una tonelada de roca, a continuación, se muestra los factores de carga del mes de marzo para distintos explosivos utilizados en Coimolache

Tabla N° 8. Factor de carga

Resultados factor de carga (Kg/Tn) de Marzo del 2020				
Tipo de taladro SANG HA				
Producción	0.24	0.27		
Buffer 1	0.16	0.11		
Buffer 2	0.29	0.20		

Figura 13: Factor de carga

 Análisis comparativo de las pruebas de la emulsión San g con la emulsión Slurrex – G

Se identificaron dos etapas de prueba con la emulsión de la competencia (Slurrex-G), con resultados diferentes. Las pruebas en mayo y las que se vienen realizando en desde Julio del presente año.

Para realizar una evaluación del desempeño de los productos se utilizará los siguientes indicadores:

- Densidad lineal (Kg/m): Kilos de explosivo por cada metro de taladro cargado.
- Kilos promedio cargado por tipo de taladro (Producción, ayudas y buffer).
- Análisis de fragmentación P80 (Pulg).

A continuación, se va a analizar los indicadores de los disparos de mayo.

Densidad de carga lineal (Kg/m):

Tabla N° 9. Resumen de disparos SAN-G MAYO 2020

RESUMEN DE DISPAROS SAN-G MAYO 2020				
Tajo	Densidad Explosivo (gr/cc)	Número de taladros disparados	Carga total (Kg)	Densidad lineal (Kg/m)
T . I .	0.95	290	49,293	32.67
Tantahuatay	1.00	338	62,753	35.01

Tabla N° 10. Resumen de disparos SLURREX-G MAYO 2020

RESUMEN DE DISPAROS SLURREX-G MAYO 2020				
Tajo	Densidad explosivo (gr/cc)	Número de taladros disparados	Carga total (Ton)	Densidad lineal (Kg/m)
T	0.95	953	170,847	34
Tantahuatay	1.00	148	27,085	35.25

Se comparan los taladros con la misma densidad de 0.95 y 1.00 gr/cc

Kilos promedio por tipo de taladro (Kg):

Los siguientes cuadros presentan el promedio de carga por taladro, se analizó proyectos en el tajo Tantahuatay, para todos los casos se pidió una densidad de explosivo de0.95 gr/cc.

Tabla N° 11. Kilos de emulsión de SAN-G

Carga por tipo de taladro con SAN-G - Mayo 2020				
Tipo de taladro	Taco final promedio (m)	Carga total (kg)	Número de taladros	Carga promedio portaladro (kg)
Ayuda	3.92	8,376	49	170.94
Buffer	2.82	15,281	107	142.81
Producción	3.03	25,426	133	191.17

Tabla N° 12. Kilos de SLURREX-G

Carga por tipo de taladro con Slurrex-G - Mayo 2020				
Tipo de taladro	Taco final promedio	Carga total		Carga promedio por taladro
	(m)	(kg)	Número de taladros	(kg)
Ayuda	3.70	27,927	160	174.54
Buffer	3.00	23,652	163	145.10
Producción	2.97	119,268	630	189.31

Se puede apreciar que, en promedio, se cargó menor cantidad de SAN-G en los Buffer y ayudas, pero mayor cantidad en los taladros de producción que la competencia.

Se observa que en promedio el taco final de los taladros de producción de la competencia es menores, lo que indica una mayor gasificación de la emulsión

Fragmentación:

Del análisis diario de fragmentación, mediante el análisis de fotografías de los frentes, se obtuvo los siguientes resultados:

Tabla N° 13. Kilos de emulsión de SAN-G

Fragmentación Mayo			
Explosivo P80 (Pulg)			
SAN-G	3.98		
Slurrex-G	4.4		

Se observa que la fragmentación de los proyectos disparados con SAN-G, se encuentra hasta 10.5% más reducida que los proyectos disparados con el explosivo de la competencia.

A continuación, se va a analizar los indicadores de los disparos de Julio.

