UNIVERSIDAD NACIONAL DANIEL ALCIDES CARRIÓN FACULTAD DE INGENIERÍA DE MINAS

ESCUELA DE FORMACIÓN PROFESIONAL DE INGENIERÍA DE MINAS

TESIS

Consideraciones para el minado mediante taladros largos en vetas angostas (veta Llacsacocha) en la Compañía Minera Pan American Silver – Unidad Huarón S.A.

Para optar el título profesional de:

Ingeniero de Minas

Autor:

Bach. Jesus Wilmer RICRA BORJA

Asesor:

Ing. Julio César SANTIAGO RIVERA

Cerro de Pasco – Perú - 2023

UNIVERSIDAD NACIONAL DANIEL ALCIDES CARRIÓN FACULTAD DE INGENIERÍA DE MINAS

ESCUELA DE FORMACIÓN PROFESIONAL DE INGENIERÍA DE MINAS

TESIS

Consideraciones para el minado mediante taladros largos en vetas angostas (veta Llacsacocha) en la Compañía Minera Pan American Silver – Unidad Huarón S.A.

α		4 1	• 1	1 1	
Sustentada v	v anrohada [,]	anta inc	miamhrac	MΔI	intrada.
Sustemana v	y apropaua (ante tos	IIIICIIIDI US	uci	jui auv.

Mg. Teodoro Rodrigo SANTIAGO ALMERCO	Mg. Raúl FERNANDEZ MALLQUI
PRESIDENTE	MIEMBRO

Mg. Nelson MONTALVO CARHUARICRA MIEMBRO

DEDICATORIA

A Dios quien es la guía constante en mi camino, a mis padres y hermanos por su continuo apoyo y buenos consejos que encaminan el rumbo de mi vida.

AGRADECIMIENTO

Agradezco a la Universidad Nacional Daniel Alcides Carrión por brindarme los conocimientos adecuados para mi desarrollo profesional como Ingeniero de Minas, a La Empresa Pan American Silver – Unidad Huarón S.A. por brindarme las facilidades para llevar a cabo el presente trabajo de investigación.

Al Ing. Santiago Rivera Julio César, quien con su apoyo y guía logramos el desarrollo del presente trabajo de investigación.

Y por último agradecer a mis familiares, compañeros de trabajo, colegas, amigos quienes participaron indirectamente en el desarrollo del trabajo de investigación.

RESUMEN

El presente trabajo de investigación que tiene como título:
"CONSIDERACIONES PARA EL MINADO MEDIANTE TALADROS LARGOS
EN VETAS ANGOSTAS (VETA LLACSACOCHA) EN LA COMPAÑÍA
MINERA PAN AMERICAN SILVER – UNIDAD HUARÓN S.A."

Tiene como objetivo principal el de Determinar las consideraciones que se debe tener en cuenta para el minado con taladros largos en vetas angostas (veta Llacsacocha) en la "Empresa Minera Pan American Silver – Unidad Huarón S.A."

Estableciéndose como hipótesis principal: Las consideraciones que se debe tener en cuenta para el minado con taladros largos en vetas angostas (veta Llacsacocha) deben ser las consideraciones técnicas, económicas, en la "Empresa Minera Pan American Silver – Unidad Huarón S.A.".

Referente al tipo de investigación nuestra investigación es aplicada, con un nivel descriptivo y descriptivo en el minado con taladros largos; la metodología empleada es la del método científico con el apoyo de los métodos específicos inductivo y el analítico, y el diseño es no experimental.

La muestra lo constituye la veta Llacsacocha, donde se hallan el tajeo R- 448.

Finalizando la investigación, con las conclusiones y recomendaciones respectivas.

Palabras clave: Método de explotación, Taladros largos, equipo de perforación, carguío de taladros, costos.

ABSTRACT

This research paper has the title: "CONSIDERATIONS FOR MINING

THROUGH LONG DRILLS IN NARROW VEINS (LLACSACOCHA VEIN) IN

THE PAN AMERICAN SILVER MINING COMPANY - HUARON UNIT."

Its main objective is to determine the considerations that must be taken into

account for mining with long drills in narrow veins (Llacsacocha vein) in the "Pan

American Silver Mining Company - Huaron Unit"

Establishing as the main hypothesis: The considerations that must be taken into

account for mining with long drills in narrow veins (Llacsacocha vein) must be the

technical, economic considerations, in the "Pan American Silver Mining Company -

Huaron Unit".

Establishing as the main hypothesis: The considerations that must be taken into

account for mining with long drills in narrow veins (Llacsacocha vein) must be the

technical, economic considerations, in the "Pan American Silver Mining Company -

Huaron Unit".

Regarding the type of research, our research is applied, with a descriptive and

descriptive level in mining with long drills; The methodology used is that of the scientific

method with the support of specific inductive and analytical methods, and the design is

non-experimental.

The sample is made up of the Llacsacocha vein, where the R-448 pit is found.

Finalizing the investigation, with the respective conclusions and

recommendations.

Keywords: Exploitation method, long rigs, drilling equipment, rig loading, costs.

iν

INTRODUCCIÓN

La Unidad Minera Huarón es un caso especial por tener tajeos de vetas angostas con potencias de 1.20 m. veta Llacsacocha. En estas condiciones nos preguntamos ¿Qué condiciones técnicas, económicas se debe considerar en el minado con taladros largos en la veta Llacsacocha para tener éxito en su explotación? Vemos que en el afán de mejorar la producción se está optando por usar el método con taladros largos con sub niveles por las características y condiciones que se dan, y poner a prueba este método, por las características de la veta, buscando aumentar la producción, aumentar la seguridad de los trabajadores, reducir los costos operativos.

El desarrollo de la investigación, se realizó por capítulos siguiendo la siguiente secuencia:

El capítulo I trata sobre la problemática de la explotación con taladros largos la veta Llacsacocha para lo cual planteamos el Problema General y específicos, Objetivo general y específicos, justificación e importancia, hipótesis y descripción de las variables. Delimitación de la investigación y limitaciones.

El Capítulo II, desarrollamos el Marco Teórico donde analizamos los antecedentes de la investigación sobre la explotación subterránea que se realiza en las diferentes minas. También desarrollamos las bases teóricas sobre el tema y su terminología que se emplea.

Seguidamente, el Capítulo III, trata sobre la Metodología empleada, que contiene el método de investigación utilizado, el nivel y tipo de investigación, el diseño de la investigación, la población y muestra, las Técnicas e instrumentos de recolección de datos y el procesamiento de Datos.

En el Capítulo IV se analizó la geología de la zona, la geomecánica de la veta; para luego ver el método de minado por taladros largos la forma como debe llevarse

técnicamente su planificación, equipos, diseño, carguío de taladros, la secuencia del minado y su producción. En la parte económica de analizo los costos de perforación, voladura, de limpieza, de relleno detrítico y el costo de supervisión.

Por último, presentamos las conclusiones y recomendaciones

También se indica las referencias bibliográficas de todos los autores utilizados para esta investigación.

El autor

ÍNDICE

INDICE		
DEDICATORIA		
AGRADECIMIENTO		
RESUMEN		
ABSTRAC		
INTRODUCCIÓN		
ÍNDICE		
CAPÍTULO I		
PROBLEMA DE INVESTIGACIÓN		
1.1. Identificación y determinación del problema		
1.2. Delimitación de la investigación2		
1.2.1. Delimitación espacial		
1.2.2. Delimitación temporal		
1.3. Formulación del problema		
1.3.1. Problema general		
1.3.2. Problema específicos		
1.4. Formulación de objetivos		
1.4.1. Objetivo general		
1.4.2. Objetivos específicos		
1.5. Justificación de la investigación		
1.6. Limitaciones de la investigación		
CAPÍTULO II		
MARCO TEÓRICO		

	2.1.2. Antecedente dos	6
	2.1.3. Antecedente tres	6
	2.1.4. Antecedente cuatro	7
	2.1.5. Antecedente cinco	7
	2.1.6. Antecedente seis	8
2.2.	Bases teóricas - científicas	8
	2.2.1. Generalidades de la mina	8
	2.2.2. Proyecto minero	10
	2.2.3. Métodos de explotación con taladros largos	13
2.3.	Definición de términos básicos	34
2.4.	Formulación de Hipótesis	35
	2.4.1. Hipótesis general	35
	2.4.2. Hipótesis especificas	35
2.5.	Identificación de variables	36
	2.5.1. Variables para la hipótesis general	36
	2.5.2. Variables para la hipótesis especificas	36
2.6.	Definición operacional de variables e indicadores	37
	CAPÍTULO III	
	METODOLOGÍA Y TÉCNICAS DE INVESTIGACIÓN	
3.1.	Tipo de investigación	. 38
3.2.	Nivel de investigación	38
3.3.	Métodos de investigación	39
3.4.	Diseño de investigación	39
3.5.	Población y muestra	39
	3.5.1. Población	39

	3.5.2. Muestra	9
3.6.	Técnicas e instrumentos de recolección de datos	9
	3.6.1. Técnicas	9
	3.6.2. Instrumentos	-0
3.7.	Selección validación y confiabilidad de los instrumentos de investigación 4	-0
3.8.	Técnicas de procesamiento y análisis de datos	1
3.9.	Tratamiento estadístico	-2
3.10.	Orientación ética filosófica y epistémica	-2
CAPÍTULO IV		
	RESULTADOS Y DISCUSIÓN	
4.1.	Descripción del trabajo de campo	.3
4.2.	Presentación, análisis e interpretación de resultados	.3
	4.2.1. Geología local	.3
	4.2.2. Método de explotación en mina Huaron	.9
4.3.	Prueba de hipótesis	3
4.4.	Discusión de resultados	2
CON		
	ICLUSIONES	
REC	COMENDACIONES	

ÍNDICE DE TABLAS

Tabla 1	Operacionalización de variables e indicadores	37
Tabla 2	Cálculo RQD en el macizo rocoso tajo Llacsacocha	48
Tabla 3	GSI del macizo rocoso	48
Tabla 4	Tajeos considerados para la aplicación de taladros largos	49
Tabla 5	Características técnicas del Equipo Jumbo Mini Raptor DH	55
Tabla 6	Dimensiones del Equipo Jumbo Mini Raptor DH	55
Tabla 7	Perforación descendente con Mini raptor DH	56
Tabla 8	Características técnicas del Equipo Rocket Boomer H104	57
Tabla 9	Perforación ascendente con Boomer 104 tajeo	59
Tabla 10	Parámetros de carguío de los taladros veta Llacsacocha	63
Tabla 11	Producción de la zona en explotación paneles 1,2,3,4, y 5	74
Tabla 12	Leyes de mineral de los paneles 1,2,3,4 y 5	74
Tabla 13	Producción de la zona en preparación paneles del 6 al 13	75
Tabla 14	Leyes de mineral de los paneles 6 al 13	75
Tabla 15	Parámetros de perforación taladros largos veta Llacsacocha	78
Tabla 16	Costos de perforación taladros largos veta Llacsacocha	79
Tabla 17	Costos de voladura taladros largos veta Llacsacocha	80
Tabla 18	Costos de limpieza taladros largos veta Llacsacocha	81
Tabla 19	Costo de relleno detrítico taladros largos veta Llacsacocha	82
Tabla 20	Costos de supervisión de taladros largos veta Llacsacocha	82

ÍNDICE DE FIGURAS

Figura 1	Ubicación de la mina	9
Figura 2	Accesibilidad de la mina	. 10
Figura 3	Metodo Sublevel Stoping	. 14
Figura 4	Esquema de diseño del sublevel stoping	. 15
Figura 5	Vista de perfil del Método de Minado Sublevel Stoping	. 16
Figura 6	Disposición de los tajeos longitudinal	. 17
Figura 7	Disposición de los tajeos transversal	. 17
Figura 8	Metodo grafico de estabilidad	. 18
Figura 9	Dimensionamiento de los tajeos	. 18
Figura 10	Diagrama de perforación del Blasthole Stoping	. 19
Figura 11	Niveles de perforación a diferentes alturas perforación en paralelo	. 20
Figura 12	Perforación en abanico	. 21
Figura 13	Proyecto de desarrollo de la mina Talvaljarvl - Finlandia	. 21
Figura 14	Desarrollo en Mina Iscaycruz	. 22
Figura 15	Labores de preparación	. 22
Figura 16	Vista esquemática de labores de preparación mina El Soldado- Chile	. 23
Figura 17	Preparación de un tajeo	. 23
Figura 18	Diseño de la Chimenea Slot	. 24
Figura 19	Chimenea Slot	. 24
Figura 20	Solt del tajeo vista de planta	. 25

Figura 21	Solt del tajeo vista de perfil	. 25
Figura 22	Rotura del mineral	. 26
Figura 23	Vista de planta y perfil del minado del mineral	. 26
Figura 24	Perforación en abanico	. 27
Figura 25	Perforación en paralelo	. 27
Figura 26	Perforación en cuerpos mina Minsur	. 28
Figura 27	"Equipo de perforación top Hammer Simbas series 1250 y S7D"	. 28
Figura 28	Equipo de perforación DTH	. 29
Figura 29	Desviación de taladros	. 29
Figura 30	Voladura, diseño de carguío	. 30
Figura 31	Voladura de cuerpos en mina san Rafael - Minsur	. 30
Figura 32	Limpieza – scooptram	. 31
Figura 33	Carguío y transporte, scooptram – dumper	. 31
Figura 34	Sostenimiento con cable bolting	. 32
Figura 35	Costo de minado	. 33
Figura 36	Geología principal mina Huaron	. 45
Figura 37	Tabla geomecánica de labores de desarrollo de 2.5 – 3.5 m y labores de	
	explotación de 2.5 – 4.5 m	. 46
Figura 38	Tabla Geomecánica para labores de desarrollo de 3.5 – 5.0 m y labores d	le
	explotación de 4.5 – 7.0 m.	. 47
Figura 39	Labores de preparación, rampas y accesos	. 50
Figura 40	Labores de preparación, subniveles	. 51

Figura 41	Labores de preparación, chimeneas, ore pass	. 52
Figura 42	Diseño de malla de perforación Slot	. 52
Figura 43	Planificación del proceso de explotación	. 53
Figura 44	Equipo Mini Raptor DH	. 54
Figura 45	Equipo Jumbo Mini Raptor DH	. 54
Figura 46	Rocket Boomer H104 dimensiones	. 57
Figura 47	Equipo en plena operación mina	. 58
Figura 48	Equipo de perforación Rocket Boomer 104	. 58
Figura 49	Resultados de estabilidad veta Llacsacocha	. 60
Figura 50	Esquema de perforación de taladros	. 61
Figura 51	Vista de planta de ubicación de los taladros entre SN 448 y SN 447	. 61
Figura 52	Diseño de los taladros	. 62
Figura 53	Metros perforados por mes de taladros largos veta Llacsacocha	. 63
Figura 54	Longitud de carga por taladro	. 64
Figura 55	Diseño de arranque	. 64
Figura 56	Dimensiones del equipo LH203 TORO 151	. 66
Figura 57	Vista del equipo de limpieza LH203 TORO 151	. 66
Figura 58	Secuencia de minado y preparación	. 67
Figura 59	Planificación del minado veta Llacsacocha por paneles	. 68
Figura 60	Vista de los paneles para su explotación	. 69
Figura 61	Vista del panel 1 rellenado y el panel 2 en perforación	. 69

Figura 62	Vista del panel 1, 2 rellenado y panel 3 en perforación	70
Figura 63	Vista de los paneles 1, 2, 3 rellenados y el panel 4 en perforación	70
Figura 64	Vista de los paneles 1, 2, 3, 4 rellenados y panel 5 en perforación	71
Figura 65	Perforación del subnivel y del slot	71
Figura 66	Disparo del slot	72
Figura 67	Limpieza del slot	72
Figura 68	Disparo del block 1 y limpieza	72
Figura 69	Disparo del block 2 y limpieza	73
Figura 70	Disparo del block 3 y limpieza	73
Figura 71	Disparo del block 4 y limpieza	73
Figura 72	Relleno por etapas	74
Figura 73	Ciclo de minado para un panel de 40 m. taieo Llacsacocha	77

CAPÍTULO I

PROBLEMA DE INVESTIGACIÓN

1.1. Identificación y determinación del problema

"La Empresa Minera Pan American Silver" en sus dos unidades que tiene en el Perú, Huarón y Quiruvilca, plantea con el fin de mejorar su producción implementar en sus tajeos el método de minado con taladros largos.

El caso de la Unidad Minera Huarón es un caso especial por tener tajeos de vetas angostas con potencias de 1.20 m. veta Llacsacocha. En estas condiciones nos preguntamos ¿Qué condiciones técnicas, económicas se debe considerar en el minado con taladros largos en la veta Llacsacocha para tener éxito en su explotación? Vemos que en el afán de mejorar la producción se está optando por usar el método con taladros largos con sub niveles por las características y condiciones que se dan, y poner a prueba este método, por las características de la veta, buscando aumentar la producción, aumentar la seguridad de los trabajadores, reducir los costos operativos.

Estos aspectos nos llevan a realizar la presente investigación, donde pretendemos mostrar los trabajos desde el inicio de la explotación con taladros

largos en vetas angostas, indicar los equipos de perforación, la secuencia del proceso, así como también mejorar la productividad y reducir los costos.

1.2. Delimitación de la investigación

1.2.1. Delimitación espacial

La investigación se llevará a cabo en la "Empresa Minera Pan American Silver – Unidad Huarón, ubicado en el distrito de Huayllay, Provincia y Departamento de Pasco." (Pan American Silver, 2018)

1.2.2. Delimitación temporal

Nuestra investigación está proyectada para una duración de seis meses, comenzando en enero hasta julio del 2022.

1.3. Formulación del problema

1.3.1. Problema general

¿Qué consideraciones se debe tener en cuenta para el minado con taladros largos de vetas angostas (veta Llacsacocha) en la "Empresa Minera Pan American Silver – Unidad Huarón"?

1.3.2. Problema Específicos

- a. ¿Qué consideraciones técnicas del minado con taladros largos se debe tener en cuenta, en vetas angostas (veta Llacsacocha), en la "Empresa Minera Pan American Silver – Unidad Huarón"?
- b. ¿Cuál debe ser la producción de cada panel y su aporte económico en el minado con taladros largos en vetas angostas (veta Llacsacocha), en la "Empresa Minera Pan American Silver – Unidad Huarón"?

