UNIVERSIDAD NACIONAL DANIEL ALCIDES CARRION FACULTAD DE INGENIERIA

ESCUELA DE FORMACION PROFESIONAL DE INGENIERIA GEOLOGICA

TESIS

Guías de exploración para la identificación de targets en el yacimiento

Tipo Mississippi Valley de San Vicente - Compañía Minera San Ignacio de

Morococha S.A.

Para optar el título profesional de:
Ingeniero Geólogo

Autor: Bach. Miguel Eduardo BRAVO SALDAÑA

Asesor: Mg. Julio Alejandro MARCELO AMES

Cerro de Pasco - Perú - 2021

UNIVERSIDAD NACIONAL DANIEL ALCIDES CARRION FACULTAD DE INGENIERIA

ESCUELA DE FORMACION PROFESIONAL DE INGENIERIA GEOLOGICA

TESIS

Guías de exploración para la identificación de targets en el yacimiento

Tipo Mississippi Valley de San Vicente - Compañía Minera San Ignacio de

Morococha S.A.

Sustentada y aprobada ante los miembros del jurado:

PRESIDENTE

Dr. Favio Máximo MENA OSORIO	Mg. José Fermín HINOJOSA DE LA SOTA

MIEMBRO

Mg. Javier LÓPEZ ALVARADO

MIEMBRO

DEDICATORIA

A mi madre, Natalia Esther, ejemplo de sacrificio, sumado al alma más noble y sensible, la mente más justa e iluminada que pude conocer, que con tu amor y esperanza forjaron un hombre de bien.

A mi padre, Eladio, ejemplo de integridad y lucha constante, que me enseñaron a no permanecer indiferente ante el dolor de los demás.

RECONOCIMIENTO

A Dios, que se muestra precisamente en esa naturaleza llena de contradicciones y en constante cambio.

A Compañía Minera San Ignacio de Morococha S.A. por brindarme las facilidades para la realización del presente estudio plasmado en esta tesis.

Al Mg. Julio Alejandro Marcelo Ames, asesor de tesis, por brindarme sus experiencias, sabias recomendaciones y sugerencias para la elaboración de esta tesis.

Al Ing. Román Tejada Rospigliosi, pilar fundamental en SIMSA, por su experiencia en los diferentes proyectos en Compañía Minera San Ignacio de Morococha S.A.

Al Ing. Carlos Flores, por sus apreciaciones y vasta experiencia en el yacimiento MVT de San Vicente.

Al. Ing. Guido Huyhua, por el apoyo brindado en la formación de la carrera en mina San Vicente.

Al Ing. Daniel Hinostroza, por compartir sus conocimientos sobre proyectos MVT en el Perú y guía valiosa durante el proceso del desarrollo del presente trabajo de investigación.

Al Ing. Luis Fuentes, por brindarme la confianza en los proyectos que tuve la oportunidad de pertenecer junto a su persona.

RESUMEN

El presente trabajo es parte de un proceso de investigación, tuvo un diseño experimental aplicativo con el objetivo de implementar quías de exploración para la identificación de nuevos targets en el yacimiento tipo Mississippi Valley de San Vicente en Compañía Minera San Ignacio de Morococha S.A., cuyo fin es incrementar los recursos del vacimiento. La mina San Vicente está ubicado en el distrito de Vitoc. provincia de Chanchamayo, departamento de Junín. La muestra estuvo constituida por la campaña de perforación diamantina SIMSA 2018 – 2019 en la fase de Inversión, que son 16,697.00 metros en el proyecto de Ayala Inferior ubicado en el Horizonte San Vicente. Se emplearon equipos e instrumentos tales como: Perforadora diamondrill LM75, software tales como Peoplesoft para la base de datos, Downhole Explorer para loqueo y secciones, Vulcan para modelamiento 3D y Leapfrog para el modelo conceptual de la mina San Vicente. Los resultados indican la formación de dos ambientes favorables para la concentración de Zn-Pb que son control de facies y control estructural, que constituyen quías de exploración e inciden en la identificación de nuevos targets de interés en la mina San Vicente. Así mismo se hace referencia de la evolución de la cuenca Pucará del triásico superior - jurásico inferior, en la cual se desarrollaron dos sub cuencas: cuenca oeste y cuenca al este, la segunda cuenca es conocida por ser roca hospedante de yacimientos tipo MVT como: San Vicente, Shalipayco, Cañón Florida y Bongará, que estuvo controlada por fallas normales subverticales, las cuales controlaron la mineralización durante el Eoceno-Mioceno. En el caso de San Vicente esta cuenca está asociada a un alto estructural Mitu-Pucará en donde se depositaron facies detríticas. Los controles de la mineralización son estructurales y litológicos. El rasgo estructural más notable es el sobreescurrimiento de la granodiorita Tarma que forma parte del corredor San Vicente-Oxapampa-Pozuzo cuyo origen se debe a una inversión tectónica de edad Eoceno-Mioceno.

Palabra clave: MVT, cuenca Pucará, alto estructural, dinámica de fluidos en sistemas de fallas.

ABSTRAC

This work is part of a research process, it had an application experimental design with the objective of implementing exploration guides for the identification of new targets in the Mississippi Valley type deposit of San Vicente in Company Minera San Ignacio de Morococha SA, whose purpose is to increase the resources of the deposit. The San Vicente mine is located in the Vitoc district, Chanchamayo province, Junín department. The sample consisted of the SIMSA 2018 - 2019 diamond drilling campaign in the Investment phase, which is 16,697.00 meters in the Ayala Inferior project located in the San Vicente Horizon. The following instruments were used: LM75 diamondrill drill, software such as Peoplesoft for the database, Downhole Explorer for logging and sections, Vulcan for 3D modeling and Leapfrog for the conceptual model of the San Vicente mine. The results indicate the formation of two favorable environments for the concentration of Zn-Pb, which are facies control and structural control, which constitute exploration guides and influence the identification of new targets of interest in the San Vicente mine. Likewise, reference is made to the evolution of the Pucará basin from the Upper Triassic - Lower Jurassic, in which two sub-basins were developed: west basin and east basin, the second basin is known for being the host rock of MVT-type deposits such as: San Vicente, Shalipayco, Florida Canyon and Bongará, which was controlled by subvertical normal faults, which controlled the mineralization during the Eocene-Miocene. In the case of San Vicente, this basin is associated with a high structural Mitu-Pucará where detrital facies were deposited. Controls for mineralization are structural and lithological. The most notable structural feature is the overflow of the Tarma granodiorite that is part of the San Vicente-Oxapampa-Pozuzo runner, whose origin is due to a tectonic inversion of the Eocene-Miocene age.

Keyword: MVT, Pucará basin, structural high, fluid dynamics in fault systems.