Densidad de carga lineal (Kg/m):

Tabla N° 14. Kilos de emulsión de SAN-G

RESUMEN DE DISPAROS SAN-G JULIO 2020				
Tajo	Densidad (gr/cc)	Número de taladros disparados	Carga total (Kg)	Densidad lineal (Kg/m)
	0.95	809	132 304	33.85
Tantanhatax	1.00	269	46,658	35.92
	0.95	126	21,642	34.85
Lienega Norte	1.00	327	60,950	35.23

Tabla N° 15. Kilos de emulsión de SAN-G

RESUMEN DE DISPAROS SLURREX-G JULIO 2020						
Número de Tajo Densidad taladros (gr/cc) disparados		Carga total (Ton)	Densidad lineal (Kg/m)			
Tantahuatay	0.95	376	61,796	32.64		
Cienega Norte	1.00	105	17,600	39.05		

Se comparan solamente lo taladros cargados con la misma densidad, es decir 0.95 gr/cc para el Tajo tantahuatay y 1.00 gr/cc para el Tajo Ciénega Norte.

Como se puede apreciar la densidad lineal de los taladros cargados con la emulsión de la competencia es 3.7% menor que los cargados con SAN-G, en el Tajo Tantahuatay, con una densidad pedida de 0.95 gr/cc. Los taladros cargados con SAN-G presentan una densidad lineal 10.8% menor que los cargados con Slurrex-G, en el Tajo Ciénega Norte, con una densidad de 1.00 gr/cc.

Kilos promedio por tipo de taladro (Kg):

Los siguientes cuadros presentan el promedio de carga por taladro, se analizó proyectos en el tajo Tantahuatay, para todos los casos se pidió una densidad de explosivo de 0.95 gr/c

Tabla N° 16. Kilos de emulsión de SAN-G

SAN-G DENSIDAD 0.95 gr/cc JULIO 2020							
	Taco final promedio Carga total						
Tipo de taladro	(m)	(kg)	Número de taladros	Carga por taladro			
Ayuda	3.76	26,513	167	158.76			
Buffer	3.12	15,588	108	144.33			
Producción	3.16	90,203	534	168.92			

Tabla N° 17. Kilos de emulsión de SAN-G

SAN-G DENSIDAD 0.95 gr/cc JULIO 2020						
Tipo de taladro Taco final promedio Carga total Número de taladros Carga por tal						
Ayuda	3.71	11,015	70	157.36		
Buffer	2.742	6,796	50	135.92		
Producción	3.22	43,985	256	171.82		

Fragmentación:

Del análisis diario de fragmentación, mediante el análisis de fotografías de los frentes, se obtuvo los siguientes resultados:

Tabla N° 18. Kilos de emulsión de SAN-G

Fragmentación Julio					
Explosivo P80 (Pulg					
SAN-G	4.18				
Slurrex-G	4.11				

Se observa la fragmentación obtenida por la competencia es 1.7% más reducida que en los disparos cargados con SAN-G.

Indicadores al usar SLURREX -G en los meses de mayo a julio.

El siguiente cuadro muestra mejora en todos los indicadores de la competencia de mayo a Julio.

Tabla N° 19. mejora al usar slurrex – g

Mejora en el producto Sslurrex-G						
Indicadores Mayo Julio						
Carga lineal (Kg/m)	34	32.64				
Carga promedio por taladro -Producción (Kg)	189	172				
Fragmentación (P80 - pulg)	4.4	4.11				

4.3. Prueba de Hipótesis

Para un adecuado detalle de la prueba de la hipótesis, se determina con datos de las variables Independiente y dependiente, que fueron definidas y por lo cual se acepta la hipótesis en la que se debe efectuar Análisis comparativo del uso de la emulsión gasificante (san - g) y el slurrex - g, en la voladura, en compañía minera coimolache S.A. Unidad Tantahuatay.

- ✓ **H0:** Evaluación de Análisis comparativo del uso de la emulsión gasificante
- ✓ H1: Adecuación del ISO 45001 en el sistema de seguridad en la voladura, en compañía minera coimolache S.A. Unidad Tantahuatay.

4.4. Discusión de Resultados

1. Material de taco. - Se observó en campo que los taladros fueron tapados con un material con granulometría más fina que el Stemming (Imagen a la derecha) utilizado anteriormente, esto afecta el tiempo de retención del taco, originado mayor proyección de roca y menor aprovechamiento de la energía en la fragmentación de roca.