1.4. Formulación de Objetivos

1.4.1. Objetivo general

Determinar las consideraciones que se debe tener en cuenta para el minado con taladros largos en vetas angostas (veta Llacsacocha) en la "Empresa Minera Pan American Silver – Unidad Huarón"

1.4.2. Objetivos específicos

- a. Determinar las consideraciones técnicas del minado con taladros largos que se debe tener en cuenta, en vetas angostas (veta Llacsacocha), en la "Empresa Minera Pan American Silver – Unidad Huarón".
- b. Determinar la producción de cada panel y su aporte económico en el minado con taladros largos en vetas angostas (veta Llacsacocha), en la "Empresa Minera Pan American Silver – Unidad Huarón".

1.5. Justificación de la investigación

Podemos indicar las siguientes justificaciones:

Justificación teórica

Nuestra investigación al final de su desarrollo mostrara datos, conceptos sobre la aplicabilidad de minado con taladros largos, como estándares, procedimientos, equipos a usar, costos, ciclo de minado; así como también usara conceptos teorías sobre este método de minado aplicado en otras minas.

Justificación práctica

Justifica su realización desde el punto de vista práctico porque los datos obtenidos en la investigación se podrán aplicar en la explotación de vetas angostas en los tajeos que están en operación en la mina.

Justificación económica

Económicamente se justifica porque se pretende reducir costos operativos al aplicar los resultados obtenidos en la investigación, los cuales serán aprovechados por la empresa minera.

Justificación de seguridad

Hacemos hincapié en esta justificación porque se va a tener mejores condiciones de seguridad para los trabajadores que laboran en estos tajeos.

1.6. Limitaciones de la investigación

Sobre las limitaciones que se pueden presentar durante el desarrollo de la investigación diremos que tenemos todas las facilidades de parte de la empresa por la cual no estimamos limitaciones considerables.

CAPÍTULO II

MARCO TEÓRICO

2.1. Antecedentes de estudio

Se pudo consultar las siguientes informaciones encontradas en las tesis sobre el minado con taladros largos en las diversas minas del país.

2.1.1. Antecedente uno:

En la tesis "Elección y aplicación del método tajeo por subniveles con taladros largos para mejorar la producción en la veta Gina Socorro Tajo 6675 - 2 de la U.E.A. Uchucchacua de la Compañía de Minas Buenaventura S.A.A" de (VASQUEZ, 2015), el objetivo planteado fue el de elevar la producción de la veta Socorro, empleando taladros largos en mina Uchucchacua; como conclusiones se tiene:

- Al aplicar el minado de taladros largos por sub niveles se elevó la producción de la veta Socorro, teniendo en cuenta que las condiciones geomecánicas ni geológicas variaron.
- Al aplicar este método se logró los siguientes parámetros: aumento las toneladas por metro de avance 11.7 tn/m, la productividad se elevó a 40 tn/hombre

guardia, el costo de minado bajo a 3.82 \$/tn, el costo de operación bajo a 21.72 \$/tn, la dilución aumento a un 30 %.

- El Valor presente neto se elevó a 2,050,260.0 \$ usando taladros largos.

2.1.2. Antecedente dos

La tesis titulada "IMPLEMENTACIÓN DE EXPLOTACIÓN POR SUB NIVELES CON TALADROS LARGOS EN LA UNIDAD MINERA PALLANCATA – HOCHSCHILD MINING" de (GUILLEN, 2017), se plantea como objetivo, ante la necesidad de incrementar la producción a 3,000 tn/día se debe realizar los ajustes correspondientes de la explotación por taladros largos para cumplir con este tonelaje requerido.

Como conclusión se llega a.

- Se logró cambiar el método de corte y relleno ascendente por el método de subniveles con taladros largos, elevando la producción a 3,000 tn/día, a un costo de producción de 28.5 \$/tn.
- Para la implementación de este método se tuvo que emplear en perforación el equipo stope master y Raptor, en limpieza y relleno los scooptram.
- Otros resultados tenemos, la altura de corte llega 8 m., el valor actual neto (VAN) es 67,692,271 \$ y el (TIR) tasa interna de retorno de 28.57 %.

2.1.3. Antecedente tres

La tesis "Optimización de explotación del tajo 427- cuerpo Chiara 445 usando taladros largos paralelos – Compañía Minera Casapalca S.A.-2017" sustentado por (BELTRAN, 2018), como objetivo se tiene mejorar la explotación del tajo 427 aplicando taladros largos en mina Casapalca.

Como conclusión se tiene:

- Al aplicar el minado de taladros largos paralelos se logró aumentar la producción, reducir costos, obteniendo una utilidad de \$ 47,237.00, y una buena fragmentación.
- Algunos parámetros controlados fueron: factor de potencia 0.35 kg/tn, factor de energía 1.32 Mj/tn, reducción de dilución a 11 %, recuperación llego a 92 %, reducción de la voladura secundaria a 20%.

2.1.4. Antecedente cuatro

En la tesis "Evaluación técnica económica del minado por subniveles con taladros largos en mantos para incrementar la producción – U.E.A. COLQUIJIRCA DE LA SOCIEDAD MINERA EL BROCAL S.A.A." de (SAFORAS, 2012) plantea como objetivo mejorar la producción de los mantos para lo cual se debe aplicar el minado por subniveles con taladros largos en la mina Marcapunta Norte.

Como conclusión se tiene:

Se logró combinar dos métodos de explotación, el de cámaras y pilares con el de subniveles taladros largos, aumentando la producción, se tiene un control de la estabilidad de las cámaras, esta innovación de explotación del mineral requirió una inversión de veinte millones de dólares.

2.1.5. Antecedente cinco

La tesis "Implementación de taladros largos en vetas angostas para determinar su incidencia en la productividad, eficiencia y seguridad de las operaciones mineras – PASHSA, MINA HUARÓN S.A." de. (APAZA, 2013) el objetivo planteado fue, el de ver como la aplicación del método de subniveles con taladros largos en vetas angostas incrementa la producción, la eficiencia y hay mayor seguridad y se tenga continuidad en la explotación.

Como resultados tenemos:

 Se logró aplicar el método de subniveles con taladros largos aumentando la producción, disminuir costos, mejorando la seguridad en la explotación de vetas angostas.

 Se estableció un cronograma de explotación y preparación de las vetas angostas, así como también el tiempo de abertura de las labores, y el ciclo de duración de minado de los paneles.

2.1.6. Antecedente seis

En la tesis "Aplicación de taladros largos en vetas angostas, caso Mina Austria Duvaz- Morococha" presentado por (ANTONIO, 2017) su objetivo fue al emplear el método de subniveles con taladros largos en vetas angostas - mina Austria Duvaz. Como conclusión se tiene:

 Con las características geomecánicas del macizo rocoso se cambió al minado de subniveles con taladros largos, dimensionándose el tajeo en 20 m de longitud,
 12 de altura, y de 1.40 a 3.20 m de ancho.

 Se logró un incremento de la producción a 6001.10 tn/mes, con un valor actual neto de 807,268.54 \$.

2.2. Bases teóricas - científicas

2.2.1. Generalidades de la mina

Ubicación

Distrito Huayllay, Provincia y Departamento de Pasco.

76°25'21.8'' Longitud Oeste

11°00'00.0" Latitud Sur

Altitud entre 4,250 y 4,800 m.s.n.m.

Sierra Central del Perú: Flanco Este de la Cordillera Occidental." (PAN AMERICAN SILVER, 2020)

Figura 1Ubicación de la mina

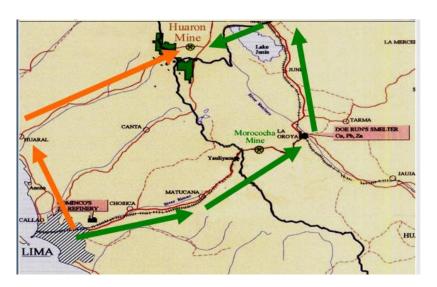
Accesibilidad

A la unidad minera Huarón hay tres vías de acceso por carretera, una por la carretera central, la segunda por la vía Huaral, la tercera vía Canta como se muestra líneas abajo.

"Lima-Carretera Central-La Oroya-Huarón 280Km Asfaltada

Unish-Mina Huarón 40Km Afirmada

Lima-Huaral-Huarón 210Km Mixta


Lima-Canta-Huarón 215Km Mixta

Vicco-Huarón 30' Afirmada'' (PAN

AMERICAN SILVER, 2020)

Figura 2

Accesibilidad de la mina

Antecedentes

"1912 COMPAGNIE DES MINE DE HUARON inició su explotación.

1978 se adecua a ley como COMPAÑIA MINERA HUARON SA.

1987 junio Acciones de Franceses transferidas a MHCSA quien explota hasta abril de 1,998 por colapso de la Laguna Naticocha.

2000 marzo compra por el Grupo PAN AMERICAN SILVER.

Entre 1912 a 1929 se explotó por Cobre; a partir de 1929 se explotaron sulfuros de plomo argentífero y zinc." (PAN AMERICAN SILVER, 2020)

Explotación

La mina desde sus inicios a empleado una variedad de métodos de explotación y en la actualidad está empleando el método por corte y relleno ascendente con taladros largos, para poder extraer minerales de plata, zinc, cobre y plomo.

2.2.2. Proyecto minero

"En líneas generales los pasos que se siguen comúnmente consisten en: Prospección; Solicitud de petitorio; Exploración; Evaluación técnica del Proyecto; Estudio de Impacto Ambiental; Desarrollo y preparación del Proyecto; Producción o explotación; Procesamiento metalúrgico (Beneficio e hidrometalurgia); fundición/Refinación; comercialización y Cierre o Abandono." (ESTUDIOS MINEROS DEL PERU S.A.C., 2002).

Prospección

"Prospección es la actividad consistente en ubicar las anomalías geológicas en la corteza terrestre, en donde posiblemente puedan existir depósitos o yacimientos minerales." (ESTUDIOS MINEROS DEL PERU S.A.C., 2002).

Solicitud de petitorio

"Es el proceso mediante el cual se asegura la propiedad minera, realizándose el trámite para la obtención del petitorio minero ante los registros públicos de minería." (ESTUDIOS MINEROS DEL PERU S.A.C., 2002).

Exploración

"La exploración es la actividad que consiste en la determinación de la cantidad (reservas) y de la calidad (ley promedio) del mineral de un depósito, ver también si es tratable el mineral." (ESTUDIOS MINEROS DEL PERU S.A.C., 2002).

Evaluación técnica el proyecto

"El estudio deberá pues contener los siguientes capítulos: tonelaje (probado y probable); leyes y medias (y ley mínima de corte); plan de desarrollo y método de minado (subterráneo o a tajo abierto); transporte (medios, sistemas, etc.); costos de mano de obra; materiales e insumos en general; inversiones; regalías, seguros; impuestos; gastos legales; etc. Tanto en términos totales, como referidos a una tonelada de mena." (ESTUDIOS MINEROS DEL PERU S.A.C., 2002)

Estudio de impacto ambiental

"Este estudio debe demostrar que las operaciones que se realicen no alteren el entorno y que los efluentes que se produzcan no contengan elementos nocivos más allá de los límites máximos permisibles establecidos por ley." (ESTUDIOS MINEROS DEL PERU S.A.C., 2002).

Desarrollo y preparación del proyecto

Consiste en los trabajos previos que se realizan para llegar al mineral desde la superficie, en otras palabras, significa establecer los accesos a las reservas minerales y prepararlas para su producción comercial.

Si el proyecto es una mina subterránea se realizan trabajos de desarrollo para llegar hasta el mineral mediante galerías (túneles horizontales), chimeneas (túneles verticales o inclinados que no se comunican a superficie), piques (túneles verticales que salen a la superficie), rampas (túneles en forma de espiral), etc. (ESTUDIOS MINEROS DEL PERU S.A.C., 2002)

Explotación

Minería a Cielo Abierto

"Es una explotación en superficie que extrae en franjas horizontales llamados bancos, en forma descendente a partir del banco que está en la superficie." (ESTUDIOS MINEROS DEL PERU S.A.C., 2002)

Minería Subterránea

"El método de explotación subterránea, es utilizado cuando las zonas mineralizadas (vetas o cuerpos de mineral económico) son angostas y profundas, por lo que según las evaluaciones técnicas y económicas justifica la perforación de túneles y socavones para posibilitar su extracción". (ESTUDIOS MINEROS DEL PERU S.A.C., 2002)

Procesamiento metalúrgico

"Denomina beneficio al conjunto de procesos físicos, quimos y/o físicoquímicos que se realizan para extraer o concentrar las partes valiosas de un agregado de minerales y/o para purificar, fundir o refinar metales". (ESTUDIOS MINEROS DEL PERU S.A.C., 2002)

Fundición

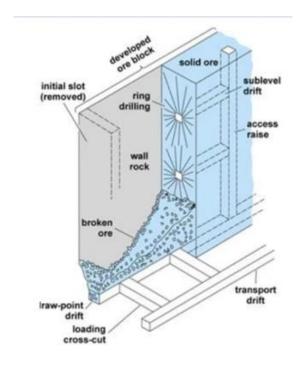
"Para conseguir recuperar los metales desde los concentrados o las soluciones lixiviadas se los somete a procesos de fundición y/o refinación, en los cuales se obtienen los metales en estado de pureza listos para su transformación industrial." (ESTUDIOS MINEROS DEL PERU S.A.C., 2002)

Cierre de minas

"Es la preparación (desde el inicio de las operaciones) y ejecución de actividades para restaurar las áreas afectadas por la explotación". (ESTUDIOS MINEROS DEL PERU S.A.C., 2002)

2.2.3. Métodos de explotación con taladros largos

"Este método se aplica preferentemente en yacimientos de forma tabular verticales o subverticales de gran espesor, por lo general superior a 10 m. Es deseable que los bordes o contactos del cuerpo mineralizados sean regulares." (CASTILLO, 2015)

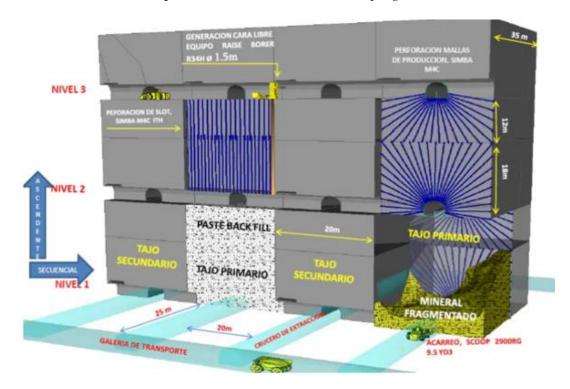

Características del método

Se excava el mineral en porción de tajadas verticales dejando el tajeo vacío, por lo general, de grandes dimensiones, particularmente en el sentido vertical.

El mineral arrancado se recolecta en embudos o zanjas emplazadas en la base del tajeo, desde donde se extrae según diferentes modalidades.

La expresión "subnivel" hace referencia a las galerías o subniveles a partir de los cuales se realiza la operación de arranque del mineral. La distancia entre subniveles de perforación es de 15-30 m. (Universidad Politecnica de Madrid, 2020)

Figura 3 *Método Sublevel Stoping*



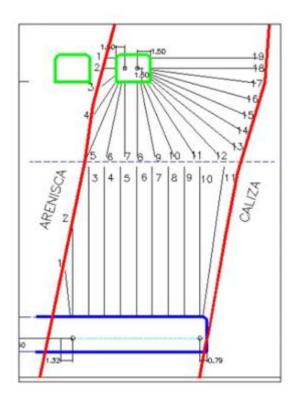
Parámetros de explotación

- "- Productividad: > 25 ton / h-Gdia
- Producción tajeo: >25,000 ton / mes
- Método no selectivo.
- Bajo costo de minado (7-14 \$/ton)
- Diámetro de taladros: 50 mm (2") 200mm (7 7/8")
- Las longitudes pueden ser hasta 30 m.
- Recuperación 60-80% (depende de los muros y losas).
- Dilución varía entre 3-10% de material diluyente de la pared colgante y techo.

- Muros y losas pueden ser recuperados, se planifica como parte del método de explotación.
- Requiere un alto nivel de preparaciones mineras las cuales se realizan en mineral" (Universidad Politecnica de Madrid, 2020).

Figura 4Esquema de diseño del sublevel stoping

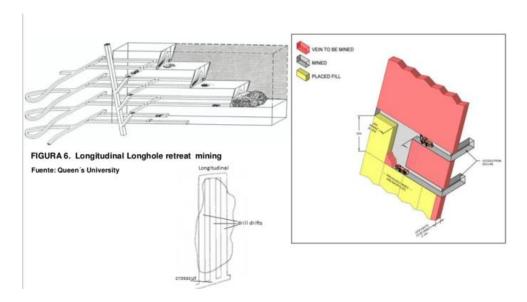
Aplicación

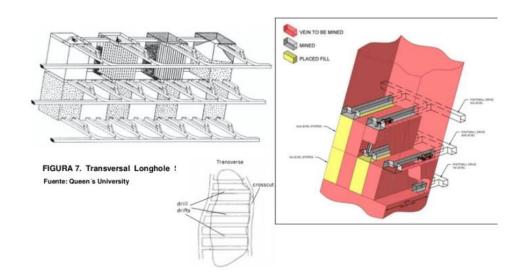

"Ore bodies con buzamiento superiores al ángulo de reposo del material roto

(aproximadamente mayor a 50°), de manera que el material se transporta por gravedad a los puntos de colección. La caja techo en los tajeos con menor buzamiento serán menos estables debido a las influencias de la gravedad lo cual resulta en un mayor potencial para la dilución.

• Resistencia del Mineral: alto a moderado.

- Limites regulares del mineral.
- Mineral de forma tabular o lenticular, con un ancho de 3m a 30m y longitudinalmente extensa.
- Resistencia de las rocas encajonantes: alto a modera" (LOPEZ JIMENO, 1987)


Figura 5
Vista de perfil del Método de Minado Sublevel Stoping


Diseño del método

"En el diseño del método se tendrá que ver la disposición de los tajeos longitudinalmente, transversalmente, las dimensiones de los tajeos, y otras consideraciones." (BELTRAN, 2018)

Figura 6Disposición de los tajeos longitudinal

Figura 7Disposición de los tajeos transversal

Dimensiones de los tajeos

Los objetivos del diseño geomecánico mediante la aplicación de criterios empíricos y numéricos son:

- "• Determinar las dimensiones óptimas de las cámaras de tajeos, pilares y puentes.
 - Realizar una explotación estable y segura.