INTRODUCCION

El presente trabajo se llevó a cabo con la finalidad de implementar guías de exploración en el yacimiento Mississippi Valley Type (MVT) de San Vicente de acuerdo a los mecanismos que dieron origen a la mineralización de Zn-Pb y así poder definir nuevos targets de interés para futuras exploraciones brownfield y greenfield en las concesiones de Compañía Minera San Ignacio de Morococha S.A. (SIMSA).

El estudio consistió en realizar una campaña de exploración desde la Galería 690 N con taladros diamantinos, para determinar el comportamiento de los mantos IIIS, IIS, IS, IA a cotas inferiores del nivel 1515, la zona de exploración se encuentra en el Horizonte San Vicente, donde alberga una gran proporción de dolomías ooides favorables para la mineralización, las cuales se ha comprobado mineralización a cotas superiores de 1600m, la exploración a dichas cotas evidenció la continuidad del Horizonte San Vicente hasta la cota 1100 ampliando la vida de la mina para futuras exploraciones a cotas inferiores.

La mina San Vicente está ubicada en la ceja de Selva Central peruana (cordillera Subandina), en la provincia de Chanchamayo, distrito de Vitoc al sur de San Ramón, departamento de Junín, que abarca 7km de longitud y 2 km de ancho, que está asociado básicamente al Grupo Pucará en sus tres formaciones: Chambará, Aramachay y Condorsinga, siendo la formación Aramachay el horizonte guía para la mineralización, constituida por calizas negras bituminosas al piso y masivas en las partes superiores. Con el fin de entender y aportar algo que pueda ayudar a esclarecer esta problemática, se plantea la presente investigación que permitirá describir y analizar el vínculo entre las guías de exploración y la identificación de targets. Para cumplir este fin, la estructura de la presente investigación se ha dividido en cuatro partes principales.

En el primer capítulo se hace referencia al problema de investigación donde se realiza la identificación y planteamiento del problema, así como la delimitación y formulación del problema, también la formulación de objetivos, justificación de la investigación y las limitaciones.

El segundo capítulo está referido al marco teórico que contiene los conceptos más importantes que ayudarán a comprender este problema. Así como una revisión de las investigaciones vinculadas al tema y de la diversa literatura nacional e internacional, las hipótesis relacionadas con las variables que son motivo de estudio.

El tercer capítulo está referido a la metodología y técnicas de la investigación que se utilizó, los instrumentos que se emplearon, se presentan y describen las técnicas de procesamiento de análisis de datos, tratamiento estadístico correspondiente y se hace mención de la orientación ética que se tuvo en la realización del presente trabajo de investigación.

En el cuarto capítulo se discuten los resultados, se analizan y se comentan los hallazgos comparándolos con lo que otros autores encontraron en estudios similares.

Finalmente, se señalan las conclusiones a que se llegan, se aporta algunas sugerencias o recomendaciones para futuras investigaciones y acciones que se podrían poner en práctica para la identificación de targets en el yacimiento MVT de San Vicente.

INDICE

DEDICATORIA	I
RECONOCIMIENTO	II
RESUMEN	III
ABSTRAC	IV
INTRODUCCION	V
INDICE	VII
LISTA DE FIGURAS	IX
LISTA DE PLANOS	X
LISTA DE FOTOS	X
LISTA DE SECCIONES	XI
LISTA DE TABLAS	XI
CAPITULO I	1
PROBLEMA DE INVESTIGACION	1
1.1. Identificación y Determinación del Problema	
1.2. Delimitación de la Investigación	2
1.3. Formulación del Problema	3
1.3.1. Problema principal	3
1.3.2. Problemas específicos	3
1.4. Formulación de Objetivos	3
1.4.1. Objetivo general	3
1.4.2. Objetivos específicos	3
1.5. Justificación de la Investigación	4
1.6. Limitaciones de la Investigación	5
CAPITULO II	6
MARCO TEORICO	6
2.1. Antecedentes del Estudio	6
2.1.1 Antecedentes nacionales	6

2.1.3. Antecedentes Internacionales	10
2.2. Bases Teóricas – Científicas	13
2.2.1. Guías geológicas de exploración	13
2.2.2 Yacimiento tipo Mississippi Valley	23
2.2.3. Yacimiento tipo Mississippi Valley-Perú	57
2.3. Definición de Términos Básicos	64
2.4. Formulación de Hipótesis	74
2.4.1. Hipótesis general	74
2.4.2. Hipótesis específicas	75
2.5. Identificación de Variables	75
2.6. Definición Operacional de Variables e Indicadores	76
CAPITULO III	77
METODOLOGIA Y TECNICAS DE INVESTIGACION	77
3.1. Tipo de Investigación	77
3.2. Métodos de Investigación	77
3.3. Diseño de Investigación	78
3.4. Población y Muestra	79
3.4.1. Población	79
3.4.2. Muestra	80
3.5. Técnicas e Instrumentos de Recolección de Datos	81
3.6. Técnicas de Procesamiento y Análisis de Datos	81
3.6.1. Etapa I	81
3.6.2. Etapa II	82
3.6.3. Etapa III	83
3.6.4. Etapa IV	83
3.6.4. Etapa V	84
3.6.5. Etapa VI	84
3.7. Tratamiento Estadístico	84
3.8. Selección, validación y confiabilidad de los instrumentos de investigación	84

3.9. Orientación Ética	85
CAPITULO IV	86
RESULTADOS Y DISCUSION	86
4.1. Descripción del Trabajo de Campo	86
4.1.1. Descripción de la propiedad y ubicación	86
4.1.2. Accesibilidad	87
4.1.3. Historia	88
4.1.4. Marco geológico local y regional	89
4.1.5. Marco Geológico Regional	97
4.1.6. Paragénesis y zonamiento	. 105
4.2. Presentación, Análisis e Interpretación de Resultados	. 106
4.2.1. Guías de exploración MVT - San Vicente	. 106
4.2.2. Zona control MVT – San Vicente	. 127
4.2.3. Target de exploración Ayala Inferior – target experimental	. 133
4.2.4. Resultados del target experimental	. 175
4.2.5. Modelo Geológico Mina San Vicente	. 177
4.3. Prueba de Hipótesis	. 180
4.4. Discusión de Resultados	. 181
4.4.1. Aporte de la investigación	. 186
CONCLUCIONES	
RECOMENDACIONES	
BIBLIOGRAFÍA	
ANEXOS	
LISTA DE FIGURAS	
Figura 1 Sistemas de Fallas en Apertura y Cierre	20 20 23 32
Figura 7 Texturas MVT	42