Figura 14: Material de taco ahora

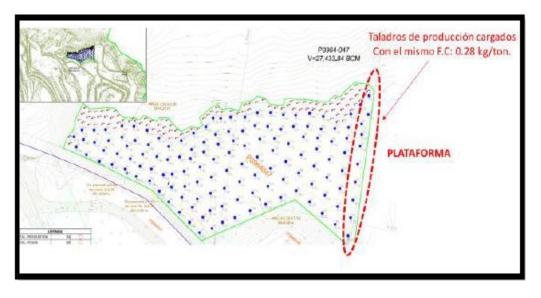
Ahora

Figura 15: material de taco antes

Antes

Proyección de roca

Figura 16: Proyección de la roca


Sobre rotura.

Luego de la voladura se pudo observar una sobre rotura de aproximadamente 1.5 m.

Figura 17: Sobre rotura

Figura 18: Taladros de producción cargados

CONCLUSIONES

En la presente tesis se muestran los indicadores de resultados obtenidos en los disparos cargados con SAN-G (Con una densidad de 1.0 gr/cc) y el SLURREX -G o Anfo pesado, donde se observa los siguientes resultados.

- 1. En la primera prueba se realizó con la emulsión SAN-G, obteniéndose una fragmentación que va desde 3.97" a 5.86" en relación al P80, el factor de carga también vario de 0.23 kg/tn a 0.29 kg/tn en aumento, pero se consigue una mejor fragmentación, en cuanto a los costos de la voladura en relación a la fragmentación subió de 0.274 \$/tn a 0.350 \$/tn, mientras que la fragmentación bajo de 5.9" a 4".
- 2. En la segunda etapa de prueba se obtuvo en relación al P80 en promedio para la emulsión SAN-G 3.78" y para el SURREX-G 3.87", el factor de carga en el área de producción para el SAN-G 0.40 kg/tn y de 0.27 kg/tn para slurrex-G
- 3. En la tercera etapa de prueba se obtuvo como resultados lo siguiente:

Tabla N° 20 Comparación entre emulsión SAN-G y SLURREX-G

	SAN-G		SLURREX-G	1
mes	mayo	julio	mayo	julio
Carga lineal (Kg/m)	34.64	33.85	34	32.64
Carga promedio por taladro -Producción (Kg)	191.17	168.92	189	172
Fragmentación (P80 - pulg)	3.98	4.18	4.4	4.11

Vemos que en todos los indicadores del slurrex-g sea mejorado los indicadores lo que no sucede con el SAN-G.

En conclusión, se obtiene con ambos productos similares fragmentaciones, en cuanto al factor de carga con la emulsión san-g se tiene una menor carga de 12.5% que con el slurrex-g, y en la carga lineal fue menor en los slurrex-g.

RECOMENDACIONES

- Se recomienda en los disparos con San- G, sobre la calidad de material de taco,
 Donde se debe realizar pruebas con la cámara de alta velocidad para determinar el tiempo de retención de taco en distintas condiciones
- 2. Se recomendó bajar el factor de carga en los taladros de contorno para evitar los sobrequiebre.

BIBLIOGRAFÍA

- ALCALDE, J. (2019). Emulsión gasificada en reemplazo de heavy anfo para reducir el P80 en la fragmentación e incrementar la productividad en carguío, acarreo y chancado en mina Shougang Hierro Perú. [tesis de licenciamiento, U.N. de Trujillo] repositorio institucional U.N. de Trujillo.
- Bernaola, J., Castilla, J., & Herrera, J. (2013). *Perforacion y voladura de rocas en mineria*. DEPARTAMENTO DE EXPLOTACIÓN DE RECURSOS MINERALES Y OBRAS SUBTERRÁNEAS, Universidad Poitecnica de Madrid.
- CALUA, F. (2019). PROPUESTA DE MINIMIZACIÓN DE TIEMPOS