• Minimizar la dilución y maximizar la recuperación.

El Dimensionamiento de las cámaras podemos realizarlo por el Método Gráfico de Estabilidad introducido por Mathews (1980), versión más reciente, actualizado por C. Mawdesley y R. Truimán (2000)" (CORDOVA, 2010)

Figura 8 *Método gráfico de estabilidad*

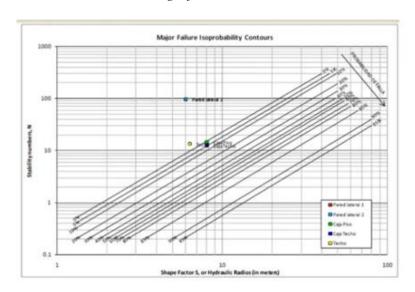
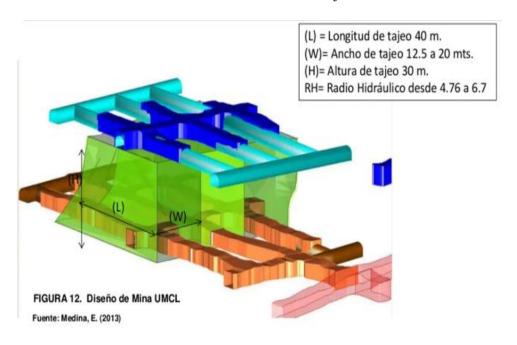



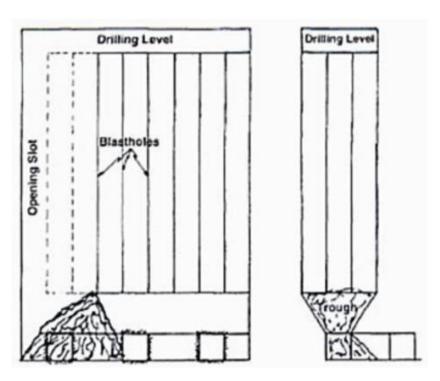
Figura 9

Dimensionamiento de los tajeos

Consideraciones en el diseño

En la perforación

Desde el nivel de perforación en la parte superior del block (Figura 13), filas.

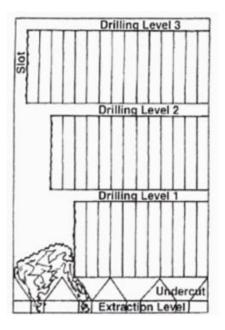

taladros paralelos son perforados hacia abajo hacia la parte superior del canal de extracción. Una chimenea es echo en el final del block y ensanchado para la explotación.

El diámetro de los taladros típicamente está en el rango de 3" a 6.5", para blocks anchos se usan frecuentemente 6.5".

La rectitud del taladro afecta la fragmentación, perdida de mineral y dilución. En general se seleccionará el mayor diámetro posible del taladro para la geometría del tajeo. La rectitud del taladro es dependiente del diámetro del taladro. (CASTILLO, 2015)

Figura 10

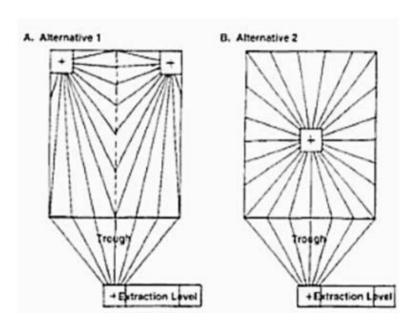
Diagrama de perforación del Blasthole Stoping


Sub niveles

Los estudios geomecánicos indican a que altura de blocks pueden ser extraídos usando el mismo nivel de extracción. Si las alturas exceden a la longitud de perforación recta, entonces varios niveles de perforación en varias alturas del block deben ser creadas.

El minado puede tener lugar overhand, en la cual los blocks de perforación inferiores son extraídos antes que los superiores o underhand, en la cual la extracción de los bloques de perforación superiores precedes a los que están debajo. Se asume que la potencia del ore body es como la anchura completa, es undercut y se dispone para acceso de la perforación. Taladros paralelos pueden ser perforados en este caso. (CASTILLO, 2015)

Figura 11


Niveles de perforación a diferentes alturas perforación en paralelo

Una alternativa es perforar taladros en abanico (Figura 12) en vez de los taladros paralelos desde los subniveles (Figura 11). Además, puede haber uno o múltiples cámaras de perforación en cada subnivel, y los taladros radiales pueden ser perforadas hacia abajo, hacia arriba o en toda la circunferencia.

El reforzamiento de la caja piso y de la caja techo puede ser hecho antes o durante el minado. (CASTILLO, 2015)

Figura 12Perforación en abanico

Preparación

"Esquemáticamente mostramos las labores de desarrollo que se tiene que realizar para la explotación del cuerpo mineralizado" FIGURA 13

Figura 13

Proyecto de desarrollo de la mina Talvaljarvl - Finlandia

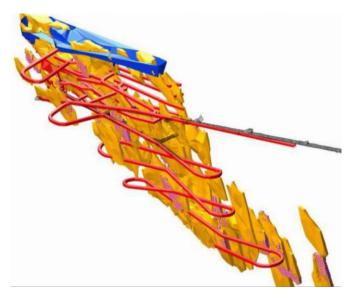
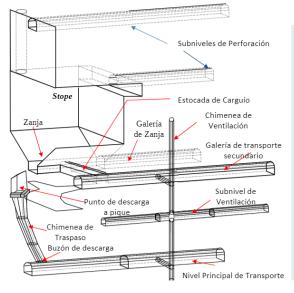
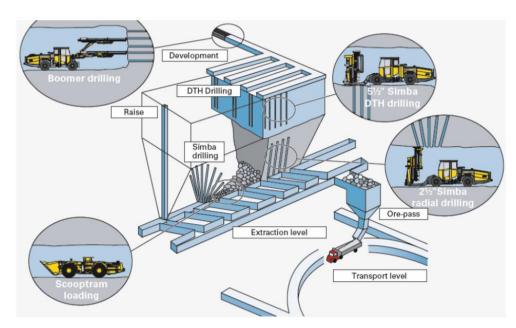


Figura 14


Desarrollo en Mina Iscaycruz

Desarrollo

"Se tendrá que considerar los niveles de producción, ventanas de carguío, embudos o zanjas recolectoras de mineral, chimeneas, rampas de acceso, subniveles de perforación." (CASTILLO, 2015)


Figura 15Labores de preparación

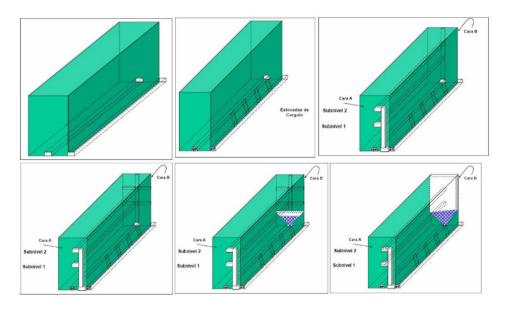

- Nivel base o producción (Nivel de transporte) cada 45 – 120 m.
- Estocadas de carguío.
- Embudos o zanjas recolectoras de mineral (desarrollo de galería).
- <u>Chimenea o rampa de acceso</u> a los subniveles de perforación.
- Subniveles de perforación conforme a la geometría del cuerpo mineralizado, cada 10 -30 m.

Figura 16

Vista esquemática de labores de preparación mina El Soldado- Chile

Figura 17Preparación de un tajeo

Preparación - Chimenea Slot

"Con el objetivo de crear la cara libre para la voladura masiva luego de la preparación de galería se procede a la construcción de la chimenea para la preparación del Slot de minado" (EXSA, s.f.)

Figura 18Diseño de la Chimenea Slot

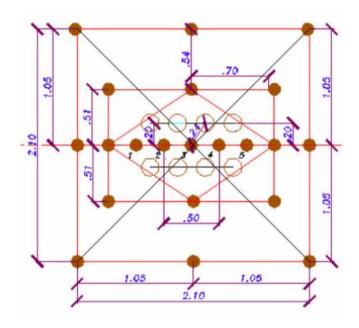
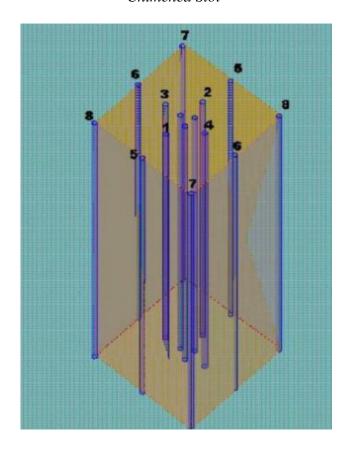



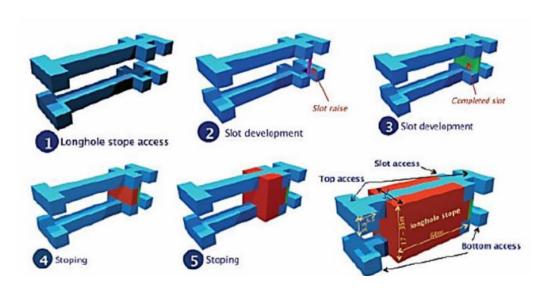
Figura 19
Chimenea Slot

Preparación - Chimenea Slot

"Una vez culminada la chimenea Slot y con el objetivo de crear la cara libre para la voladura masiva se procede a construir el Slot del Tajo, que consiste en derribar un bloque de nivel a nivel con dimensiones de acuerdo a cada sector." (EXSA, s.f.)

Figura 20Solt del tajeo vista de planta

Figura 21Solt del tajeo vista de perfil



Explotación de mineral

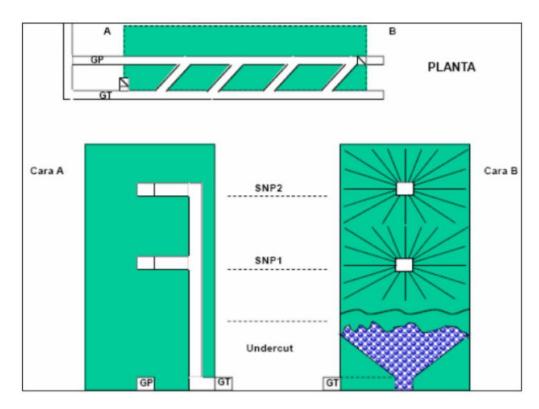
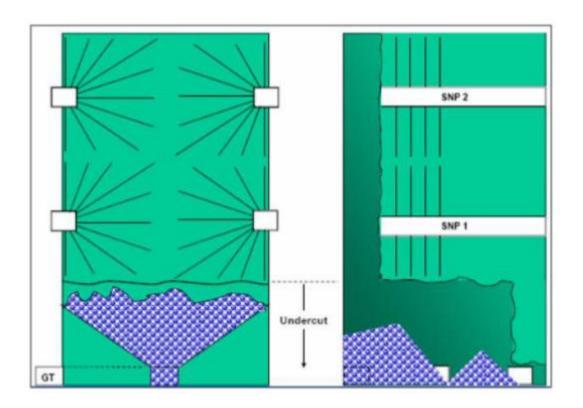

Rotura del mineral

Figura 22


Rotura del mineral

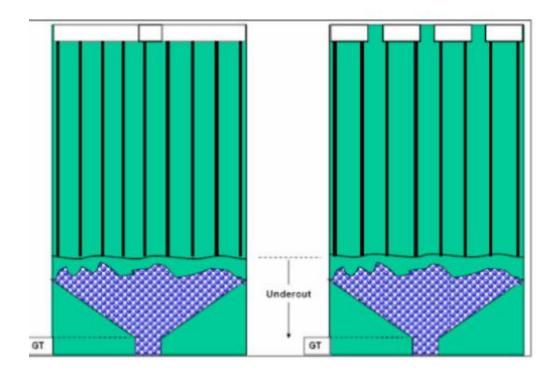

Figura 23Vista de planta y perfil del minado del mineral

Figura 24Perforación en abanico

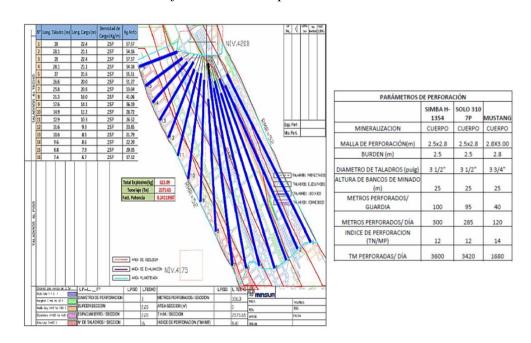


Figura 25Perforación en paralelo

"Drilling - Diseño de Perforación"

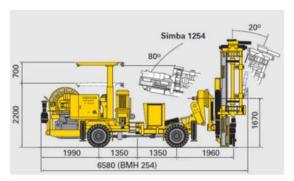
Figura 26Perforación en cuerpos mina Minsur

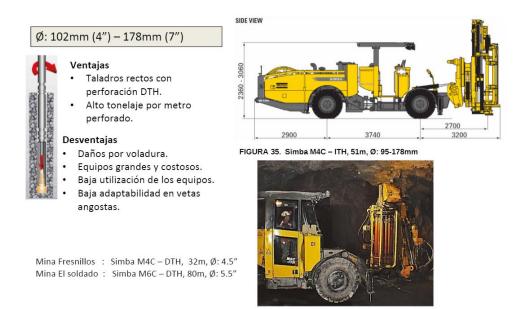
Drilling - Equipo de perforación top Hammer

Figura 27

"Equipo de perforación top Hammer Simbas series 1250 y S7D"

Mina Minsur : Simba H-1354, 25m, Ø: 3.5"
Mina Cerro Lindo: Simba H-1254, 17.5 m, Ø: 3."
Mina Brocal : Simba S7D , 15m, Ø: 2.5"
Mina Santander : Simba S7D, 18m, Ø: 2.5"
Mina Izcaycruz : Simba S7D, 18 m, Ø: 2.5"

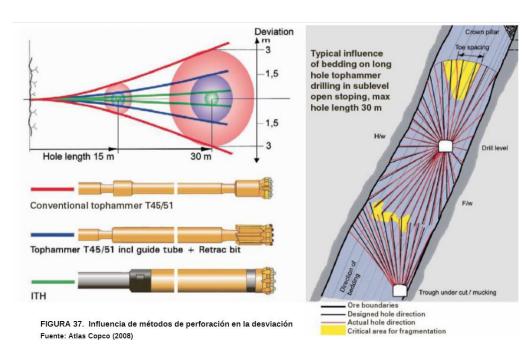



FIGURA 33. Simbas series 1250, 32m, Ø: 51-89mm

Drilling - Equipo de perforación DTH

Figura 28

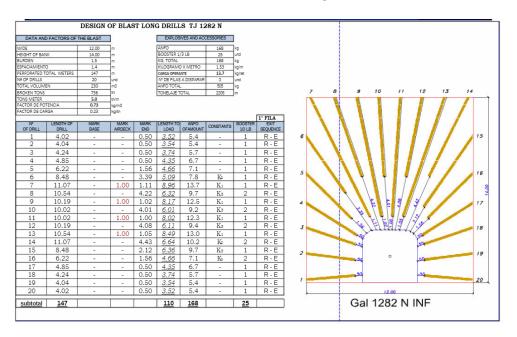
Equipo de perforación DTH



Drilling - Desviación de taladros

Figura 29

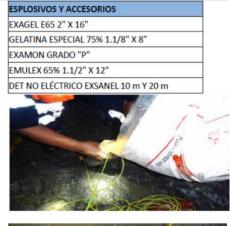
FIGURA 36. Simba M6C - DTH, 51m, Ø: 95-165mm


Desviación de taladros

Blasting - Voladura - Diseño de carguío

Figura 30

Voladura, diseño de carguío



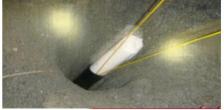
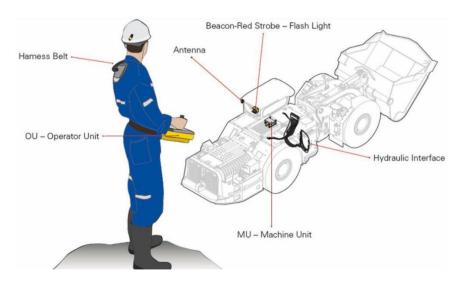

Voladura

Figura 31Voladura de cuerpos en mina san Rafael - Minsur

FIGURA 41. Voladura de cuerpos en Mina San Rafael - Minsur Fuente: Cipriani, F. (2013)



Carguío

Figura 32

Limpieza – scooptram

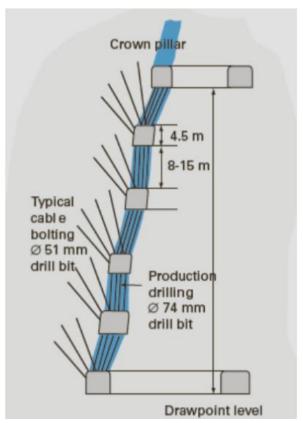
Carguío y transporte

"Se utilizan preferentemente equipos LHD para la extracción, carguío y transporte del mineral hacia estaciones de traspaso, donde es cargado a carros o camiones para su transporte final a superficie". (ATLAS COPCO, 2007)

Figura 33

Carguío y transporte, scooptram – dumper

Sostenimiento


La aplicación del Sublevel Stoping exige buenas condiciones de estabilidad tanto de la roca mineralizada como de la roca circundante. Por lo tanto, no requiere de la utilización intensiva o sistemática de elementos de refuerzo.

Las galerías de producción en la base de los tajeos se fortifican por lo general – según requerimiento – mediante pernos cementados o pernos y malla de acero (incluso shotcrete), atendiendo a las condiciones locales de la roca.

En los subniveles de perforación se puede utilizar localmente elementos de refuerzo provisorios cuando las condiciones de la roca así lo requieran. (CASTILLO, 2015)

Figura 34

Sostenimiento con cable bolting

Relleno en pasta

Aplicación del relleno en pasta con la finalidad de:

- Ayudar en la recuperación de los tajeos secundarios adyacentes.
- Proporcionar sostenimiento regional y limitar la subsidencia.
- Proporcionar un método de deposición de relaves.

Relleno de los espacios vacíos:

85%: relleno en pasta.

15%: relleno de labores de avances.