Figura 9 Depósitos y Distritos Tipo Mississippi Valley de Pb-Zn	55
Figura 10 Ubicación de Sondajes Muestras en el Target de Ayala Inferior, Galería	
N	80
Figura 11 Plano de Ubicación	
Figura 12 Columna Estratigráfica Mina San Vicente	96
Figura 13 Cuenca Carbonatada del Pucará	98
Figura 14 Cuenca Pucará y Mineralización de Metales Base	99
Figura 15 Plano Geológico Mina San Vicente	
Figura 16 Carbonatos de la Plataforma Pucará Depositados en Secuencias de Rif	ft del
Grupo Mitu	
Figura 17 Paragénesis Mina San Vicente	
Figura 18 Cantidad de Fluido	
Figura 19 Vista 3D Mina San Vicente Target Ayala Inferior	
Figura 20 Vista 3D Programa Perforación DDH Ayala Inferior	
Figura 21 Vista 3D Impactos Ayala Inferior	
Figura 22 Variograma de Zn (Eje Az 300° Dip 30°)	
Figura 23 Variograma de Zn (Eje Az 30° Dip 0°)	
Figura 24 Variograma de Zn (Eje Az 120° Dip 0°)	
Figura 25 Variograma de Pb (En los 3 ejes)	
Figure 23 Visto on Planto Models de Planto Avala Inferior	
Figure 27 Vista en Planta Modelo de Bloques Zona Ayala Inferior	
Figura 28 Vista 3D Modelo de Bloques Zona Ayala Inferior	
Figura 30 Estimación de Recursos Target Ayala Inferior	
LISTA DE PLANOS	. 190
EIOTA DE L'EARGO	
Plano 1 Geología Regional - Mina San Vicente	103
Plano 2 Sistema Estructural - San Vicente	
Plano 3 Dominios Mineralógicos del Horizonte San Vicente	
· · · · · · · · · · · · · · · · · · ·	
Plano 4 Ubicación de Targets	. 132
LISTA DE FOTOS	
LISTA DE FOTOS	
Foto 1 Secuencia Paragenética	106
Foto 2 Dolomía	
Foto 3 Caliza Porosa Basal	
Foto 4 Caliza Neptuno	
Foto 5 Caliza Negra Uncush	
Foto 6 Volcánico	. 111
Foto 7 Intrusivo	. 112
Foto 8 Tipos de Texturas MVT	. 117
Foto 9 Tipos de Mineralización MVT	
Foto 10 Tipos de Fluido de Alteración	
Foto 11 Dominios de Mineralización Horizonte San Vicente	
Foto 12 Granulometría	
Foto 13 Color de Roca	
Foto 14 Fluido	. 140
Foto 15 Tipo de Fluido	. 142
Foto 16 Tipo de Textura	. 144
Foto 17 Minerales Guía	. 146

LISTA DE SECCIONES

Sección 1 Sección Estructural Mina San Vicente	95
Sección 2 Secciones Transversales Regional - Mina San Vicente	104
Sección 3 Eje DDH-2N51504302	164
Sección 4 Eje DDH-2N51504357	165
Sección 5 Eje DDH-2N51504466	166
Sección 6 Eje DDH-2N51504592	167
Sección 7 Eje DDH-2N51504630	168
Sección 8 Eje DDH-2N51504664	169
Sección 9 Evolución del Modelo Geológico	179
LISTA DE TABLAS	
Tabla 1 Definición Operacional de Variables e Indicadores	76
Table 1 Definition Operacional de Variables e Indicadores Table 2 Campaña de Perforación DDH 2018 - 2019 San Vicente	
Tabla 3 Tipo de Roca	
Tabla 4 Granulometría	
Tabla 5 Color de Roca	
Tabla 6 Fluido	
Tabla 7 Tipo de Fluido	
Tabla 8 Tipo de Textura	
Tabla 9 Mantos por Horizontes	
Tabla 10 Horizontes	
Tabla 11 Leyes	
Tabla 12 DDH-2N51504302	
Tabla 13 DDH-2N51504357	
Tabla 14 DDH-2N51504466	
Tabla 15 DDH-2N51504592	
Tabla 16 DDH-2N51504630	157
Tabla 17 DDH-2N51504664	159
Tabla 18 Logueo DDH-2N51504302	160
Tabla 19 Logueo DDH-2N51504357	160
T abla 20 Logueo DDH-2N51504466	161
Tabla 21 Logueo DDH-2N51504592	161
Tabla 22 Logueo DDH-2N51504630	162
Tabla 23 Logueo DDH-2N51504664	162

CAPITULO I

PROBLEMA DE INVESTIGACION

1.1. Identificación y Determinación del Problema

En el mundo entero, las guías de exploración en yacimientos tipo Mississippi Valley están enfocadas en el reconocimiento de nuevos depósitos minerales que albergan concentraciones de Pb-Zn alojados en sedimentos que contienen los mayores recursos de Pb-Zn del mundo y dominan la producción de estos metales. Al respecto Leach D. (2005), mencionó: Los depósitos de Pb-Zn alojados en sedimentos contienen los mayores recursos de plomo y zinc del mundo y dominan el mundo de producción de estos metales. Son un grupo diverso de depósitos de mineral alojados por una amplia variedad de carbonatos y rocas silisiclásticas Estos minerales se dividen en dos subtipos amplios: tipo Mississippi Valley (MVT) y exhalativo sedimentario (SEDEX).

En América, yacimientos y proyectos tipo Mississippi Valley de origen epigenético estratoligado albergados en rocas sedimentarias, constituyen una fuente principal de Zn-Pb. En la actualidad continúan siendo un target (objetivo) de exploración. Al respecto Tritlla J. (2006), hizo referencia: Los depósitos de Pb-Zn-Cu-Ba-F-Sr epigenéticos estratoligados en series sedimentarias han constituido una de las mayores fuentes de metales en la historia de la humanidad. Aún en la actualidad continúan siendo un objetivo prioritario de exploración para las compañías

mineras, debido tanto a su fácil metalurgia como a los grandes tonelajes que presentan los distritos clasificados bajo esta tipología.

En el Perú, la exploración de depósitos tipo Mississippi Valley tuvo un notable aporte el Yacimiento de San Vicente en Chanchamayo- Junín, cuyas guías para la exploración minera de este tipo de yacimiento, sirvieron de base para futuros proyectos de exploración como Shalipayco en Carhuamayo, Junín y Bongará en el Amazonas, el estilo de mineralización característico es el tipo cebra con concentraciones de SZn de alto porcentaje.

En el yacimiento tipo Mississippi Valley de San Vicente se buscó encontrar nuevos targets en base a guías de exploración de acuerdo a las características geológicas del yacimiento.

La determinación de nuevos targets de exploración es esencial para la continuidad de la mina San Vicente en todos sus procesos.

La búsqueda de targets de exploración definirá la continuidad de la exploración Brownfield e infill de la mina San Vicente, con el objetivo de nuevos targets o como extensiones u ampliaciones del depósito mineral conocido, tanto a niveles laterales o de profundización., y en la exploración Greenfield en áreas antes no exploradas para el hallazgo de nuevos yacimientos tipo Mississippi Valley.

Se concretó nuevos targets en base a guías de exploración de cuerdo a las características geológicas del yacimiento que son controles estructurales y controles litológicos, estos controles juegan un papel importante para la determinación de trampas que albergan la mineralización, determinando la cantidad y calidad en la precipitación de sulfuros de Zinc.