 IMPRODUCTIVOS PARA UNA MAYOR PRODUCCIÓN EN CARGUÍO Y

 ACARREO EN CIA. MINERA COIMOLACHE S.A. [tesis de licenciamiento, U.N. de Cajamarca] repositirio institucional U.N.Cajamarca.
- CASIANO, P. (2018). REEMPLAZO DE LA EMULSIÓN MATRIZ MEX 60/40 POR LA EMULSION FORTIS ADVANTAGE GASIFICADA 65/35, PARA MITIGAR LA EMISION DE GASES NITROSOS EN LA UNIDAD DE PRODUCCION LAGUNAS NORTE. [tesis de licenciamiento, U.N. de Trujillo]repositorio institucional U.N. d Trujillo.
- CHAMBI, E. (2018). EVALUACIÓN TÉCNICA ECONÓMICA Y ECOLÓGICA DE LA

 APLICACIÓN DE EMULSIÓN GASIFICABLE EN LUGAR DE HEAVY ANFO

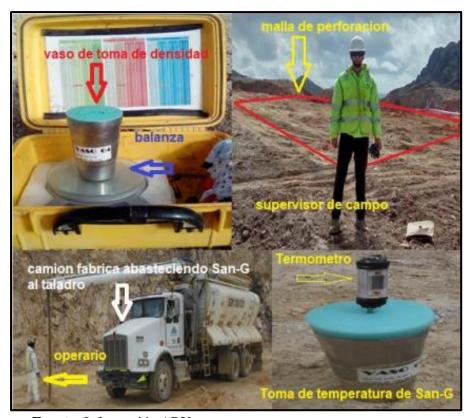
 TRADICIONAL EN MINA APUMAYO. [tesis de licenciamiento, U.N. San

 Agustin de Arequipa] repositorio institucional U.N. San Agustin de Arequipa.
- ENAEX. (s.f.). Manual de tronadura ENAEX S.A. ENAEX, Gerencia tecnica.
- ESCRIBA, E. (2018). [tesis de licenciatura, U. N. San Agustin de Arequipa]repositorio institucional U.N.San Agustin de Arequipa.

- EXSA. (s.f.). Manual practico de voladura, 4ta edicion. exsa.
- FAMESA EXPLOSIVOS S.A.C. (2018). Emulsiones/Hidrigel a granel no sensibilizado SAN-G APU.
- GUERRA, R. (2013). USO DE EMULSIÓN GASIFICABLE PARA REDUCIR COSTOS

 DE PERFORACIÓN-VOLADURA EN MINERÍA SUPERFICIAL Y

 SÚBTERRANEA. [tesis de licenciatura, U.N. de Ingenieria]repositorio institucional U.N. de Ingenieria.
- Instituto Geologico y Minero de España. (1987). *Manual de perforacion y voladura de rocas*. Instituto Geologico y Minero de España.
- MAMANI, E. (2018). APLICACIÓN DE EMULSIÓN GASIFICADA (SAN-G) Y SU FACTIBILIDAD EN EL RENDIMIENTO DE COLUMNA EXPLOSIVA DE LA COMPAÑÍA MINERA "LA ZANJA" CAJAMARCA 2014. [tesis de licenciamiento, U.N. Jorge Basadre Grohmann Tacna] repositorio institucional.