Parámetros:

P.E. mineral Insitu: 4.55

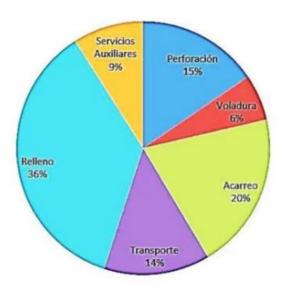
P.E. Relleno: 2.90

Slamp: 8"

Altura de relleno: 30 m

Ratio (Ton Cemento/Ton–Relave) = 3 %

UCS critica de diseño: 1 Mpa con fs: 1.5


Resistencia: 0.85 - 1 Mpa (luego de 3 meses de secado de los tajeos).

(CASTILLO, 2015)

Costos del método

Figura 35

Costo de minado

2.3. Definición de términos básicos

Cara libre o taladro de alivio:

"Permite que las ondas de compresión producto de la voladura se reflejen contra ella, originando fuerzas de tensión que permiten producir la fragmentación de la roca." (COMUN, 2018)

Eficacia:

"Es la evaluación en términos de logros de metas propuestas a través del análisis de la relación entre lo ejecutado y programado del gasto." (Universidad de Chile, 2017)

Eficiencia:

"Se evalúa la utilización de recursos existentes a través del análisis del rendimiento y productividad de éstos y del costo de las acciones ejecutadas." (Universidad de Chile, 2017)

Jumbo/Simba:

"Máquina de perforación electro hidráulico especialmente diseñado para perforar taladros verticales ascendentes y descendentes." (Universidad de Cantabria, 2018)

Malla de perforación:

"Se dice a la relación burden por espaciamiento es decir B x E. Que generalmente se expresa en metros" (ENAEX, s.f.)

Perforación:

"La perforación es la primera operación en la preparación de una voladura. Su propósito es abrir en la roca huecos cilíndricos denominados taladros y están destinados a alojar al explosivo y sus accesorios iniciadores." (EXSA, s.f.)

Radio Hidráulico:

"Es la máxima apertura que soporta la roca sin sostenimiento" (ENAEX, s.f.)

Tajo.

"Son las labores temporales destinadas a la extracción de mineral." (BELTRAN, 2018)

Taladros largos:

"Se dice a aquellos taladros de grandes longitudes perforados en explotación de minas en minería subterránea. Las longitudes son mayores a 10 metros hasta 30 metros aproximadamente" (LOPEZ JIMENO, 1987)

Voladura:

"Es la acción de fracturar o fragmentar la roca, el suelo duro, el hormigón o de desprender algún elemento metálico, mediante el empleo de explosivos." (Universidad Politecnica de Madrid, 2020)

2.4. Formulación de la hipótesis

2.4.1. Hipótesis general

Las consideraciones que se debe tener en cuenta para el minado con taladros largos en vetas angostas (veta Llacsacocha) deben ser técnicas, económicas, en la "Empresa Minera Pan American Silver – Unidad Huarón".

2.4.2. Hipótesis especificas

a. Dentro de las consideraciones técnicas del minado con taladros largos que se debe tener en cuenta, en vetas angostas (veta Llacsacocha), son estándares, procedimientos, ciclo y tiempo de minado, equipos, en la "Empresa Minera Pan American Silver – Unidad Huarón".

b. Dentro de las consideraciones económicas del minado con taladros largos que se debe tener en cuenta, en vetas angostas (veta Llacsacocha), son costos, productividad, producción, en la "Empresa Minera Pan American Silver – Unidad Huarón".

2.5. Identificación de variables

2.5.1. Variables para la hipótesis general

Condiciones técnicas

Condiciones económicas

2.5.2. Variables para la hipótesis especificas

Variables para la hipótesis a

Estándares,

Procedimientos,

Ciclo

Tiempo de minado,

Equipos

Variables para la hipótesis b

Costos,

Productividad,

Producción

2.6. Definición operacional de variables e indicadores

Tabla 1

Operacionalización de variables e indicadores

	OPERACIONALIZACION DE VARIABLES E INDICADORES								
VARIABLE	DEFINICION CONCEPTUAL	DEFINICION OPERACIONAL	DIMENCION	INDICADORES					
3.5.1 Variables para la hipótesis	Método de minado con taladros	En nuestra investigación vamos a	Técnicas:	-proceso de					
general	largos:	determinar las condiciones.	Estándares	ejecución					
Condiciones técnicas	"Este método se aplica	TECNICAS	Procedimientos	-Equipos de					
Condiciones económicas	preferentemente en yacimientos de	ECONOMICAS	Ciclo y tiempo de	perforación					
3.5.2 Variables para la hipótesis	forma tabular verticales o	Para la aplicación del minado con	minado	-Condiciones					
especificas	subverticales de gran espesor, por	taladros largos.	Equipos	geomecánicas					
Variables para la hipótesis a	lo general superior a 10 m. Es		Económicas:	-Ciclo de minado					
Estándares,	deseable que los bordes o		Costos	-diseño de					
Procedimientos,	contactos del cuerpo mineralizados		Productividad	perforación					
Ciclo	sean regulares." (CASTILLO, 2015)		Producción	-Costo de minado					
Tiempo de minado,				-Tn producidas					
Equipos				-m. perforados por					
Variables para la hipótesis b				mes					
Costos,									
Productividad,									
Producción									

CAPÍTULO III

METODOLOGÍA Y TÉCNICAS DE INVESTIGACIÓN

3.1. Tipo de investigación

En el estudio aplicaremos el tipo de investigación aplicada porque plantearemos las consideraciones técnicas económicas en un minado con taladros largos, como nos dice: "se caracteriza por su interés en la aplicación, utilización y consecuencias prácticas de los conocimientos. La investigación aplicada busca el conocer para hacer, para actuar, para construir, para modificar" (SUPO, CAVERO, 2014).

Referente al nivel será de un nivel descriptivo y de análisis en el minado con taladros largos, apoyado en "Reseña rasgos, cualidades o atributos de la población objeto de estudio" (BERNAL, 2010).

3.2. Nivel de investigación

"La elección del tipo de nivel de investigación depende, en alto grado, del objetivo del estudio del problema de investigación y de las hipótesis que se formulen en el trabajo, así como de la concepción epistemológica y filosófica de la persona o del equipo investigador".

3.3. Métodos de investigación

El método a usarse en la investigación es la estructura del método científico, haciendo uso método inductivo, análisis." Estudia los hechos, partiendo de la descomposición del objeto de estudio en cada una de sus partes para estudiarlas en forma individual (análisis), y luego se integran esas partes para estudiarlas de manera holística e integral (síntesis)." (TAMAYO Y TAMAYO, 2003).

3.4. Diseño de investigación

El diseño de la investigación en la investigación no experimental, porque no haremos cambios ni modificaciones de las variables simplemente propondremos las técnicas y condiciones económicas en el minado con taladros largos en la unidad minera Huarón. "Investigación no experimental Estudios que se realizan sin la manipulación deliberada de variables y en los que sólo se observan los fenómenos en su ambiente natural para analizarlos" (HERNANDEZ, FERNANDES, BAPTISTA, 2014).

3.5. Población y muestra

3.5.1. Población

La población lo constituye todas las labores mineras que se encuentran en operación en la mina Huarón.

3.5.2. Muestra

La muestra lo constituye la veta Llacsacocha, donde se hallan el tajeo R-448.

3.6. Técnicas e instrumentos de recolección de datos

Las técnicas e instrumentos que se empleó en nuestra investigación fueron.

3.6.1. Técnicas

Dentro de las técnicas empleadas en el desarrollo de la investigación son:

La observación

Porque vamos a poder observar todo el procedimiento de explotación de la veta Llacsacocha y plantear las consideraciones adecuadas en el minado con taladros largos.

Documental

Porque tendremos la oportunidad de revisar la información que se tiene en los archivos de la Mina sobre el minado con taladros largos, así como también información de otras minas.

Planificación

Emplearemos las técnicas sobre planificación especialmente la planificación por el método GANTT.

3.6.2. Instrumentos

En lo referente a la observación tenemos la observación directa de la explotación con taladros largos en la labor R-448 donde recogeremos los datos observados.

En la técnica documental recogeremos datos de los documentos del área de geología, geomecánica, mina, servicios auxiliares, planificación referente a la labor R-448.

3.7. Selección validación y confiabilidad de los instrumentos de investigación

3.7.1. Selección del instrumento

"Un instrumento de recolección de datos es cualquier recurso, dispositivo o formato (en papel o digital), que se utiliza para obtener, registrar o almacenar información." (Arias, 2006, pág. 68)

Los instrumentos de recolección de datos de esta investigación fueron:

La base de datos de los reportes de la herramienta de seguridad "Habla Fácil" diarios, mensuales.

Reportes físicos de la herramienta de seguridad "Habla Fácil" diarios, mensuales.

3.7.2. Validación del instrumento

"En este caso, lo fundamental es comprobar si el instrumento mide lo que se pretende medir, además de cotejar su pertinencia o correspondencia con los objetivos específicos y variables de la investigación." (Arias, 2006, pág. 135)

La presente investigación puede validar su instrumento basándose en los datos reales y confiables del área de seguridad.

3.7.3. Confiabilidad del instrumento

Es la exactitud de precisión del instrumento. Para el caso de la presente investigación los datos son exactos por el hecho que se obtuvieron de registros de la base de datos de los reportes de la herramienta de seguridad "Habla Fácil" diarios, mensuales.

3.8. Técnicas de procesamiento y análisis de datos

Terminado el trabajo de campo y de oficina procederemos a realizar el procesamiento y análisis de los datos obtenidos, para lo cual realizaremos los siguientes pasos.

- Análisis del diseño técnico del método de explotación del tajo R-448.
- Análisis del levantamiento topográfico de los taladros perforados.
- Análisis de producción del tajeo R-448.
- Análisis del costo de producción.
- Análisis del ciclo y tiempos de minado.
- Equipos a utilizar.

- Discusión de resultados y Conclusiones.

3.9. Tratamiento estadístico

El uso de la estadística no se aplicó en este estudio debido a que el estudio es descriptivo y de análisis.

3.10. Orientación ética filosófica y epistémica

En el estudio de nuestra investigación hemos tratado de desarrollar la investigación considerando los principios éticos de nuestra profesión, considerando la verdad, veracidad, confidencialidad, respeto por las personas y las instituciones, y el uso adecuado de la información.

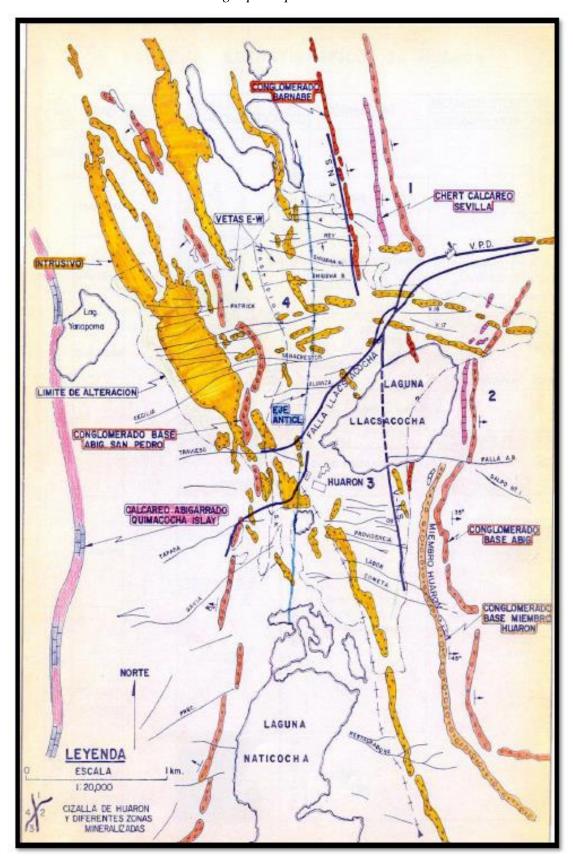
CAPÍTULO IV

RESULTADOS Y DISCUSIÓN

4.1. Descripción del trabajo de Campo

En la presente tesis se realizó el sostenimiento de las labores en Compañía Minera Pan American Silver – Unidad Huarón S.A. hormigón proyectado vía húmeda con fibra sintética para el mejoramiento de absorción de energía, reduciendo las micro fisuras por retracción durante el fraguado, evitando la formación de fisuras mayores.

4.2. Presentación, análisis e interpretación de resultados


4.2.1. Geología local

Referente a la geología local podemos mencionar las siguientes características mostradas por el departamento de geología de la empresa minera:

"La estructura mayor e importante es un geoanticlinal asimétrico con rumbo N 25° W, que ocurrió en los períodos Paleozoico, Mesozoico y Cenozoico. Consiste pues en sedimentos continentales del Cretáceo Superior al Terciario Inferior, "Capas rojas de formación Casapalca" que contienen margas, lutitas, areniscas, conglomerados, sedimentos calcáreos, chert y otros; los cuales fueron plegados y fallados por la actividad tectónica del Eoceno-Plioceno. La resultante orientada al

N 65° E y hacia arriba fue aplicada en la parte central del distrito minero. El relajamiento de fuerzas tectónicas compresionales pre-intrusivas a lo largo de zonas axiales originó zonas de debilidad y rupturas en el anticlinal; los que sirvieron de canales de circulación de fluidos ígneos transversales. La reactivación tectónica post - intrusiva y esfuerzos compresionales originó el fracturamiento premineral transversal E-W, longitudinal N-S y movimiento "Horstico" de la parte central del distrito minero. Huarón, básicamente es un yacimiento Filoneano y se conocen alrededor de un centenar de vetas con longitudes entre 100 y 1 800 m. y potencias de 0,30 a 6,00 m. explotados hasta 550 m. desde superficie (4 830) hasta el nivel base Huarón (4 250) en un área de 3 por 4 Km. Los filones son fundamentalmente de rumbo E-W con buzamientos entre 60° y 88° al Norte y al Sur perpendiculares al eje del anticlinal, limitados por 2 grandes fallas de cizalla que forman una "X" dividiendo el anticlinal de Huarón en cuatro sectores; cada una con sus propias características. Otras vetas son concordantes con la estratificación y solo se presentan en el flanco W del anticlinal, existen también acumulaciones de minerales de forma irregular "Bolsonadas" entrampadas en estratos favorables (conglomerados y chert), así como pequeños pórfidos y brechas mineralizadas relacionadas a intersecciones de vetas" (COMPAÑIA MINERA PAN AMERICAN SILVER - UNIDAD HUARON, 2016)

Figura 36Geología principal mina Huarón

Geomecánica de la mina Huarón

Conocer la parte geomecánica de la masa rocosa de la mina es muy importante, lo cual nos permitirá determinar la calidad de la roca con la que vamos a trabajar o tener que sostener cuando realizamos la explotación del yacimiento, para lo cual se determinará el Índice geológico de resistencia (GSI), el RQD.

La siguiente tabla da a conocer el GSI de labores de desarrollo de 2.5-3.5 m y labores de explotación de 2.5-4.5 m.

Figura 37

Tabla geomecánica de labores de desarrollo de 2.5 - 3.5 m y labores de explotación de 2.5 - 4.5 m.

COMPAÑIA MINERA HUARON S. A. SOSTENMA ENTO SEGEN G.S. I. (modificado) LABORES MINERAS DE DESARROLLO (2.5-3.5) LABORES DE EXPLOTACION (2.5-4.5) A SIN SOFORTE - PERVO CLASIONAL HIEMO IE CALCACION I AND PERVO SISTEMATICO 1.50 x 1.50 m (Maila o sinta occasional) HIEMO IE CALCACION I NES C PERVO SISTEMATICO 1.2 x 1.2 m (Maila o sinta occasional) HIEMO IE CALCACION IS ILAS D PERVO SISTEMATICO 1.0 x 1.0 m y Maila O Shottete ton fibra (5 cm) HIEMO IE CALCACION I IIIA E PERVO SISTEMATICO 1.0 x 1.0 m y SHOTCERTE 10 0 cm can fibra HIEMO IE CALCACION I IIIA F CIMBRAS METALIACAS O CARIROS IE MAIERA ESPACIACIS CADIMETRO HIEMO IE CALCACION INMETATO ESTRUCTURA	BRENG (MAY REST STEADE, PRESCO) SUPERST OF DE LAS INSCONTINUE DADES MAY RUCCEAS B I NULTERADAS, CERRADAS (Re. 100 A 250 Ma) (SE ROMPE CON PAIR OS OCLPES DE PLOTA)	PROPEAR (1921 STEWNER, LIPTERFORD ALTHROUS) DESCONTEMENTS RELEXAS, LEPERFORD ALTERATS MANCEUS DE ON DACE ON LEGISLARINE ALERENTA. (18-50-a.100 Mpa) (SE ROLDE COL LOS OLDS COLPES DE PLOSA)	PCENNE (MACKER NUCS) T., LEFFE A MATRIX ALTERADA. DI SCCNITANI DALES LI SAS. MADRIADMENTE ALTERADA. LI GROMMONTE ARI ERCIAS. (Re. 2.5 A 50 Mps). (SE INNSWIA SUPERIT CIALMENTE CON CALPES DE PI COEA).	MIT PCRRR (BLANDA, MIT ALTERADA) SUPERA CHE PULLDA O CON ESTRA ACTONES, MAY ALTERADA RELLENO COMPACTO O CON FRAGMANTOS DE ROCA (R. 5 A 25 Mp a) - (SE INTENTA MES DE 5 mm.)
LEVEMENTE FRACTURADO TRES O MENOS SISTEMAS DE DISCONTINUIDADES MAY ESPACIADAS ENTRE SI (RQD 75-90) (2 A 6 FRACTURAS POR METRO) (RQD=115 - 3.3 Jn.)	(A) LF/B	(A)	(A)	
MODERADAMENTE FRACTURADO MIT BLEN TRABADA, NO DISTURBADA BLOQUES CUEICOS FORMADOS POR TRES SISTEMAS DE DISCONTINUI DADES ONTOGONALES (ROD 50 - 75) (6 A 12 FRACTURAS POR METRO)	(A) F/B	(A) F/R	(A) F/\$	(C) F/AP (D)
MUV FRACTURADO MODERADAMENTE TRABADA PARCIALMENTE DISTURBADA EL COMES ANGLLOSOS FORMADOS POR CUATRO O MAS SISTEMS DE DI SCONTINU DADES (ROD 25-50) (12 A 20 FRACTURAS POR METRO)	(4) MF/B	(A) MF/ R	(C)	(D) 16/16 (E)
INTENSAMENTE FRACTURADO FILLAM ENTO Y FALLAM ENTO FILLAM ENTO CON MUCHAS DISCONTINUIDADES INTERCEPTADIS FORMADO FILLAM ELOCIES ANGLIOSOS O I FREGULARES (RQD 0 - 25) (MATTHEW (MAS DE 20 FRACTURAS POR METRO)		(O) 15/2	(D) 17/2 (E)	(E) IF/MP