1.2. Delimitación de la Investigación

Esta investigación tuvo un alcance científico, técnico y social, ya que para alcanzar los objetivos y responder las hipótesis se recogió las apreciaciones de los profesionales del área de Geología de Compañía Minera SIMSA.

Así mismo contó con un alcance geográfico o espacial que considera al yacimiento tipo Mississippi Valley en el distrito de Vitoc, provincia de Chanchamayo, departamento de Junín.

En cuanto al alcance temporal este se refiere a que se realizó el presente estudio de noviembre 2019 a diciembre 2020.

1.3. Formulación del Problema

1.3.1. Problema principal

¿La implementación de guías de exploración logrará nuevos targets en el yacimiento tipo Mississippi Valley de San Vicente en Cía. Minera SIMSA?

1.3.2. Problemas específicos

- a. ¿Cómo se presentan los targets de exploración del yacimiento tipo Mississippi Valley de San Vicente en Cía. Minera SIMSA antes de la implementación de las guías de exploración?
- ¿La implementación de las guías de exploración logrará la identificación de nuevos targets en el yacimiento tipo Mississippi Valley de San Vicente en Cía. Minera SIMSA en la etapa de estudio?
- c. ¿Cómo se presentan los targets de exploración del yacimiento tipo Mississippi Valley de San Vicente en Cía. Minera SIMSA después de la implementación de las guías de exploración?

1.4. Formulación de Objetivos

1.4.1. Objetivo general

Implementar guías de exploración para identificar nuevos targets en el yacimiento tipo Mississippi Valley de San Vicente en Cía. Minera SIMSA.

1.4.2. Objetivos específicos

 a. Describir los targets de exploración del yacimiento tipo Mississippi Valley de San Vicente en Cía. Minera SIMSA antes de la implementación de las guías de exploración.

- b. Implementar las guías de exploración para identificar nuevos targets en el yacimiento tipo Mississippi Valley de San Vicente en Cía. Minera SIMSA en la etapa de estudio.
- c. Describir los targets de exploración del yacimiento tipo Mississippi Valley de San Vicente en Cía. Minera SIMSA después de la implementación de las guías de exploración.

1.5. Justificación de la Investigación

El presente trabajo, como parte de un proceso de investigación tiene la justificación de explorar con sondajes diamantinos la continuidad de la mineralización de los mantos IIIS, IIS, IS, IA en el Horizonte San Vicente a cotas inferiores del nivel 1515, en la zona Sur y Nuevo Rhamys en el target de Ayala Inferior.

Este estudio también presenta una justificación teórica porque resume el aporte teórico de los autores que hacen referencia a las variables en estudio.

Así mismo tiene una justificación práctica en la medida que ayudó a prevenir este problema actual.

De igual manera presenta una justificación económica, en la medida que ayudará a incrementar los recursos de mineral del yacimiento de San Vicente.

Igualmente ofrece una justificación social en razón que el estudio se ubica en una región de débil desarrollo socio económico, que ayudará en forma directa al crecimiento y desarrollo de los distritos de San Ramón y Vitoc, en la provincia de Chanchamayo y en forma indirecta a la región Junín y el Perú.

También ofrece una justificación legal en base al D.L. N° 109 Ley General de Minería del Perú, Ley N° 29783 Ley de Seguridad y Salud en el Trabajo, DS 023-2017-EM Reglamento de Seguridad y Salud Ocupacional en Minería.

Además de una justificación investigativa pues los resultados darán pie a que se continúen los estudios en este campo y quizá se puedan estudiar otras variables que acá no se han considerado y con otro yacimiento tipo Mississippi Valley.

1.6. Limitaciones de la Investigación

Este estudio tuvo limitaciones en cuanto a la muestra ya que se ha circunscrito a una cantidad determinada de sondajes del Proyecto de Ayala Inferior y no puede generalizarse a otros ámbitos del yacimiento tipo Mississippi Valley de San Vicente. Así mismo, hay limitaciones en lo referente a las variables, puesto que en el yacimiento tipo Mississippi Valley de San Vicente existen muchas variables interesantes que se pueden investigar.

Por otro lado, es necesario mencionar la poca voluntad de algunos proyectos de exploración de tipo Mississippi Valley para la información requerida, aduciendo la falta de tiempo, los pocos o nulos cambios que ellos pueden ver en sus proyectos, ya que en San Vicente predominan los ooides, que se formaron en zonas de barra evidenciándose facies con una barra oolítica de grainstone poroso permeable y otra facie sabkha mudstone impermeable con evaporitas, mientras que otros proyectos presentan una roca caja de dolomías grainstone a mudstone con facies fosilíferas indicando ambientes arrecifales como son Shalypaico y Cañón Florida. Es por estas razones que se deja abierta la posibilidad de que otros investigadores amplíen o profundicen el estudio del presente.

CAPITULO II

MARCO TEORICO

2.1. Antecedentes del Estudio

2.1.1. Antecedentes nacionales

Dávila D., Fontboté L., Febres O, & Oldman (2000). "Exploración y Geología Del Yacimiento San Vicente". Yacimientos minerales peruanos. Instituto de Ingenieros de Minas del Perú. Concluyeron en lo siguiente: 1) El objetivo de este estudio fue localizar zonas de trampas mineralizadas cuantificables, para determinar la cercanía de nuevos mantos de Zn-Pb económicos en el yacimiento tipo Mississippi Valley de San Vicente. 2) La investigación fue de tipo cuantitativo. 3)Los instrumentos empleados fue construir diferentes tipos de mapas guías como isofinos, grado de dolomitización, abundancia de sparry dolomite (roca espática o con aspecto de espato), tipo de sparry dolomite, color (indicador indirecto de contenido en materia orgánica). 4) Los resultados obtenidos han sido la utilización de mapas guía con éxito en la exploración para predecir la cercanía de nuevos mantos mineralizados. Así, en las barras oolíticas de San Vicente, se consideran áreas optimas aquellas con valores de 50% de "finos", 4 de color y en torno de 2 – 3 de WSD. Debe precisarse que siempre se utiliza la combinación de varios controles y guías. La importancia de cada guía depende del área estudiada y de la etapa de

exploración. Así la presencia de WSD en la primera etapa puede ser importante si existe una relación paragenética con la mineralización, pero un área no puede ser excluida por su ausencia.

Flores C, Dávila D, & Hyhua G. (2014). "Estilos y Geometría de Mineralización Tipo MVT en la Mina San Vicente". Boletín de la Sociedad Geológica del Perú. Concluyeron: 1) El objetivo de este estudio fue determinar los estilos y geometrías de mineralización dentro de las facies sedimentarias cuya porosidad y permeabilidad controlaron la etapa de mineralización del yacimiento tipo Mississippi Valley de San Vicente. 2) El diseño que se utilizó para esta investigación fue la aplicada. 3)Los instrumentos que se utilizaron fueron la información disponible, debidamente codificada y estandarizada, utilizando los patrones, guías y controles de emplazamiento de la mineralización, se han elaborado mapas geomineros de superficie y niveles subterráneos, secciones transversales y longitudinales sistemáticos de todo el sistema MVT de San Vicente, que abarca 7 km de longitud por 2 km de ancho. 4) Y los resultados obtenidos fueron que el sistema MVT en San Vicente ha originado tres estilos y geometrías de mineralización que son: mantos N-S, mantos en bloques y mantos NO-SE, relacionados a los feeders que están ubicados en la intersección de fallas/ lineamientos N-S con NO-SE.