ANEXO 1: HOJA DE SEGURIDAD SOLUCION ACUOSA

		(EMULSIÓN MATRIZ) Página 1 de 4					
SECCIÓN 1 : IDENTIFI	SECCIÓN 1 : IDENTIFICACIÓN DEL PRODUCTO Y LA COMPAÑÍA						
Nombre Genérico: EN	Nombre Genérico: EMULSIÓN MATRIZ						
Nombre del Produoto: SOLUCIÓN ACUOSA DE NITRATO GASIFICABLE (EMULSIÓN MATRIZ)							
Nombre de la Compañ	ombre de la Compañía: FAMESA EXPLOSIVOS S.A.C.						
Dirección: Km 28 Autopista Ancón - Puente Piedra							
Cludad:		Lima					
Código Postal:		Lima 22					
Teléfono de Emergeno	iia:	(51 1) 613-9850	(51 1) (313-9800 anexo	100		
E-mail:		famesa@famesa.com.p	<u>e</u>				
SECCIÓN 2: IDENTIFIC	CACIÓ	N DE RIESGOS					
Maroa en Etiquet	a	Clase		Nº	UN		NFPA
CHICATORIA ARENT		5.1		3218		1 0 O	
es explosivo, por lo qu vapores tóxicos.	resenta	Salud in riesgos a la salud si e ouede causar lesiones					
Por Inhalación	No, I	bajo condiciones normal	les de n	nanipuleo.			
Contacto con la piel		bajo condiciones normal					
Por los ojos		bajo condiciones norm acto con los ojos puede			n el caso even	tual qu	ue la emulsión haga
Por ingestión		una bajo una correcta ma gastrointestinal.	manipu	lación. La inge	stión premedita	da cau	sa desordenes en el
Riesgos Especiales							
Fuego y Explosión	y Explosión Prende al exponerse a fuego directo, la combustión del material puede producir vapores tóxicos.						
Detonación	Ningún riesgo de detonación espontanea. No detona cuando es iniciado con un Booster u otro oebo.						
SECCIÓN 3: COMPOSICIÓN / INFORMACIÓN SOBRE LOS INGREDIENTES							
Naturaleza Química							
Componentes de Riesgo		PEL		TLV	Nº CAS		Nº UN
Nitrato de Amonio		No establecido	No	establecido	0484-52-2	2	1942
Nitrato de Sodio		No establecido	No	establecido	7631-99-	4	1498
Petróleo	Petróleo No establecido No			establecido	68476-30-	-2	1202
Aceites Minerales		No establecido	No	establecido			
Emulsificantes		5 mg/m ³	1	0 mg/m ³	*******		

Fuente: Famesa

ANEXO 2: HOJA DE SEGURIDAD SOLUCION ACUOSA

Fuente: Información ARU

MATRIZ DE CONSISTENCIA

Título: "Análisis comparativo del uso de la emulsión gasificante (san – g) y el slurrex – g, en la voladura, en compañía minera coimolache s.a. Unidad Tantahuatay"

Tantahuatay"				
PROBLEMA	OBJETIVO	HIPOTESIS	VARIABLES	
Problema General ¿Qué resultados de la voladura se obtendrá al usar emulsiones San – G, a cambio de Slurrex – G, en la Empresa Minera Coimolache, Unidad Tantahuatay? Problema Específicos a). ¿Qué grado de fragmentación se obtiene al usar emulsiones San – G, a cambio de Slurrex-G, en la Empresa Minera Coimolache, Unidad Tantahuatay? b). ¿Cómo varían los costos y el factor de carga al usar emulsiones San - G, a cambio de Slurrex-G, en la Empresa Minera Coimolache – Unidad Tantahuatay?	Objetivo General Comparar los resultados al usar emulsiones San – G, a cambio de Slurrex – G, en la Empresa Minera Coimolache, Unidad Tantahuatay Objetivos Específicos a). Determinar el grado de fragmentación que se obtiene al usar emulsiones San – G, en la Empresa Minera Coimolache, Unidad Tantahuatay b). Determinar los costos y el factor de carga al usar emulsiones San – G, en la Empresa Minera Coimolache – Unidad Tantahuatay	Hipótesis General Los resultados de la voladura al usar emulsiones San – G, a cambio de Slurrex – G, deben ser favorables, en la Empresa Minera Coimolache, Unidad Tantahuatay Hipótesis especificas a. El grado de fragmentación que se obtiene al usar emulsiones San – G, deben ser menores que al usar Slurrex-G, en la Empresa Minera Coimolache, Unidad Tantahuatay b. Los costos y el factor de carga deben ser menores al usar emulsiones San – G, en comparación con el Slurrex-G, en la Empresa Minera Coimolache – Unidad Tantahuatay	Variables para la hipótesis general Variables para la hipótesis general Variable Independiente emulsiones San – G, Slurrex-G Variable Dependiente voladura Variables para la hipótesis especificas Hipótesis específica Variable Independiente emulsiones San – G, Slurrex-G Variable Dependiente fragmentación Hipótesis específica Variable Independiente emulsiones San – G, Slurrex-G Variable Independiente emulsiones San – G, Slurrex-G Variable Independiente emulsiones San – G, Slurrex-G Variable Dependiente costos y el factor de carga	