Figura 38 $Tabla\ Geomec\'anica\ para\ labores\ de\ desarrollo\ de\ 3.5-5.0\ m\ y\ labores\ de\ explotaci\'on$ $de\ 4.5-7.0\ m.$

SOSTENIA. LABORES LABORES A B C	AÑI A MINERA HUARON S. A. I ENTO SEGIN G. S. I. (modificado) MINERAS DE DESARROLLO (3.50-5.0) DE EXPLOTACION (4.5-7.0) SIN SOPORTE - PERNO OCASIONAL. TIEMPO DE COLOCACION 5 AÑOS PERNO SISTEMATICO 1.50 x 1.50 m. (Milla o cinta ocasional) TIEMPO DE COLOCACION 1 MES PERNO SISTEMATICO 1.2 x 1.2 m. (Milla o cinta ocasional) TIEMPO DE COLOCACION 15 DIAS PERNO SISTEMATICO 1.0 x 1.0 m. y Milla O Shotcrete con fibra (5 cm) TIEMPO DE COLOCACION 5 DIAS PERNO SISTEMATICO 1.0 x 1.0 m. y SHOTCRETE 10.0 cm. con fibra. TIEMPO DE COLOCACION 1 DIA CIMBRAS METALICAS O CUADROS DE MIDERA ESPACIADOS CADA METRO TIEMPO DE COLOCACION 1 NIMEDIATO CUCTURA	BUENA (MIN RESI STENTE, FRESCA) SUPERFI CI E DE LAS DI SCCNTI NUI DADES MIN RUGGSAS E INALTERADAS, CERRADAS. (Re 100 A 250 Ma) (SE ROMPE CON VARIOS GOLPES DE PICCEA)	RECALAR (RESISTENTE, LEVEMENTE ALTERADO) DISCONTI NUI DADES RUCOSAS, LEVEMENTE ALTERADO MINCHAS DE CRI DATON, LI GERAMENTE ABIERTA. (Re 50 a 100 Mpa) (SE ROMPE CON UNO O DOS COLPES DE PICCEA)	POBRE (MODER RESIST., LEYE A MODER ALTER.) DISCONTINUI DADES LISAS, MODERADAENTE ALTERADA, LI GERAMENTE ABI ERLAS, (Re. 25 A 50 Mpa) (SE INDENIA SUPERFICIALMENTE CON GOLPES DE PI COLA)	MAY POBRE (BLANDA, MAY ALTERADO) SUPERFICIE PULIDA O CON ESTRIACIONES, MAY ALTERADA RELLENO COMPACIO O CON FRAGMENTOS DE ROCA (Re 5 A 25 Mpa) - (SE INDENTA MÁS DE 5 mm.)
	LEVEMENTE FRACTURADO	(A)	(A)	(A)	
	TRES O MENOS SISTEMAS DE DISCONTINUIDADES MUY ESPACIADAS ENTRE SI (RQD 75-90) (2 A 6 FRACTURAS POR METRO) (RQD= 115 - 3.3 Jn.)	LF/B	LF/R	LF/P	
	TRES O MENOS SISTEMAS DE DISCONTINUIDADES MUY ESPACIADAS ENTRE SI (RQD 75-90) (2 A 6 FRACTURAS POR METRO)			LF/P	(D)
	TRES O MENOS SISTEMAS DE DISCONTINUI DADES MUY ESPACIADAS ENTRE SI (RQD 75-90) (2 A 6 FRACTURAS POR METRO) (RQD= 115 - 3.3 Jn.) MODERADAMENTE FRACTURADO MUY BIEN TRABADA, NO DISTURBADA, BLOQUES CUBICOS FORMADOS POR TRES SISTEMAS DE DISCONTINUI DADES ORTOGONALES (ROD 50 - 75)	LF/B	LF/R	LF/P	(D) F AP

Determinación del RQD del macizo rocoso tajo Llacsacocha

Para poder determinar el RQD de la roca en la veta Llacsacocha empleamos la ecuación 1 que se muestra líneas abajo y también el número de discontinuidades por cada metro lineal.

 Tabla 2

 Cálculo RQD en el macizo rocoso tajo Llacsacocha

Sistema	Nº discontinuidades
1	6
2	5
3	3
4	1
Jv	15
RQD	65,5

Para determinar el GSI que viene a ser el Índice geológico de resistencia se halla en base al RQD y la resistencia a la compresión simple.

Tabla 3

GSI del macizo rocoso

Veta	Estructura	Tipo de roca	Origen datos	GSI
Llacllacocha	Veta	ConglomeradoSiliceo	Mapeo geomecanico	45
Alianza	Veta	Caliza Cloritizada	Mapeo geomecanico	50
	Cuerpo	Caliza Cloritizada	Mapeo geomecánico	55

Evaluación de los tajeos considerados para la aplicación de taladros largos

Dentro de todos los cuerpos mineralizados que tiene la mina Huarón se ha evaluado a todos tajeos donde se pueden aplicar taladros largos, así tenemos veta Alianza, Llacsacocha, Tapada, veta cuatro, Yanacreston, como se aprecia en el cuadro siguiente donde se indica sus características.

Tabla 4

Tajeos considerados para la aplicación de taladros largos

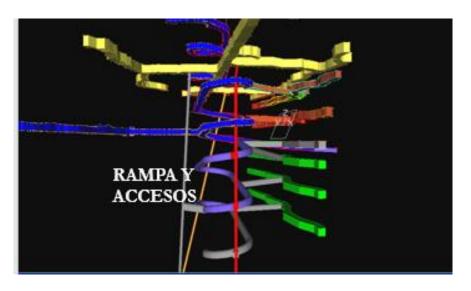
		DATOS			CONSIDERACIONES GEOLOGICAS			CONSIDERACIONES GEOMECANICAS									
		DATOS			RESERVA POTENCIA RI			RMR	MR RMR Geoda			Fallas					
ZÓNA	NIVEL	BLOCK	VETA	TAJO	TON.	AV	Ag(gr)	%Cu	%Pb	%Zn	VPT	BZ	Mineral	Dessmonte	Abert.	Agua	Planos
NORTE	250	31,308-314,322,323	ALIANZA	R-894	248375.97	3.12	112.32	0.72	0.83	3.57	52.98	80	20	40	NO	NO	SI
NORTE 500	420	308,309	LLACSACOCHA	R-448	57536.05	3.48	138.66	0.29	0.30	2.23	57.00	70	45	50	SI	NO	NO
SUR	420	1,20,27,200,201,204	TAPADA	R-830	128890.70	3.06	206.05	1.06	0.63	2.54	90.63	75	25	55	NO	NO	SI
NORTE	180	317	CUATRO	R-123	29216.00	2.31	162.14	0.98	0.74	1.84	56.72	75	20	55	NO	SI	NO
SUR	250	12,81,82,310,311	TAPADA	R-784	56880.57	2.48	222.42	1.22	0.59	1.91	94.91	80	25	50	NO	SI	NO
NORTE 600	600	9,32,314,317,338,339	YANACRESTON	R-13	81717.19	2.14	157.32	0.75	0.59	3.89	61.82	80	35	55	NO	NO	SI
NORTE 600	700	6	YANACRESTON	R-306	26747.21	2.55	180.73	0.09	2.10	4.90	86.64	80	30	55	NO	NO	NO
	RESER\	AS TOTALES A CONSID	ERAR	62	9363.69											7	7

4.2.2. Método de explotación en mina Huarón

Una explicación sucinta del método empleado para la explotación de los minerales en la empresa es.

"El método consiste en hacer subniveles en intervalos definidos entre los niveles principales de la mina. El tajeo de perforación se hace de las galerías de acceso a los subniveles, el mineral es disparado hacia una cara libre (Slots) en cortes largos. La carga disparada cae por gravedad al fondo del tajeo en el nivel inferior que esta comunicada mediante ventanas de extracción hacia una cámara de carguío o una tolva de acumulación." (PAN AMERICAN SILVER, 2018)

"Este método requiere un alto desarrollo y por consiguiente una alta inversión en rampas de acceso a los subniveles, galería de extracción, subniveles, ventanas, chimeneas, echaderos, etc. Lo cual requiere de una variabilidad de los turnos de productividad, que van de 12 a 26 hombres por guardia, esto depende de la agilidad que hay que darles a las operaciones". (PAN AMERICAN SILVER, 2018)


Accesos a los subniveles

"Se realiza a través de una rampa positiva que va subiendo en forma de espiral, esta rampa se ubica hacia el lado de la caja piso de la zona mineralizada, en este caso en el bypass 895.

Esta rampa está a una distancia entre 30 y 50 metros y está unida al cuerpo mineralizado mediante ventanas para evitar los posibles efectos de la voladura y otras operaciones de producción que se producen durante el tajeo. Las ventanas son construidas perpendiculares al rumbo de la veta y están espaciadas unas de otras por una distancia que va desde 80 a100 metros estas ventanas tiene longitudes promedio de 60 metros". (PAN AMERICAN SILVER, 2018)

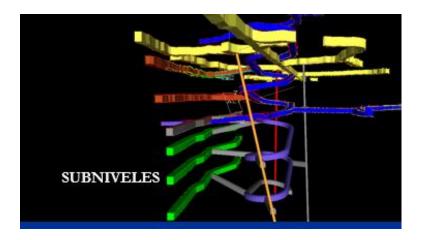
Figura 39

Labores de preparación, rampas y accesos

Galería de acarreo

Tenemos:

"Se construyó en el nivel 250 paralela al bypass 825, con 5 ventanas que comunican la galería con el bypass y que están separadas 70 metros una de la otra.

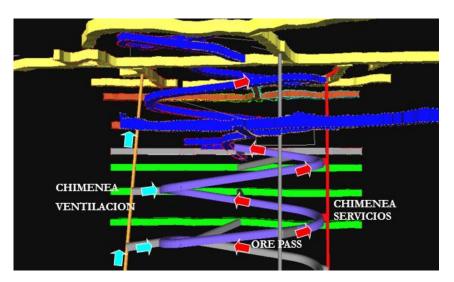

El rumbo de esta galería es paralelo al de la veta Alianza que va de Este a Oeste y sus dimensiones son de 3 de ancho por 3 de alto para darle maniobrabilidad al Scoop Sandvick LH307 2,2 yardas cúbicas." (PAN AMERICAN SILVER, 2018)

Intervalos entre subniveles

"Estos intervalos van desde los 10 m. hasta los 15 m. que es la distancia que tiene los taladros de producción y su extensión promedio es de 280 m. dependiendo de la potencia y las leyes del cuerpo mineralizado para poder decidir si se prolongarán o no, además de tener en cuenta las condiciones geomecánicas y la presencia de agua." (PAN AMERICAN SILVER, 2018)

Figura 40

Labores de preparación, subniveles

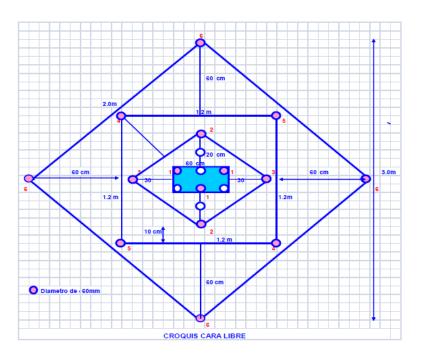

Drawpoints

En cuanto a las chimeneas realizadas tenemos:

"Se cuenta con tres chimeneas realizadas en los subniveles que van ganando altura, estas permiten acortar las distancias de acarreo y acumular el mineral en una tolva neumática para luego ser descargadas en camiones de 38 toneladas los cuales prosiguen a llevar el mineral por la rampa principal hasta la planta. Estas chimeneas son construidas con una máquina perforadora Jack Leg, tienen una dimensión de 1,5 x 1,5 metros y el avance promedio de disparo es de 1,8 metros." (PAN AMERICAN SILVER, 2018)

Figura 41

Labores de preparación, chimeneas, ore pass

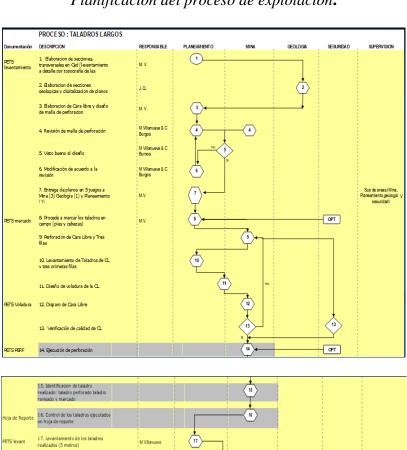

Slot cara libre

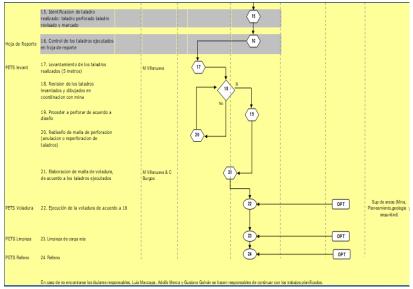
Mostrando las características siguientes:

"Esta debe tener el ancho completo del cuerpo mineralizado para asegurar la buena salida de los taladros de producción. La cara libre se consigue con la perforación de 12 taladros como se muestra en la siguiente malla".

Figura 42

Diseño de malla de perforación Slot



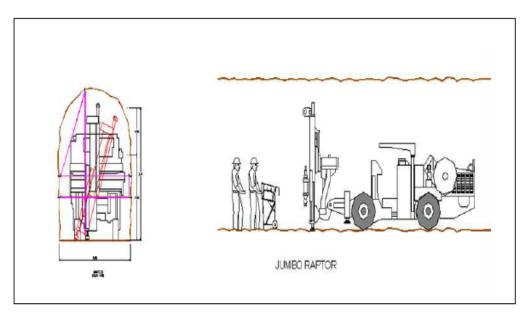

4.3. Prueba de hipótesis

En la planificación para la explotación por taladros largos, en la mina Huarón intervienen un conjunto de áreas como el área de planeamiento, mina, geología, geomecánica, seguridad, supervisión; para poder coordinar todas las actividades que se tendrá que desarrollar, como se puede apreciar en la siguiente figura.

Figura 43

Planificación del proceso de explotación.

Equipos de perforación en taladros largos


Equipo Mini Raptor DH

"Utilizando brocas de 64mm.de diámetro de taladros de producción, la perforación es en negativo, barra acoplable 5 pies, rimadora 127mm., clinómetro en grados, shank T-38, energía 440 V.; presión de aire 6-8 Bar.; presión de agua 4-6 Bar." (RESEMIN, 2016)

Figura 44 *Equipo Mini Raptor DH*

Figura 45 *Equipo Jumbo Mini Raptor DH*

Características técnicas del Equipo Jumbo Mini Raptor DH Tabla 5

Características técnicas del Equipo Jumbo Mini Raptor DH

Características técnicas Mini Raptor DH						
Parámetros	Valores					
Barra de acople	5 pies					
Broca	64 mm					
Rimadora	127 mm					
Clinómetro	grados					
Shank	t- 38					
Energía, voltaje	440 v.					
Presión de aire	6 – 8 bar					
Presión de agua	4 – 6 bar					

Dimensiones del Equipo Jumbo Mini Raptor DH

Tabla 6Dimensiones del Equipo Jumbo Mini Raptor DH

Dimensiones Mini Raptor DH					
Ancho	1.2 m.				
Largo	6.8 m.				
Alto Mínimo	2.3 m.				
Alto máximo	3.3 m.				
viga	2.9 m.				
Pluma	3.2m.				
Cilindro Stinger	1.4 m.				

Perforación descendente con Mini raptor DH

Tabla 7Perforación descendente con Mini raptor DH

Perforación descendente con Mini raptor DH								
N° de Barras	tiempo de	tiempo de	tiempo de	tiempo de				
perforadas	perforación	barrido	instalación de	retirada de				
	(seg)	(seg)	Barra (seg)	barras (seg)				
Primera barra	65	25	0	0				
Segunda barra	90	45	11	09				
tercera barra	85	180	13	10				
Cuarta barra	110	100	10	15				
Quinta barra	100	95	18	11				
Sexta barra	95	110	09	13				
Séptima barra	120	73	10	10				
Octava barra	111	117	13	11				
Novena barra	114	155	11	09				
Decima barra	118	140	10	13				
Total	1008	1040	105	101				

Resumiendo, tiempo de perforación descendente con Mini Raptor en una guardia.

"Tiempo de perforación de taladros 1008 seg.

Tiempo de barrido 1040 seg.

Tiempo de instalación de barra 105 seg

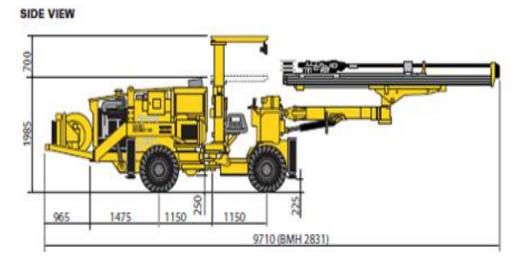
Tiempo de retirada de las barras 101 seg.

Tiempo de instalación de la pluma para la perforación 382 seg.

Tiempo total de perforación total 2254 seg, 37.57 minutos.