Dávila D. & Valdivia E. (2018). "Estilos y Formas de Mineralización en El Grupo Pucara MVT: Zn-Pb, San Vicente, Shalipayco y Cañon Florida". XIX Congreso Peruano de Geología. Concluyeron en lo siguiente: 1) El objetivo de dicho estudio fue comparar la mina San Vicente con los proyectos Shalipayco y Cañón Florida en base a características geológicas típicas para yacimientos MVT tales como: ubicación paleogeográfica, facies sedimentarias barras oolíticas o arrecifes, grainstone a mudstone, dolomitización sedimentaria, epigenética tardía, fallas fértiles, alimentadores,

canalizadores, el fluido hidrotermal productivo, la secuencia mineralógica pirita-esfalerita-galena, la trampa de mineral sedimentario, estructural o químico. 2) El diseño utilizado para la investigación fue descriptivo comparativo. 3) Los instrumentos utilizados fueron: la paleogeografía pre Mitu-Pucará es un factor determinante en la ubicación de yacimientos MVT de Zn-Pb, principalmente la ubicación de altos estrucrurales tales como barras o arrecifes; las facies de dolomías grainstone oolíticas o bioesparíticas en la roca caja de los mantos económicos de gran volumen y dimensiones kilométricas; el mapeo de los diferentes tipos de dolomitización es un factor básico para definir si un área es o no prospectable para la ubicación de yacimientos MVT; la detección temprana de las fallas, alimentadores y canalizadores productivos relacionados al fluido hidrotermal que permitieron orientar los programas de exploraciones. 4) Los resultados fueron la presentación de modelos de mineralización de San Vicente, Shalipayco y Cañón Florida los cuales sugieren que guiarán a la ubicación de nuevos yacimientos MVT.

Robles I, (2018). "Geología y Mineralización del Depósito Mississippi Valley Type de Zn-Pb: Proyecto Cañón Florida, Norte De Perú". Universidad Nacional de Huancavelica. Concluyó en lo siguiente: 1) El objetivo de este estudio fue determinar el control litológico, estructural, estratigráfico y su relación con la mineralización de Zn-Pb del depósito Mississippi Valley Type del Proyecto Cañón Florida y conocer sus características. 2) El tipo de investigación en cuanto a su finalidad es Aplicativa. 3) Los instrumentos utilizados fueron: compilación y elaboración de secciones geológicas interpretativas, columnas estratigráficas, esquemas, tablas, figuras; análisis de sondajes diamantinos, registro de sondajes DDH (logueo), descripción macroscópica, microscópica de rocas y minerales para conocer la litología, alteración, ensambles y caracterización petromineragráfica; análisis e

interpretación de datos metalogenéticos, geológicos, estratigráficos, sedimentológicos, estructurales, litológicos, texturales y mineralógicos y conceptualización del modelo geológico. 4) Los resultados fueron que la mineralización Mississippi Valley Type ocurre como reemplazamiento en dolomitas de grano medio a grueso ricas en bitumen o como relleno de cavidades de disolución y/o relleno de fracturas; la geometría de la mineralización es en mantos, cuerpos y vetiformes; las texturas de los sulfuros son variados en el yacimiento; se presentan masivo, semi-masivo, bandeado, diseminado y patch. Las dimensiones y formas de los cuerpos y mantos mineralizados son variables y con distribución irregular. Los patrones estructurales identificados en este estudio pueden servir como guía de prospección y exploración a escala distrital y local en los alrededores del Proyecto Cañón Florida, poniendo énfasis en los niveles dolomitizados del Miembro Chambará 2 con características texturales favorables.

Fiestas J, Berrospi R, Leach D, & Sempere (2019). "Tectónica Salina e Hidrocarburos como Guía de Exploración de Yacimientos MVT: Zn-Pb En los Andes del Perú Central". Instituto de Ingenieros de Minas del Perú. Pro Explo 2019. Concluyeron en lo siguiente: 1) El objetivo de este estudio fue proporcionar un entorno geológico adecuado para la formación de depósitos MVT, en base a la ocurrencia del domo de sal de San Blas y la presencia de hidrocarburos en los andes del Perú central. 2) El presente trabajo de investigación se ha requerido de un análisis de la base teórica y antecedentes con respecto a otros depósitos de hidrocarburos a nivel mundial. 3) Los instrumentos utilizados fueron: identificación de estructuras anómalas en base a la tectónica del área de estudio, con el apoyo de imágenes satelitales y Google eart y mapeo geológico de afloramientos en el Domo de San Blas. 4) Los resultados fueron que la tectónica salina presente en la faja subandina tiene continuidad en nuestra zona de estudio, en los Andes del Perú central.

Las rocas carbonatadas del Grupo Pucará, junto a la presencia de hidrocarburos y a la tectónica salina presente en la zona de estudio, proporcionan características geológicas, estructurales y químicas adecuadas para la formación de yacimientos MVT de Zn-Pb, lo cual genera nuevos criterios de exploración para yacimientos de este tipo en los Andes del Perú central, pudiendo extrapolarse a toda la cuenca salina mediante mayores estudios.

2.1.3. Antecedentes Internacionales

Fontboté L & Gorzawski H. (1990) "Genesis Of The Mississippi Valley Type Zn-Pb Deposit Of San Vicente, Central Peru: Geological And Isotopic (Sr, O, C, S, Pb) Evidences". Université de Genéve. Concluyeron en lo siguiente: 1) El objetivo del estudio fue determinar tendencias isotópicas significativas de Sr, O, C, S, Pb relacionadas con la génesis del depósito de San Vicente. 2) El modelo genético de San Vicente se contempla esencialmente como un evento de una sola etapa caracterizado por una evolución progresiva del fluido mineral. 3) Para fines de discusión, se puede considerar la existencia de dos fluidos: un fluido en el sitio del depósito de mineral, del cual precipitan minerales de mena y ganga, y una influyente salmuera basal. Mientras que la composición de la salmuera basal puede considerarse relativamente constante o para cambiar solo lentamente, la composición del fluido en el sitio de depósito cambia localmente dependiendo de varios factores.

Badoux V, Moritz R, & Fontboté L (2001). "The Mississippi Valley Type Zn-Pb Deposit Of San Vicente, Central Peru: An Andean Syntectonic Deposit". Université de Geneve. Concluyeron en lo siguiente: 1) El objetivo de este estudio fue determinar estructuras relacionadas con el mineral en el depósito de San Vicente tipo Mississippi Valley Zn-Pb, Centro del Perú, mostrar una geometría sistemática con respecto a la estratificación y el sobreescurrimiento regional, interpretado como Mioceno en estudios

pasados. 2) El depósito Zn-Pb MVT San Vicente comprende diferentes tipos de estructuras de ganga, incluido venas de dolomita blanca, brechas y estructuras de cebra, que están parcialmente desplazadas por fallas inversas y normales. Todas las estructuras muestran una geometría sistemática. con respecto a la estratificación y la orientación de un sobreescurrimiento regional del mioceno superior. La orientación preferencial de estructuras de ganga refleja un control estructural. La geometría de las estructuras ganga y fallas es compatible con un cizallamiento dextral simple de las rocas carbonatadas del Grupo Pucará como rocas más antiguas. Notablemente, se interpretan las estructuras cebra concordantes a la estratificación como estructuras iniciadas durante el sobreescurrimiento regional y abriéndose a lo largo de planos preexistentes de debilidad, es decir, estratificación. Se concluye que el depósito de San Vicente MVT presenta una mineralización sintectónico andino tardío.

Bradley D & Leach D (2003). "Tectonic Controls Of Mississippi Valley-Type Lead-Zinc Mineralization In Orogenic Forelands". Northem Arkansas, Pine Point and Cevennes, respectively. Mineralium Deposita. Concluyeron en lo siguiente: 1) La mayoría de los depósitos de zinc-plomo del tipo Mississippi Valley (MVT) se producen en antepaís orogénicos. El tipo de antepaís orogénico (colisión tipo andino versus tipo inversión) no es un control de primer orden, porque cada uno tiene depósitos MVT. 2) ¿Por qué, entonces, se producen depósitos de MVT en un antepaís orogénico, pero no en otras? No todos los controles son tectónicos, pero incluso si lo fueran, todavía no habría una respuesta simple. 3) Para que se forme un depósito, varios factores diferentes deben unirse: p.e rocas huésped adecuadas, preparación del suelo, salmueras basales y mecanismos para conducir estas salmueras y enfocarlas en el sitio de mineral (Leach D & Sangster D.F, 1993). 4) Sin

- embargo, para la exploración o evaluación de minerales en áreas fronterizas, el presente estudio sugiere algunas pautas útiles.
- Debido a que la mayoría de los depósitos de MVT están en rocas de carbonato y se forman la mayoría de las sucesiones de carbonato espeso en latitudes bajas, un historial de deriva pre-sinorogénica a través de latitudes bajas es un requisito previo (Leach et al, 2001).
- El tipo de antepaís orogénico (colisión, tipo andino, tipo inversión) no es crítico para el presencia o ausencia de depósitos MVT. Pero estos sistemas antepaís difieren en ciertos aspectos como la geometría y la estructura de la cuenca, que podrían influir en las estrategias de exploración.
- Las inconformidades de levantamiento orogénico anterior formadas durante la orogenia de colisión son un objetivo principal; son reconocido por su lugar en la sucesión estratigráfica.
- Fallas sincolisionales normales y de deslizamiento en las zonas frontales de colisión albergan mineralización MVT en algunos distritos y, por lo tanto, deberían ser objetivos de exploración en los sistemas antepaís.
- El momento de la mineralización MVT con respecto a una orogenia de colisión (syn- o post) es directamente relevante para la génesis MVT y también podría influir en la exploración. Los depósitos Ozark MVT revelan que la mineralización puede tener lugar a gran escala, unas pocas decenas de millones de años después orogénesis. En el momento de la mineralización, la cuenca del antepaís estaba sobrellenada y la gradiente topográfica inclinada lejos del orógeno.
- Los depósitos MVT se producen tanto en estratos planos como en estratos con fallas de empuje; ambos tipos de terreno son favorables.

2.2. Bases Teóricas - Científicas

2.2.1. Guías geológicas de exploración

2.2.1.1. Guías morfológicas.

Oyarzun R. (2011), mencionó que: "Las guías morfológicas se relacionan con la forma, esto es, con la geometría de los cuerpos mineralizados que se buscan." (pág.53)

Antes de buscar un determinado tipo de yacimiento primero deberíamos saber qué forma tiene, como punto de partida.

Los cuerpos mineralizados se pueden dividir en dos categorías: "discordantes" y "concordantes".

Los cuerpos discordantes pueden a su vez dividirse en:

- Regulares
- Irregulares

Al respecto Oyarzun R. (2011), señaló que:

Los cuerpos discordantes "regulares" pueden tener dos morfologías posibles: A) Tabulares y B) Tubulares. Los tabulares reciben su nombre del latín *tabularis*, esto es, que tienen forma de "tabla". A esta categoría podemos adscribir los cuerpos mineralizados filonianos (vetiformes). [...]. Los cuerpos discordantes "regulares" tubulares, también reciben su nombre del latín *tubulus*, y como su nombre indica, presenta forma de tubo. A este grupo se asocian las diatremas, como las kimberlíticas y los cuerpos de brecha de turmalina, asociadas (o no) a pórfidos cupríferos. El término más común en inglés para designar estos cuerpos es el *breccia pipe*. En ocasiones el cuerpo de brechas puede alejarse de la forma tubular y asemejara un cono trucado invertido. (pág. 54)

Oyarzun R. (2011), enunció lo siguiente:

En lo que respecta a los cuerpos discordantes irregulares, como su nombre lo sugiere, presentan morfologías que no se asemejan a cuerpos geométricos regulares. En esta categoría pueden entrar algunos cuerpos de hierro o cobre tipo skarn y por supuesto los pórfidos cupríferos. (pág. 55)

Por otro lado Oyarzun R. (2011), dijo que:

En cuanto a los cuerpos mineralizados concordantes, aquí entran todos aquellos yacimientos comúnmente llamados estratiformes (mantiformes). Dado que la mineralización se acomoda concordantemente a la capa sedimentaria, piroclástica o de colada volcánica, poco hay que añadir al respecto. Yacimientos típicos son aquellos del tipo mantos de carbón en rocas sedimentarias, plomozinc en calizas dolomitizadas, y por supuesto, los yacimientos de hierro del tipo Formación Bandeada de Hierro (BIF), que por su importancia económica y amplia distribución mundial (escudo canadiense, australiano y brasileño) son de los más notables en esta categoría. (pág. 56)

Yacimientos Tipo Estratoligados:

Tumialán P. (2003), señaló que:

Los yacimientos tipo estratoligado, conocidos comúnmente como mantos, pueden ser a su vez estratificados si son exactamente concordantes a los estratos y no estratificados si no existe esta concordancia, pero que el eje mayor del cuerpo mineralizado es paralelo a los estratos [...]. Con relación a su origen, los criterios están divididos; unos lo consideran como epigenéticos, otros como singenéticos, o singenéticos con removilización.