Longitud de taladro 13.5 m" (RESEMIN, 2016)

Equipo Rocket Boomer H104


Presenta las características:

"El equipo Boomer H104, es un jumbo autopropulsado por motor eléctrico o Diesel. La perforación es electro-hidráulica con potencia de 37 KW., la unidad puede desarmarse en 3 o 4 componentes para su traslado por chimeneas, perfora tanto horizontal como verticalmente, sus dimensiones son 1,22*1,60*7,70m. (ancho, alto y longitud respectivamente) y cubre un ancho de galería de 4,70m. y una altura de 4,70" (RESEMIN, 2016)

Tabla 8Características técnicas del Equipo Rocket Boomer H104

Características técnicas Equipo			
Rocket Boomer H104			
Parámetros	Valores		
Barra de acople	5 pies		
Broca	64 mm		
Rimadora	127 mm		
Clinómetro	grados		
Shank	R32 o T- 38		
Energía, voltaje	380- 1000 v.		
Presión de aire	6 – 8 bar		
Presión de agua	2 – 4 bar		

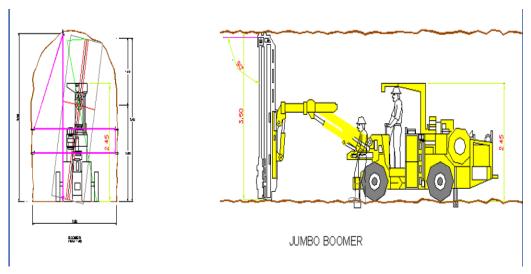

Figura 46Rocket Boomer H104 dimensiones

Figura 47 *Equipo en plena operación mina*

Figura 48 *Equipo de perforación Rocket Boomer 104*

Perforación ascendente con Boomer 104 tajeo

Tabla 9Perforación ascendente con Boomer 104 tajeo

Perforación ascendente con Boomer 104 tajeo				
N° de Barras	tiempo de	tiempo de	tiempo de	tiempo de
perforadas	perforación	barrido	instalación de	retirada de
	(seg)	(seg)	Barra (seg)	barras (seg)
Primera barra	70	30	0	0
Segunda barra	80	60	19	11
tercera barra	140	160	18	13
Cuarta barra	126	75	22	15
Quinta barra	275	65	20	13
Sexta barra	300	120	16	11
Séptima barra	140	53	18	10
Octava barra	159	90	16	15
Novena barra	114	160	16	13
Total	1369	813	145	101

Resumiendo, tiempo de perforación ascendente con Boomer 104 en una guardia.

"Tiempo de perforación de taladros 1369 seg.

Tiempo de barrido 813 seg.

Tiempo de instalación de barra 145 seg

Tiempo de retirada de las barras 101 seg.

Tiempo de instalación de la pluma para la perforación 420 seg.

Tiempo total de perforación total 2428 seg, 40.46 minutos

Longitud de taladro 13.5 m." (RESEMIN, 2016)

Diseño de tajo por método gráfico de estabilidad

Es función de N' y S:

1. Número gráfico de estabilidad (N').

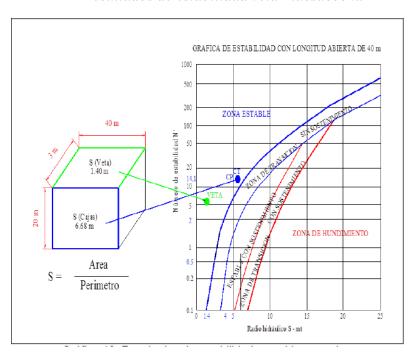
Ubicación N´

Caja techo: 14,17

Veta: 6,05

Caja piso: 14,23

2. Radio hidráulico (S).


Ubicación S

Caja techo: 6,68

Veta: 1,40

Caja piso: 6,68

Figura 49Resultados de estabilidad veta Llacsacocha

Considerando las dimensiones abiertas de 3m. de potencia de la veta con 40 m. de longitud y 20 m. de altura de tajo abierto, las condiciones de estabilidad son favorables en la veta Llacsacocha. La zona analizada no requiere sostenimiento.

Diseño de la perforación

"Se realiza el levantamiento de los taladros cuya inclinación varía entre los70 ° a 75° dependiendo del cuerpo mineralizado con una longitud vertical entre 14 a 15 m. en una longitud total de 40 m. siendo la cantidad de taladros de 130".

- Se realiza la perforación con barras 5 pies (actualmente columna R-32).

- Longitud de los taladros de 13m (9 barras).
- Se perfora los taladros por el subnivel superior.
- luego de terminar de perforar la longitud del taladro, se coloca los tubos de pvc de 51 mm.
- Terminado el taladro se colocan estacas de madera en el subnivel superior y en subnivel inferior del taladro con su respectivo nº para su fácil ubicación.
- Se llena un formato de perforación para informar las desviaciones de los taladros realizados y su posterior modificación.

Figura 50Esquema de perforación de taladros

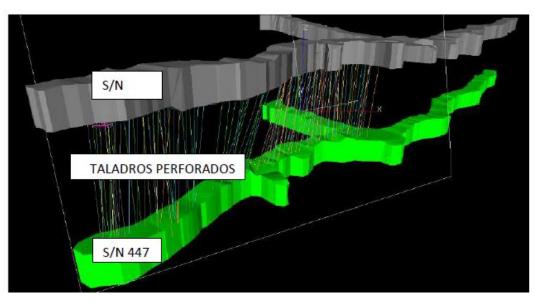
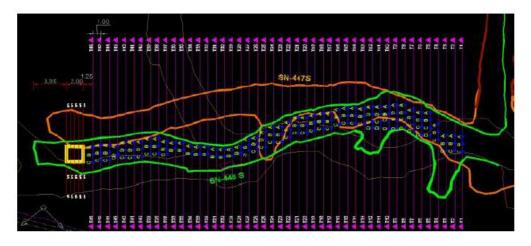
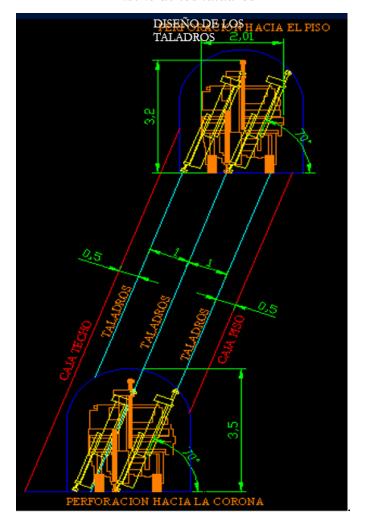
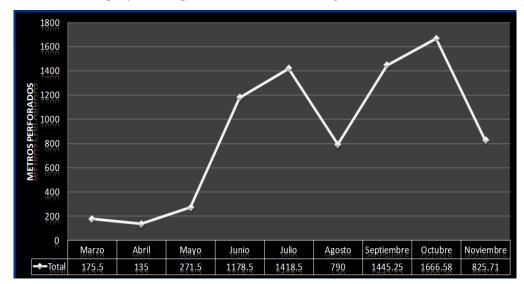




Figura 51
Vista de planta de ubicación de los taladros entre SN 448 y SN 447


Figura 52Diseño de los taladros

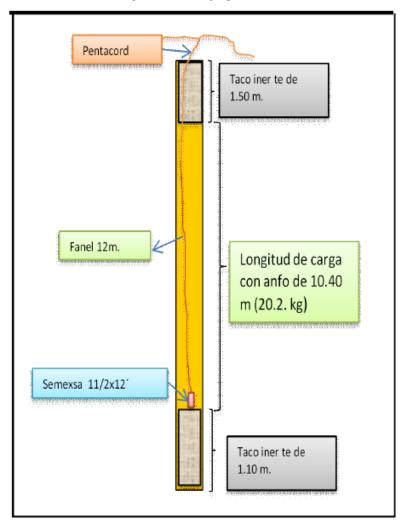
Metros perforados por mes en taladros largos veta Llacsacocha

Podemos observar en cuanto a la perforación en el año 2021 durante los meses de marzo a noviembre la cantidad de meros perforados ha ido aumentando mes a mes, así en el mes de marzo se perforo 175.5 m. y en los meses de octubre y noviembre fueron 1666. 58 m y 825.71 m respectivamente, como se ve en el cuadro siguiente.

Figura 53 *Metros perforados por mes de taladros largos veta Llacsacocha*

Diseño de carguío de los taladros

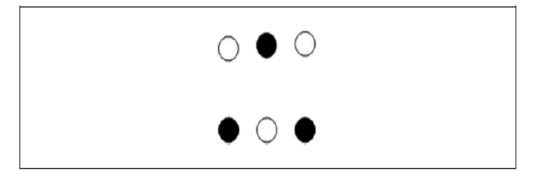
Se logró optimizar el carguío de los taladros usando un solo iniciador Semexa 1 $\frac{1}{2}$ x 12" que tiene los siguientes parámetros.

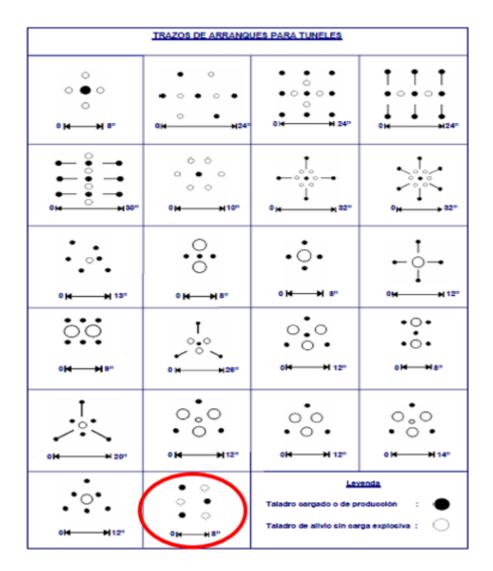

Parámetros de carguío de los taladros veta Llacsacocha

Se tiene las siguientes características

Tabla 10Parámetros de carguío de los taladros veta Llacsacocha

Características de los taladros veta Llacsacocha		
Burden	1 m.	
Espaciamiento	1m.	
Longitud de perforación	13.5 m.	
Densidad	3kg/m3	
Longitud de fanel	12 m.	
Longitud de perforación	13.5 m.	
Longitud de carguío de explosivo/tal	10.5 m.	
Diámetro de broca	0.064 m.	
Tonelada por taladro	40.5	
Anfo	20.20 kg/tn	
Factor de potencia	0.50 kf/tn	


Figura 54 *Longitud de carga por taladro*



Diseño de arranque vea Llacsacocha

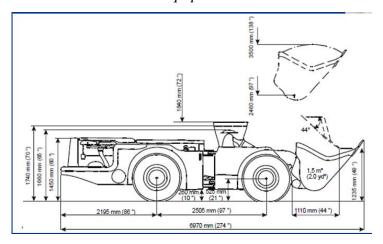
El diseño de arranque se realiza para el slot, como se muestra en la figura.

Figura 55Diseño de arranque

Equipo de limpieza de mineral y relleno detrítico

La limpieza como el relleno del tajeo se realiza mediante el equipo LH203, llamado comúnmente Toro 151, cuyas características principales son:

- Capacidad de transporte 3500 kg (7716 lb)

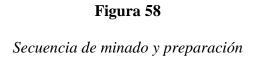

- Fuerza de arranque elevación 6220 kg (13710 lb)

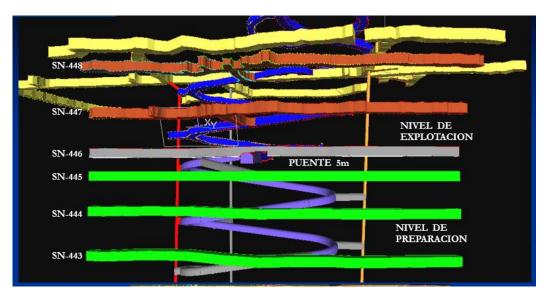
- Fuerza de arranque inclinación 5600 kg (12360 lb)

- Carga de vuelco 8300 kg (18298 lb)

- Capacidad de Cucharon estándar 1.5 m3 (2.0 yardas3)

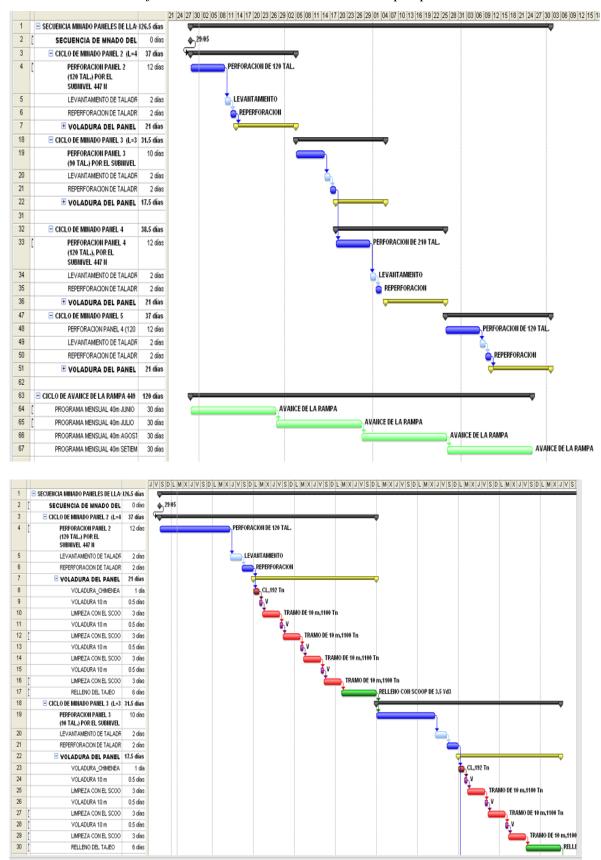
Figura 56Dimensiones del equipo LH203 TORO 151




Figura 57Vista del equipo de limpieza LH203 TORO 151

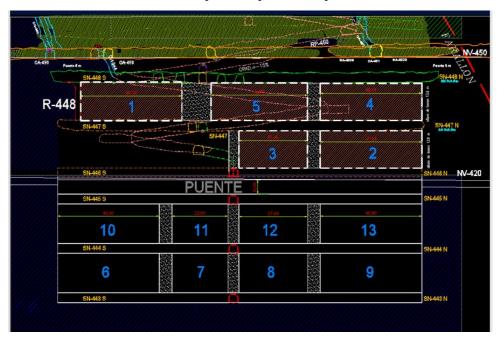
Secuencia de minado y preparación

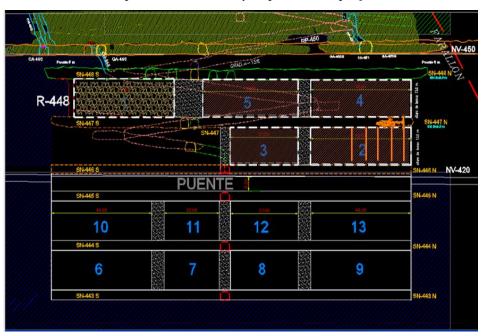
Se indica el nivel de la mina que está en explotación y en preparación en este caso es el nivel N400, con los sub niveles de explotación SN 448 y SN 447; y los subniveles de preparación SN 445, SN 444, SN 443, como se ve en el cuadro adjunto.



Programación del minado de veta Llacsacocha por paneles

Se ha planificado el minado de la veta Llacsacocha de cada uno de sus paneles, considerando las actividades a realizar en cada panel y el tiempo de duración.


Figura 59Planificación del minado veta Llacsacocha por paneles


Secuencia de minado del conjunto de paneles en la veta Llacsacocha

En el minado de la veta Llacsacocha se tiene 13 paneles para poder explotar, siguiendo todas las etapas que conlleva la explotación por taladros largos de cada panel.

Figura 60Vista de los paneles para su explotación

Figura 61Vista del panel 1 rellenado y el panel 2 en perforación

Figura 62Vista del panel 1, 2 rellenado y panel 3 en perforación

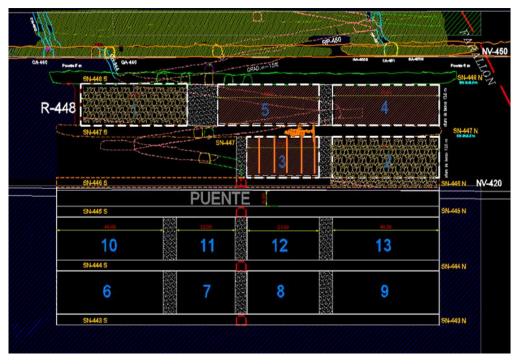
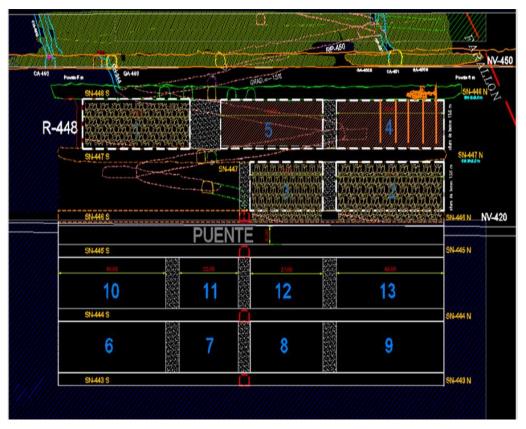
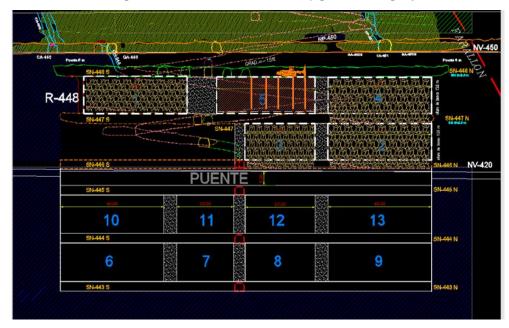
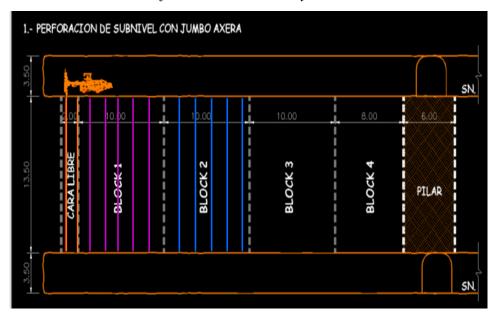
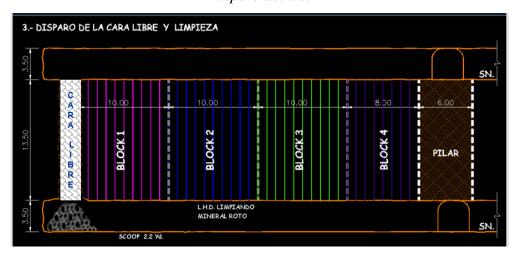
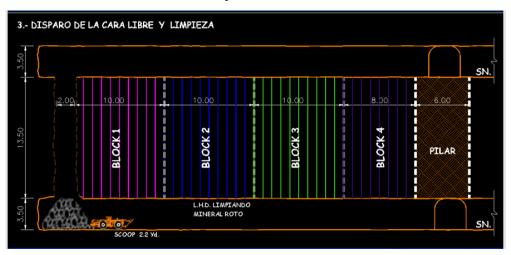




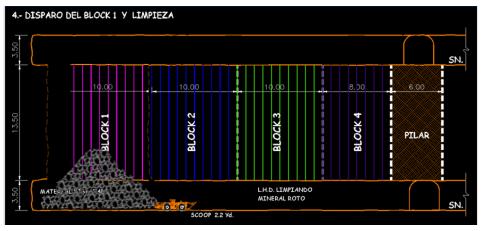
Figura 63
Vista de los paneles 1, 2, 3 rellenados y el panel 4 en perforación

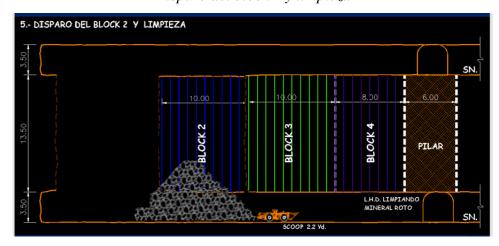

Figura 64Vista de los paneles 1, 2, 3, 4 rellenados y panel 5 en perforación


Secuencia de minado de un panel de la veta Llacsacocha

En estas vistas se puede apreciar las etapas que se tiene que realizar para el minado de un panel; perforación del subnivel, perforación del slot, disparo del slot y limpieza, perforación del panel, disparo de los blocks y limpieza, relleno por etapas; como se puede apreciar en cada cuadro.