Desde el punto de vista estructural, son conocidas en el Perú las estructuras mineralizadas tipo manto, cuya terminología acordada en el III Congreso Peruano de Geología, es el de yacimiento tipo estratoligado, estos a su vez pueden ser, estratificados, si la mineralización es totalmente concordante con los estratos y no es estratificados, si no cumplen con dicha condición, pero que el eje mayor del cuerpo mineralizado es paralelo a los estratos, inclusive si fueran de aspecto brechoso.

Clásicamente, en la literatura común, los mantos se formaron por reemplazamiento de un horizonte favorable a la mineralización, considerándolos por lo tanto como epigenéticos y que estos horizontes favorables son por lo general calcáreos. (pág. 481)

2.2.1.2. Guías litológicas.

McKinstry HE. (1970), sostuvo al respecto que:

Si la mena se encuentra exclusivamente en una capa sedimentaria dada, esta capa constituye una guía estratigráfica ideal. [...]. Si la roca que los contiene no es una formación, sino un cuerpo intrusivo o una colada volcánica, los mismos principios son aplicables en lo que concierne a búsqueda de menas; pero, puesto que en tales casos la guía no puede llamarse propiamente estratigráfica, el término *litológico* es más apropiado. (pág. 289)

Oyarzun R. (2011), concluyó que:

Los yacimientos minerales se asocian a determinados tipos litológicos y series magmáticas, por ejemplo, es bien conocida la asociación entre pórfidos cupríferos y rocas de composición tonalítica de la serie calco-alcalina, o la de algunos yacimientos de

plomo-zinc con las rocas carbonatadas. Otra clásica asociación es la de las rocas ultramáficas, como las peridotitas, con yacimientos de cromo y platinoides. En otras palabras, el marco litológico y petrológico predetermina los tipos de yacimientos en una región. (pág. 56)

2.2.1.2.1. Condiciones favorables.

Al respecto McKinstry HE. (1970), enunció que:

La razón por la que una roca es más receptiva a la mena que otra no es siempre evidente. En teoría se podría esperar que estas condiciones fueran favorables: a) permeabilidad para permitir el paso de soluciones y b) reactividad química para inducir la precipitación de los minerales de la mena. Las dos condiciones pueden combinarse en el caso de una roca soluble a través de la cual las soluciones se abren su propio camino por reacción química. (pág. 292)

Por su parte Oyarzun R. (2011), explicó que:

Podemos definir una serie de asociaciones clásicas de gran utilidad llegado el momento de planificar una campaña de exploración. Algunas de las típicas son:

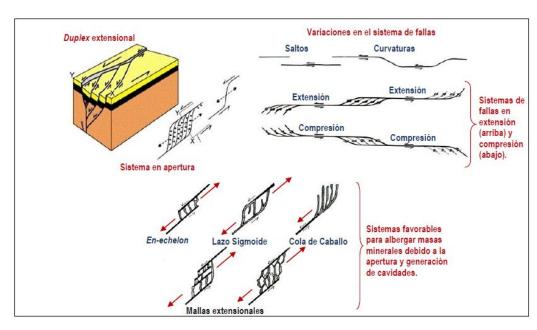
- Rocas magmáticas ultramáficas, relacionadas o no con procesos de acreción oceánica: yacimientos de cromo y platinoides.
- Rocas magmáticas de composición félsica máfica de la serie calco-alcalina en márgenes de placa activos: yacimientos de sulfuros masivos tipo kuroko asociados a rocas volcánicas y subvolcánicas félsicas como riolitas; mantos de cobre en rocas o sulfuros

masivos en rocas de composición basáltica a andesítica; pórfidos cupríferos es stocks de composición granodiorítica-tonalítica.

- Granitos peralumínicos del tipo hercínico europeo: yacimientos de estaño y wolframio (tungsteno), elementos de tierras raras,fósforo, uranio, columbitatantalita.
- Rocas sedimentarias marinas carbonatadas, generalmente dolomitizadas: yacimientos de Pb-Zn, estratiforme o estratoligados.
- Rocas sedimentarias silíceas del Precámbrico: formaciones bandeadas de hierro del tipo Lago Superior. Si hay además rocas volcánicas asociadas pueden desarrollarse mineralizaciones bandeadas de hierro del tipo Algoma. (pág. 56)

2.2.1.3. Guías estructurales.

Así mismo McKinstry HE. (1970), concluyó que:


Las fallas producidas después del depósito de la mena son, en el caso mejor, una molestia y, en el peor, una catástrofe. Incluso cuando los problemas de desplazamiento se resuelven son dificultades serias. Una superabundancia de fallas hace aumentar inevitablemente los gastos de hallazgo, desarrollo y extracción de la mena. Si la mena es únicamente de la ley media, la presencia de demasiadas fallas puede ser una razón fundamentada para abandonar una propiedad. Pero donde haya una posibilidad de encontrar mena realmente buena, la existencia de fallas que hayan desanimado a operadores anteriores puede brindar al geólogo atento la oportunidad para un logro real. (pág. 354)

Oyarzun R. (2011), señaló al respecto que:

Las fallas se curvan, y esta curvatura tiene importantes implicaciones en lo que se refiere a la dinámica de extensión o compresión del sistema (Fig. 1). Bajo el punto de vista de las mineralizaciones hidrotermales, las fallas y zonas de falla con sectores de extensión presentan el máximo interés. La razón radica en que aquellas zonas se encuentran "en apertura" lo cual tiene dos consecuencias principales:

- 1. Permite una circulación más fácil de los fluidos hidrotermales.
- Si la precipitación de la carga mineral sucede en esos sectores, la masa mineral será mayor dado el carácter en expansión que presentan. (pág. 59)

Figura 1
Sistemas de Fallas en Apertura y Cierre

Fuente: Sibson, (1990); Davis y Reynolds, (1996)

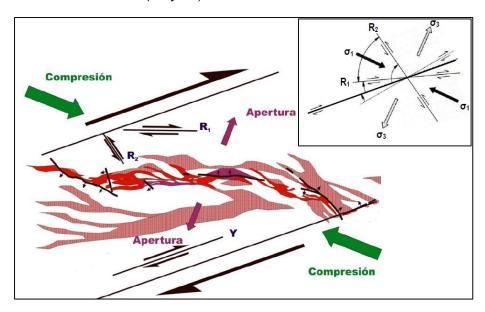
Por su parte Oyarzun R. (2011) cita a McKinstry HE. (1970) y Sibson R.H. (1990)

Las relaciones empíricas entre zonas en apertura y masas minerales de mayor entidad es conocida hace mucho tiempo, sin embargo no fue hasta los años 1980-1990 que esta relación comenzó a entenderse en términos de la dinámica de fluidos en sistemas de fallas. (pág. 61)

2.2.1.3.1. Aspectos estructurales relevantes.

Con respecto Oyarzun R. (2011), citó:

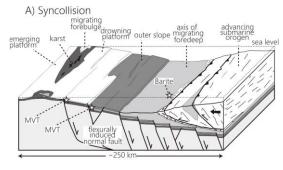
- Las zonas extensionales son las más favorables para el desarrollo de mineralizaciones. La extensión genera espacios, la compresión las sella (Fig. 2).
- Las fallas y estructuras asociadas cumplen dos roles principales en la formación de yacimientos: actúan como canales de migración de los fluidos hidrotermales y albergan a las mineralizaciones.