Figura 65Perforación del subnivel y del slot


Figura 66Disparo del slot


Figura 67 *Limpieza del slot*

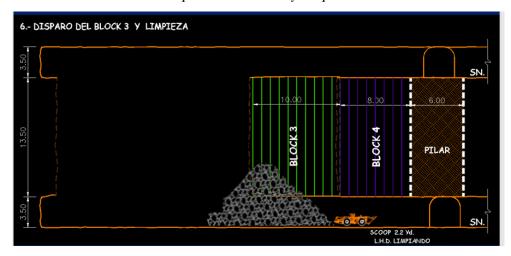

Figura 68Disparo del block 1 y limpieza

Figura 69Disparo del block 2 y limpieza

Figura 70Disparo del block 3 y limpieza

Figura 71Disparo del block 4 y limpieza

Figura 72Relleno por etapas

Producción de la zona en explotación veta Llacsacocha

Se ha determinado el tonelaje y el valor por tonelada de cada uno de los 13 paneles, así como también las leyes en cuanto a la plata, cobre, plomo, zinc; tanto en la etapa de explotación como de preparación.

Producción de la zona en explotación paneles 1,2,3,4, y 5

Tabla 11Producción de la zona en explotación paneles 1,2,3,4, y 5

BLOCK	PANEL	TONELAJE	VPT
308	1	5,846.0	63.87
309	2	5,846.0	63.87
309	3	3,654.0	63.87
308	4	5,846.0	63.87
308	5	5,554.0	63.87
	TOTAL	26,747.0	

Leyes de mineral de los paneles 1,2,3,4 y 5

Tabla 12Leyes de mineral de los paneles 1,2,3,4 y 5

Ag (gr)	Cu (%)	Pb (%)	Zn (%)
138.66	0.29	0.3	2.23
138.66	0.29	0.3	2.23
138.66	0.29	0.3	2.23
138.66	0.29	0.3	2.23
138.66	0.29	0.3	2.23

Tabla 13

Producción de la zona en preparación paneles del 6 al 13

BLOCK	PANEL	TONELAJE	VPT
316	6	5,628.0	93.84
316	7	3,095.0	93.84
316	8	3,798.0	93.84
316	9	5,628.0	93.84
310	10	5,846.0	63.87
310	11	3,215.0	63.87
310	12	3,946.0	63.87
310	13	5,846.0	63.87
	TOTAL	37,004.0	

Leyes de mineral de los paneles 6 al 13

Tabla 14Leyes de mineral de los paneles 6 al 13

Ag (gr)	Cu (%)	Pb (%)	Zn (%)
187.94	0.37	0.61	4.28
187.94	0.37	0.61	4.28
187.94	0.37	0.61	4.28
187.94	0.37	0.61	4.28
138.66	0.29	0.3	2.23
138.66	0.29	0.3	2.23
138.66	0.29	0.3	2.23
138.66	0.29	0.3	2.23

Ciclo de minado para un panel de 40 m. tajeo Llacsacocha

Como resumen mostramos el proceso de un ciclo de minado para un panel de 40 m. de la veta Llacsacocha.

Teniendo las siguientes etapas de perforación de taladros, carguío, voladura, limpieza, relleno.

Perforación:

Longitud del tajeo 40 m.

Longitud de perforación 14 m.

Numero de taladros 120

Taladros perforados por día 10

Tiempo de perforación 12 días

Carguío y voladura

Una guardia

Limpieza

Equipo de limpieza de 2.2 yardas

Tiempo de limpieza 8 horas/guardia

Toneladas/guardia 304 tn/g

Dimensión del block a limpiar

Puente 14 m.

Longitud 10 m.

Potencia 3 m.

Densidad 3 kg/m3

Tonelaje 1260 tn

Tiempo de limpieza 4.1 horas por guardia

Días de limpieza 2 días

Relleno del tajeo

Equipo Scoop de 3.5 yardas

Tiempo de relleno 8 horas por guardia

Toneladas/guardia 443 tn/g.

Longitud del panel 40 m.

Tiempo de relleno	6 días
Longitud total del block a minar	40 m.
Tiempo de perforación más replanteo	16 días
Tiempo de carguío más voladura y limpieza	11 días
Tiempo de relleno del tajeo	8 días
Total	33 días

Duración del ciclo de minado 33 días

Figura 73Ciclo de minado para un panel de 40 m. tajeo Llacsacocha

Costo de minado con taladros largos veta Llacsacocha

Costos de perforación taladros largos veta Llacsacocha

Tabla 15Parámetros de perforación taladros largos veta Llacsacocha

Costos de perforación taladros largos veta Llacsacocha		
Parámetros	Unidades	Valor
Producción mensual	tn	4000
Equipo de perforación	jumbo mini raptor l	HD
Longitud de taladro	metros	240
Ancho de minado	metros	2.6
Burden	metros	1.5
Espaciamiento	metros	0.9
Altura de corte	metros	13.50
Horas trabajadas/guardia	hrs/guardia	7.00
Velocidad de perforación	m/br	12.00
N° de taladros/corte	unidades	489
Toneladas/taladro	tn/tal	57
Toneladas/corte	tn	27799
Taladros perforados/hora	tal/br	0.89
Horas efectivas de perforación	hrs	551
Utilización de equipo	%	25
Horas totales de perforación	hrs	2202
Guardias de perforación	guardias	315
metros perforados/corte	metros	6607
Costa de perforación/corte	\$	30805
Metros perforados/tonelada	metros/tn	0.238
Costo operativo del jumbo RAPTOR	\$/hora	55.95
Costo operativo del jumbo BOOMER	\$/hora	60.02

Costos de perforación taladros largos veta Llacsacocha

Tabla 16Costos de perforación taladros largos veta Llacsacocha

Costos de perforación taladros largos veta Llacsacocha		
Parámetros	Unidades	Valor
costo maestro perforista/guardia	\$/guardia	39.35
Costa ayudante perforista/guardia	\$/guardia	27.62
Costos fijos		
Costo maestro perforista	\$/mes	3542
Costo ayudante perforista	\$/mes	2485
Costos juniors	\$/mes	1762
Costo total del personal	\$/mes	7789
Costos Variables		
Costo jumbo	\$/tn	1.108
Costo barras T-38	\$/tn	0.291
Costo brocas 64 mm	\$/tn	0.132
Costo shank adapter	\$/tn	0.028
COSTOS FIJOS	\$/tn	0.974
COSTOS VARIABLES	\$/tn	1.559
COSTO DE PERFORACION	\$/tn	2.533

Costos de voladura taladros largos veta Llacsacocha

Tabla 17
Costos de voladura taladros largos veta Llacsacocha

Costos de voladura taladros largos veta Llacsacocha		
Parámetros	Unidades	Valor
PRODUCCION MENSUAL	tn	4000
Peso específico mineral – in situ	tn/m3	3.30
Peso específico desmonte – in situ	tn/m3	2.70
Factor de esponjamiento	%	40
Toneladas rotas/corte	tn	27799
Toneladas rotas/taladro	tn/tal	56.80
Costo tubo pvc	\$/tal	26.95
Costo anfo	\$/tal	15.18
Costo emulsión	\$/tal	1.55
Costo fanel	\$/tal	2.38
Costo pentacord	\$/tal	0.71
Costo cargador/guardia	\$/guardia	27.62
COSTOS FIJOS		
Costos cargadores	\$/mes	1657
COSTOS VARIABLES		
Costo tubo pvc	\$/tn	0.474
Costo anfo	\$/tn	0.267
Costo emulsión	\$/tn	0.027
Costo fanel	\$/tn	0.042
Costo pentacord	\$/tn	0.013
COSTOS FIJOS	\$/tn	0.414
COSTOS VARIABLES	\$/tn	0.823
COSTOS VOLADURA	\$/tn	1.238

Costos de limpieza taladros largos veta Llacsacocha

Tabla 18

Costos de limpieza taladros largos veta Llacsacocha

Costos de limpieza taladros largos veta Llacsacocha		
Parámetros	Unidades	Valor
PRODUCCION	tn	4000
Toneladas a limpiar/corte	tn	27799
Rendimiento de scoop 2.2 yardas3	tn/hora	31
Costo operativo scoop 27	\$/hora	26.16
Costo operativo scoop 24	\$/hora	46.21
% de utilización flota scooptrams	%	80
Horas de limpieza scoop 27/corte	hrs	887
Horas de limpieza scoop 24/corte	hrs	266
Costo de limpieza scoop 27/corte	\$	23201
Costo de limpieza scoop 24/corte	\$	12295
Costo operador scooptram	\$/mes	3542
% de utilización en tajo R-894 scoop 27	%	25
% de utilización en tajo R-894 scoop 24	%	24
COSTOS FIJOS		
Costo operador scooptram 27	\$/mes	883
Costo operador scooptram 24	\$/mes	860
COSTOS VARIABLES		+
Costo scooptram 27	\$/tn	0,835
Costo scooptram 24	\$/tn	0,442
COSTOS FIJOS	\$/tn	0,436
COSTOS VARIABLES	\$/tn	1,277
COSTO LIMPIEZA	\$/tn	1,713

Costo de relleno detrítico taladros largos veta Llacsacocha

Tabla 19
Costo de relleno detrítico taladros largos veta Llacsacocha

Costo de relleno detrítico taladros largos veta Llacsacocha										
Parámetros	Unidades	Valor								
PRODUCCION MENSUAL	tn	4000								
Costo sobreacarreo (proveniente de avances)	\$/mes	10000								
Sobreacarreo R-894	%	20.75								
COSTO RELLENO DETRITICO	\$/tn	0.519								

Costos de supervisión de taladros largos veta Llacsacocha

Tabla 20Costos de supervisión de taladros largos veta Llacsacocha

Costos de supervisión de taladros largos veta Llacsacocha									
Parámetros	Unidades	Valor							
PRODUCCION MENSUAL	tn	4000							
Total, supervisión	\$/mes	16644							
Producción Zona Norte	tn	14500							
% de demanda tajo R-448	%	0.28							
Costo supervisión R-448	\$/mes	4592							
COSTO DE SUPERVICION	\$/tn	1,148							

4.4. Discusión de resultados

Para poder aplicar el método de explotación con taladros largos en la mina Huarón se ha tenido que realizar evaluaciones para determinar las condiciones geológicas, geomecánicas, en planificación, en minería y de supervisión, para su correcta aplicación. Analizamos los siguientes aspectos.

Área geología

"Huarón, básicamente es un yacimiento Filoneano y se conocen alrededor de un centenar de vetas con longitudes entre 100 y 1 800 m. y potencias de 0,30 a 6,00 m. explotados hasta 550 m. desde superficie (4 830) hasta el nivel base Huarón (4 250) en un área de 3 por 4 Km.

Otras vetas son concordantes con la estratificación y solo se presentan en el flanco W del anticlinal, existen también acumulaciones de minerales de forma irregular "Bolsonadas" entrampadas en estratos favorables (conglomerados y chert), así como pequeños pórfidos y brechas mineralizadas relacionadas a intersecciones de vetas" (Pan American Silver, 2018)

Área geomecánica

En el área de geomecánica se determinó el RQD del macizo rocoso del tajo Llacsacocha cuyo valor es de 65.5, el índice geológico de resistencia (GSI) es de 45 para Llacsacocha.

"El diseño del tajo en función del número gráfico de estabilidad (N) y el radio hidráulico (S) nos indica; Considerando las dimensiones abiertas de 3m. de potencia de la veta con 40 m. de longitud y 20 m. de altura de tajo abierto, las condiciones de estabilidad son favorables en la veta Llacsacocha. La zona analizada no requiere sostenimiento" (COMPAÑIA MINERA PAN AMERICAN SILVER - UNIDAD HUARON, 2016)

Área de minería

Vemos que este método requiere un alto desarrollo y por consiguiente una alta inversión en rampas de acceso a los subniveles, galería de extracción, subniveles, ventanas, chimeneas, echaderos, etc. Lo cual requiere de una

variabilidad de los turnos de productividad, que van de 12 a 26 hombres por guardia, esto depende de la agilidad que hay que darles a las operaciones.

Se planteó la planificación del proceso de explotación de este método por taladros largos, donde intervienen las áreas de área de planeamiento, mina, geología, geomecánica, seguridad, supervisión; para poder coordinar todas las actividades que se tendrá que desarrollar.

Los equipos usados para la perforación fueron, equipo Mini Raptor DH, y el equipo Rocket Boomer H104 para taladros de producción.

En cuanto al diseño de la perforación tenemos el levantamiento topográfico de cada taladro, inclinación de 70° a 75° , longitud vertical entre 14 a 15° m, cantidad de taladros de 130° .

Se determinó los parámetros de carguío de los taladros, con un factor de potencia de 0.50 kg/tn.

Los equipos de limpieza usado fueron equipos LH203 llamados TORO 151.

Se planifico el minado de la veta Llacsacocha de cada uno de sus paneles, considerando las actividades a realizar en cada panel y el tiempo de duración, estableciéndose la secuencia de minado del conjunto de paneles en la veta Llacsacocha.

La producción de la veta Llacsacocha zona de explotación fue de 26747.0 tn, y en la zona de preparación fue de 37,0004.0 tn.

El ciclo de minado de un panel de 40 m de longitud en el tajeo Llacsacocha dura 33 días, repartido en tiempo de perforación más replanteo 16 días, tiempo de carguío más voladura y limpieza 11 días, tiempo de relleno del tajeo 6 días haciendo un total de 33 días.

En cuanto a los costos tenemos.

Costo de perforación 2.533 \$/tn

Costo de voladura 1.238 \$/tn

Costo de limpieza 1.713 \$/tn

Costo de relleno detrítico 0.519 \$/tn

Costo de supervisión 1.1478 \$/tn

Costo total: 7.1508 \$/tn

CONCLUSIONES

- De acuerdo a la programación que se realiza en la Unidad Minera Huarón se logra planificar el minado por taladros largos para la veta Llacsacocha.
- Teniendo la información geológica y geomecánica se determinó el RQD, GSI,
 RMR, la calidad de la roca, y su tiempo de soporte.
- A través de la investigación se planifico el tiempo de duración de la explotación de los paneles, su explotación por tramos de 10 m. el ciclo de minado y rellenado en la veta Alianza.
- 4. El ciclo de minado de un panel de 40 m de longitud en el tajeo Llacsacocha dura 33 días, repartido en tiempo de perforación más replanteo 16 días, tiempo de carguío más voladura y limpieza 11 días, tiempo de relleno del tajeo 8 días haciendo un total de 33 días.
- 5. Se logró calcular el tonelaje de explotación de cada panel y su contribución económica. Siendo la producción de la zona de explotación 26,747 tn, y de la zona de preparación 37004 tn; el costo de explotación de una tonelada de mineral es 7.1508 \$/.

RECOMENDACIONES

- Se recomienda cumplir con lo planificado en todo el proceso de minado, especialmente en la etapa de relleno de los tajeos, porque cualquier atraso de una de las actividades eleva el costo de producción.
- Debe haber un estricto control de las 'perforaciones de los taladros evitando las desviaciones de los taladros lo que afectaría a tener una buena voladura y no afectar a las cajas.

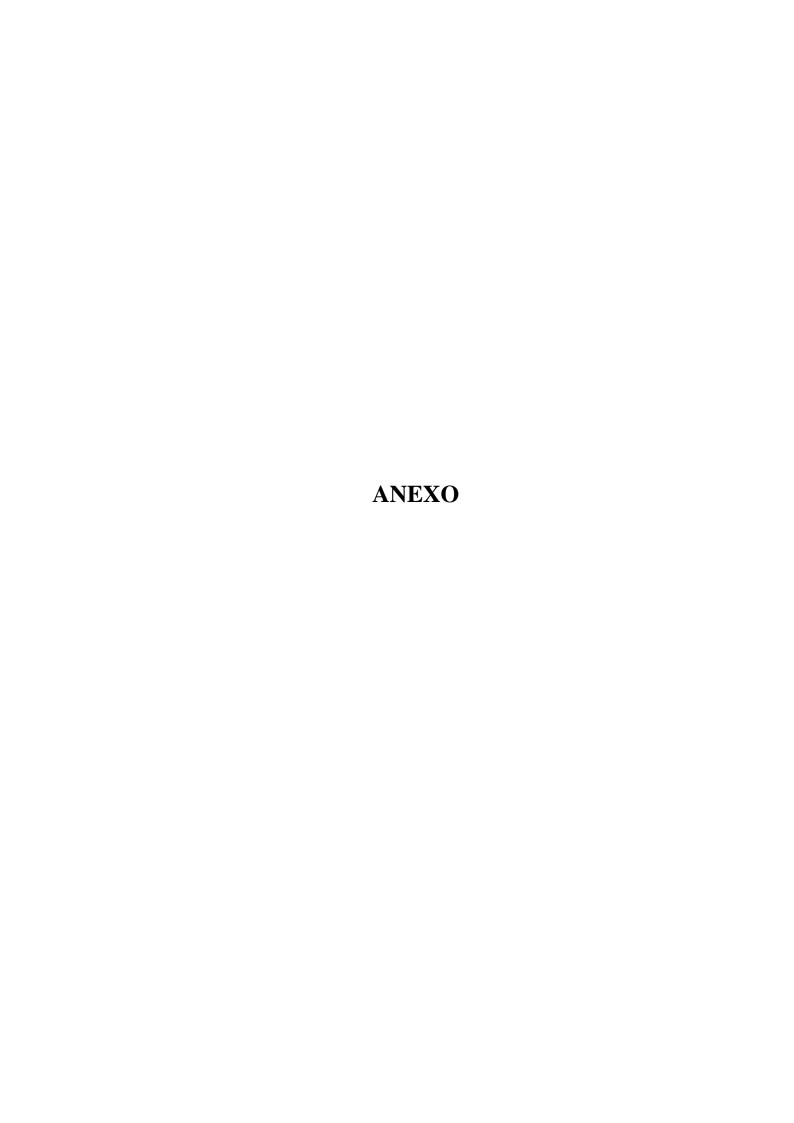
REFERENCIAS BIBLIOGRAFICAS

- ANTONIO, W. (2017). "Aplicación de taladros largos en vetas angostas, caso Mina Austria Duvaz- Morococha". [tesis de licenciamiento Universidad Continental] repositorio institucional Universidad Continental.
- APAZA, E. (2013). "IMPLEMENTACIÓN DE TALADROS LARGOS EN VETAS ANGOSTAS PARA DETERMINAR SU INCIDENCIA EN LA PRODUCTIVIDAD, EFICIENCIA Y SEGURIDAD DE LAS OPERACIONES MINERAS PASHSA, MINA HUARÓN S.A.". [tesis de lecenciamiento Universidad Nacional de San Agustin de Arequipa] repositorio institucional U.N. de San Agustin de Arequipa.
- ATLAS COPCO. (2007). Manual de equipoa mineros.
- BELTRAN, K. (2018). Optimización de explotación del tajo 427- cuerpo chiara 445 usando taladros largos paralelos Cía. Minera Casapalca S.A.-2017. [tesis de licenciamiento Universidad Nacional del Centro del Peru] reposotorio institucional Universidad Nacional del Centro del Peru.
- BERNAL, C. (2010). *Metodologia de la investigacion* (Tercera edicion ed.). (P. Educacion, Ed.)
- CASTILLO, B. (2015). Metodo de explotación subterranea: sublecel stoping.
- COMPAÑIA MINERA PAN AMERICAN SILVER UNIDAD HUARON. (2016).

 INFORME GEOLOGICO, GEOMECANICO DE MINA HUARON.
- COMUN, H. (2018). LA INFLUENCIA DEL MÉTODO CORTE Y RELLENO

 ASCENDENTE CON TALADROS LARGOS EN LA PRODUCCION DE LA

 MINA ANIMÓN VOLCAN. [tesis de licenciamiento Universidad Nacional del


 Centro del Peru] repositorio institucional Universidad Nacional del Centro del

 Peru.
- CORDOVA, D. (2010). informe de asesormiento geomecanico de mina Huaron.

- ENAEX. (s.f.). Manual de tronadura ENAEX S.A. ENAEX, Gerencia tecnica.
- ESTUDIOS MINEROS DEL PERU S.A.C. (2002). Manual de mineria.
- EXSA. (s.f.). Manual practico de voladura, 4ta edicion. exsa.
- GUILLEN, R. (2017). "IMPLEMENTACIÓN DE EXPLOTACIÓN POR SUB NIVELES CON TALADROS LARGOS EN LA UNIDAD MINERA PALLANCATA HOCHSCHILD MINING". [tesis de licenciamiento, Universidad Nacional de San Cristobal de Huamanga] repositorio institucional Universidad nacional de San Cristobal de Huamanga.
- HERNANDEZ, FERNANDES, BAPTISTA, R. (2014). *Metodologia de la investigacion* (sexta edicion ed.). (M. e. S.A., Ed.)
- Instituto Geologico y Minero de España. (1987). *Manual de perforacion y voladura de rocas*. Instituto Geologico y Minero de España.
- LOPEZ JIMENO, C. (1987). MANUAL DE PERFORACION Y VOLADURA. (I. G. España, Ed.)
- Pan American Silver. (2018). Informe geologico Mina Huaron.
- PAN AMERICAN SILVER. (2020). Memoria anual Parn American Silver Huaron.
- SAFORAS, J. (2012). "EVALUACIÓN TÉCNICA ECONÓMICA DEL MINADO POR SUBNIVELES CON TALADROS LARGOS EN MANTOS PARA INCREMENTAR LA PRODUCCIÓN U.E.A. COLQUIJIRCA DE LA SOCIEDAD MINERA EL BROCAL S.A.A.". [tesis de licenciamiento Universidad Nacional del Centro del Peru] repositorio institucional Universidad Nacional del Centro del Peru.
- SUPO, CAVERO, F. (2014). FUNDAMENTOS TEÓRICOS Y PROCEDIMENTALES

 DE LA INVESTIGACIÓN CIENTÍFICA EN CIENCIAS SOCIALES. (E. Universitario, Ed.) Lima.

- TAMAYO Y TAMAYO, M. (2003). El proceso de la investigacion científica (cuarta edicion ed.). (L. N. Editores, Ed.)
- Universidad de Cantabria. (2018). Laboreo II, Metodos de explotacion de interior.
- Universidad de Chile . (2017). Apuntes del curso de explotacion de minas, Julian Ortiz
 C.
- Universidad Politecnica de Madrid . (2020). *Introduccion a la Mineria Subterranea. Vol. IV Metodos de explotacion de interior* .
- VASQUEZ, J. (2015). Elección y aplicación del método tajeo por subniveles con taladros largos para mejorar la producción en la veta Gina Socorro Tajo 6675 2 de la U.E.A. Uchucchacua de la Compañía de Minas Buenaventura S.A.A. [tesis de licenciamiento Universidad Nacional del Centro del Peru] repositorio de la Universidad Nacional del Centro del Peru.

Anexo 1: INSTRUMENTOS DE RECOLECCIÓN DE DATOS

Formato de cálculo de burden en voladura.

	LANDEDCEA	IEDAENIKE!	loc vocel	L III C	ALL CEARE	Lacut	LANCEDEODO	leoner 1	leou pe ci	li iikaekio	I LONG A II	БИСТАК
PARAMETROS UTILIZADOS	ANDERSEN	FRAENKEL	PEARSE	HINO	ALLSMAN	ASH	LANGERFORS	KUNYAI	FULDESI	L.JIMENO	KUNYAII	HUSTAN
DIAMETRO DEL BARRENO												
ALTURA DE BANCO												
BURDEN												
LONGITUD DEL BARRENO												
RETACADO												
SOBREPERFORACION												
LONGITUD DE CARGA												
INCLINACION DEL BARRENO												
DENSIDAD DE LA ROCA												
RESISTENCIA DE LA ROCA O INDICES EQUIVALENTES												
CONSTANTES O FACTORES DE ROCA												
VELOCIDAD SISMICA DEL MACIZO ROCOSO												
DENSIDAD DEL EXPLOSIVO												
VELOCIDAD DE DETONACION												
PRESION DE DETONACION												
CONSUMO ESPECIFICO DE EXPLOSIVO												
CONSTANTE BINOMICA ROCA - EXPLOSIVO												
RATIO PIEDRA/ESPACIAMIENTO												
POTENCIA DEL EXPLOSIVO												
EQUIPO DE CARGA												
ACELERACION DE LA GRAVEDAD												
DURACION DE LA PRESION DE DETONACION												
VELOCIDAD MINIMA QUE DEBE IMPARTIRSE A LA ROCA												
BURDEN												
	Metros	Metros	Metros	Metros	Metros	Metros	Metros	Metros	Metros	Metros	Metros	Metros

DIAMETRO	
ALTURA DE BANCO	
DENSIDAD DE LA ROCA [g/cc]	
DENSIDAD DEL EXPLOSIVO [g/cc]	

> Formato de eficiencia de scoop 1.5 yd3.

SCOOP DE 1.5 YD3																				
Velocidad Promedio Cargado (Km/Hr)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Velocidad Promedio Vacio (Km/Hr)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Capacidad Nominal de cuchara 1.5 yd3 (Yd3)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Factor de llenado de cuchara	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Capacidad efectiva Cuchara 1.5 yd3 (m3)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Esponjamiento	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
m3 / viaje	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Distancias	metros	metros	metros	metros	metros	metros	metros	metros	metros	metros	metros	metros	metros	metros	metros	metros	metros	metros	metros	metros
Distancia de Carguio a Pto de Descarga																				
Tiempos	min	min	min	min	min	min	min	min	min	min	min	min	min	min	min	min	min	min	min	min
Carguio de Material (Fijo)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Viaje Cargado	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Descarga de Mineral y Maniobras (Fijo)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Viaje regreso vacio	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total Ciclo	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Efciencias				 																
N° Minutos por Hora (20 % Tiempos Muertos)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
N° Viajes hora	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Eficiencia Horaria (m3 / Hora)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Formato de ciclo de minado zona alta – Unidad Huarón.

												TOTAL	OBSERVACIONES									
VETA	TAJO	Ala	Ley EjecGr.Ag	Ley Ejec%Cu	Ley Ejec%Pb	Ley Ejec%Zn		16	1	7	1	18	1	19	2	20	2	1	2	2	TOTAL	
			•	•	•	SUBTOTAL																
						TOTAL																

TOTAL								
TOTAL PRODUCCIÓN TOTAL								
TMS								
Ag(Gr)								
%Cu								
%Pb								
%Zn								
VPT								
·								

UNIVERSIDAD NACIONAL DANIEL ALCIDES CARRIÓN ESCUELA DEINGENIERIA DE MINAS

FICHA DE VALIDACIÓN DEL INSTRUMENTO

Señor Experto, por favor marque en el casillero correspondiente si el ítem esta formulado en forma adecuada o inadecuada teniendo en consideración su pertinencia, relevancia y corrección gramatical. En el caso de que el ítem sea inadecuado anote en el casillero sus observaciones y las razones del caso.

I. REFERENCIA

a) NOMBRE Y APELLIDOS DEL EXPERTO:

Carlos Edwin, Rojas Victorio

b) PROFESIÓN: Ingeniero de MINAS

- c) GRADOS ACADÉMICOS: Magister en INFENIERIA DE MINAS
- d) ESPECIALIZACIÓN O EXPERIENCIA:

Diplomado en SEGURIDAD Y SALUD OCUPACIONAL

e) INSTITUCIÓN DONDE LABORA: UNDAC f) TELEFONO Y E-MAIL: 927525654

cervicto1@hotmail.com

f). Consideraciones para el minado mediante taladros largos en vetas angostas (veta Llacsacocha) en la Compañía Minera Pan American Silver – Unidad Huarón S.A.

TESISTA: Bach. Jesus Wilmer RICRA BORJA

ESTRATO DE LA POBLACIÓN OBJETIVO:

Es adecuado la Evaluación de las herramientas de control de riesgos en la Compañía Minera Pan American Silver

II. TABLA DE VALORACIÓN POR CADA ÍTEM

ITEMS	ESCALA DE APRE	CIACION	Observ.	SUGERENCIAS			
11EMS	ADECUADO	INADECUADO					
1	X						
2	X						
3	X						
4	X						
5	X						
6	X						
7	X						
8	X						
9	X						
10	X						
11	X						
12	X						
13	X						
14	X						
15	X						
16	X						
17	X						
18	X						
19	X						
20	X						

Coeficiente de Validez V =

III. RESOLUCIÓN o

Válido ($V \ge 0.80$)

IV. COMENTARIOS FINALES

Aplicar el instrumento a la muestra

FIRMA DEL EXPERTO

Anexo 2: MATRIZ DE CONSISTENCIA

Título: "CONSIDERACIONES PARA EL MINADO MEDIANTE TALADROS LARGOS EN VETAS ANGOSTAS (VETA LLACSACOCHA) EN LA COMPAÑÍA MINERA PAN AMERICAM SILVER – UNIDAD HUARÓN S.A."

		<u> </u>		<u>, </u>
PROBLEMA	OBJETIVO	HIPÓTESIS	VARIABLES	METODOLOGÍA
2.3.1 Problema general ¿Qué	2.4.1 Objetivo general	3.4.1 Hipótesis general	3.5.1 Variables	Tipo de I.
consideraciones se debe tener	Determinar las consideraciones	Las consideraciones que se debe tener	para la hipótesis	Aplicado
en cuenta para el minado con	que se debe tener en cuenta para	en cuenta para el minado con taladros	general	Nivel de I.
taladros largos de vetas	el minado con taladros largos en	largos en vetas angostas (veta	Condiciones	Descriptivo, análisis
angostas (veta Llacsacocha)	vetas angostas (veta	Llacsacocha) deben ser técnicas,	técnicas	Diseño de I.
en la Empresa Minera Pan	Llacsacocha) en la Empresa	económicas, en la Empresa Minera Pan	Condiciones	No experimental
American Silver – Unidad	Minera Pan American Silver –	American Silver – Unidad Huarón	económicas	Método de I.
Huarón S.A.?	Unidad Huarón S.A.	Hipótesis General	3.5.2 Variables	Científico, deductivo,
2.3.2 Problemas específicos	2.4.2 Objetivos específicos	3.4.2 Hipótesis especificas	para la hipótesis	analítico
a. ¿Qué consideraciones	a. Determinar las	a. Dentro de las consideraciones	especificas	Muerta de I.
técnicas del minado con	consideraciones técnicas del	técnicas del minado con taladros largos	Variables para la	Labor R-448
taladros largos se debe tener	minado con taladros largos que	que se debe tener en cuenta, en vetas	hipótesis a	
en cuenta, en vetas angostas	se debe tener en cuenta, en vetas	angostas (veta Llacsacocha), son	Estándares,	
(veta Llacsacocha), en la	angostas (veta Llacsacocha), en	estándares, procedimientos, ciclo y	Procedimientos,	
Empresa Minera Pan	la Empresa Minera Pan	tiempo de minado, equipos, en la	Ciclo	
American Silver – Unidad	American Silver – Unidad	Empresa Minera Pan American Silver –	Tiempo de	
Huarón S.A.?	Huarón S.A.	Unidad Huarón S.A.	minado,	
b. ¿Cuál debe ser la	b. Determinar la producción de	b. Dentro de las consideraciones	Equipos	
producción de cada panel y	cada panel y su aporte	económicas del minado con taladros	Variables para la	
su aporte económico en el	económico en el minado con	largos que se debe tener en cuenta, en	hipótesis b	
minado con taladros largos	taladros largos en vetas	vetas angostas (veta Llacsacocha), son	Costos,	
en vetas angostas (veta	angostas (veta Llacsacocha), en	costos, productividad, producción, en la	Productividad,	
Llacsacocha), en la Empresa	la Empresa Minera Pan	Empresa Minera Pan American Silver –	Producción	
Minera Pan American Silver	American Silver – Unidad	Unidad Huarón S.A.		
– Unidad Huarón S.A.?	Huarón S.A.			

Anexo 3: PANEL FOTOGRÁFICO

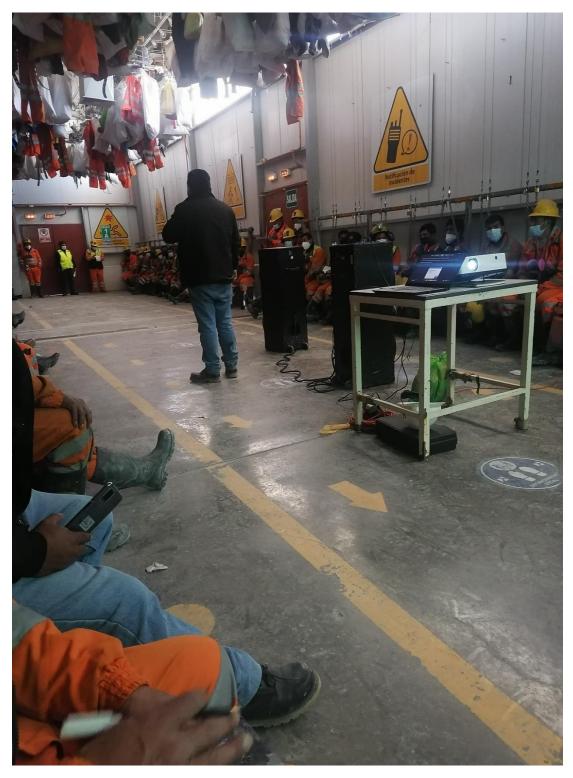


Foto N° 1: Charla de seguridad.

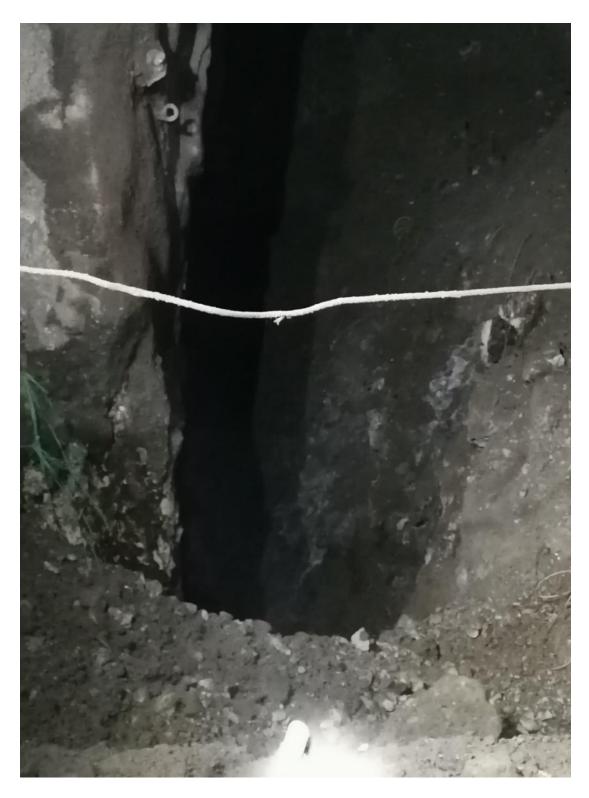


Foto N° 2: Tajo 448.

Foto N° 3: Tajo 448.