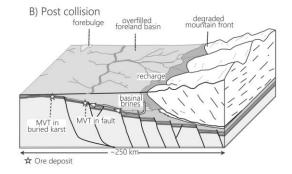

La determinación del sentido del movimiento de una falla individual o zona de falla es crucial para entender su potencial para albergar cuerpos mineralizados. Para esto es fundamental los indicadores cinemáticos.

- Independientemente de la escala, las fallas pueden presentar localmente zonas en extensión y en compresión. Estas zonas están relacionadas directamente con las curvaturas (inflexiones) o saltos de fallas.
- No existen fallas o zonas de fallas "buenas" o "malas",
 en general todas presentan sectores más favorables
 y menos favorables para el desarrollo importante de masas minerales.

 Si la evidencia de campo contradice los planteamientos teóricos iniciales, sustituya la teoría, lo opuesto garantiza el desastre. (pág. 62)

Figura 2


Estructuras de Riedel (R1 y R2) Cizallamiento Sinestral



Fuente: Oyarzun R, (2011). Adaptada de Davis y Reynolds.

Figura 3

Entorno Tectónico de Depósitos MVT

Fuente: Bradley and Leach (2003).

2.1.1.4. Guías mineralógicas.

Así pues McKinstry H.E. (1970), indicó que:

Los minerales que están presentes, y su abundancia relativa, sirven de guías muy prácticas en la búsqueda de menas. Las variaciones en las proporciones de los minerales, ya sea en los hastiales o en la misma masa mineralizada, llevadas en planta o en secciones verticales, pueden constituir anillos. Los minerales oxidados de la superficie sirven como indicadores de lo que existe más abajo, por lo tanto, las variaciones mineralógicas en los hastiales, a menos que sean inherentes de la masa rocosa original, son por lo común el resultado de la alteración de la roca por las soluciones mineralizantes; las variaciones dentro de la veta pueden reflejar variaciones locales en las condiciones del depósito de la mena, o la influencia subsecuente de las soluciones descendentes. (pág. 247) En este sentido Oyarzun R. (2011), mencionó lo siguiente:

Las guías mineralógicas de exploración son de dos tipos principales, las relacionadas con los procesos de alteración hidrotermal, y las derivadas de la formación de gossans. La mineralogía de alteración (hidrotermal o supergénica) es una de las herramientas más útiles de exploración. Los yacimientos hidrotermales presentan una aureola de alteración, que suele disponerse geométricamente en torno al cuerpo mineralizado. (pág. 62)

2.1.1.4.1. Alteración.

Con relación a esto, McKinstry H.E. (1970), hizo referencia que:

Los cambios mineralógicos, tan comunes en las rocas que rodean criaderos epigenéticos, envuelven habitualmente la introducción de ciertos elementos químicos y la substracción de otros, pero en ocasiones el cambio químico es insignificante, y los elementos que estaban presentes originalmente se reagrupan meramente en un nuevo conjunto de minerales. [...] Como otras guías, la alteración de la roca presta su máximo servicio si no está demasiado restringida ni demasiado extendida. "Una fase muy extensa de alteración, tal como la propilitización asociada con las venas de oro-plata en ciertos distritos del oeste de EE.UU., puede estar tan extendida que sirva simplemente para llamar la atención sobre la posibilidad de existencia de mena en el distrito en general. En el otro extremo, la alteración confinada a unos pocos metros de las paredes de un criadero no es apta para ser de mucho valor en exploración, excepto, quizá, donde pueda servir para localizar aforamientos". (pág. 248)

Alteración Hidrotermal

Referente a esto Oyarzun R. (2011), concluyó:

La alteración hidrotermal acompaña a "todos" los yacimientos minerales hidrotermales (Fig. 4), y su presencia (sea de un tipo u otro) depende de las condiciones físico-químicas del sistema y del tipo de roca ¿Por qué? Porque la alteración no es más que el resultado del reequilibrio de la fase mineral ante nuevas condiciones físico-químicas. Las soluciones hidrotermales aportan nuevas condiciones al sistema, lo que suele dar origen a la formación de nuevos minerales a partir de los iniciales que estaban en

desequilibrio con esas soluciones hidrotermales. (pág. 62)

Así, las relaciones más comunes en yacimientos hidrotermales son:

Figura 4

Alteraciones Hidrotermales

- Alteración potásica: feldespato K secundario + biotita secundaria.
- Alteración fílica: cuarzo + sericita.
- Alteración argílica: montmorillonita (argílica intermedia), caolinita + alunita (argílica avanzada).
- Alteración propilítica: clorita + epidota ± calcita.
- Silicificación: grado extremo de alteración en la que solo queda un residuo silíceo. No confundir con el "relleno" de fracturas o huecos por cuarzo o sílice microcristalina. No se puede "alterar" un espacio "vacío".

Fuente: Oyarzun R, (2011)

Alteración Supergénica

Referente a esto Oyarzun R. (2011), dijo:

En lo que respecta a la alteración supergénica las guías mineralógicas son aún más evidentes. Esto se debe a que los procesos de oxidación de los yacimientos hidrotermales suelen dar coloraciones que van desde los rojos intensos a los amarillos, representando todo el espectro de limonitas desde la goethita a la jarosita. En estos casos se generan anomalías de color que son fácilmente identificables en el campo. (pág. 65)

2.2.2 Yacimiento tipo Mississippi Valley

Al respecto Tritlla J. (2006), enunció que:

El término "Mississippi Valley-Type" fue inicialmente utilizado en referencia al conjunto de depósitos de Zn-Pb localizados en la cuenca del río Mississippi, en el centro de los Estados Unidos. Las características básicas que definen a este tipo de depósitos son aspectos químicos y geológicos muy generales, por lo que ha sido posible clasificar numerosos depósitos de Zn-Pb-F y otras

substancias dentro de la tipología MVT [...]. Las mineralizaciones generalmente denominadas como *Mississippi Valley-type* (MVT) son epigenéticas, normalmente estratoligadas, y están formadas a partir de soluciones hidrotermales de baja temperatura y presión, con o sin la presencia de hidrocarburos. (pág. 104)

Así mismo, Paradis S. (2007), sostuvo que:

Los depósitos del tipo Mississippi Valley (MVT) son epigenéticos, cuerpos estratificados alojados en carbonatos compuestos predominantemente de esfalerita, galena, sulfuros de hierro y carbonatos. [...] Se llaman así porque varios depósitos MVT clásicos están ubicados en rocas carbonatadas dentro de la cuenca de sedimentación del río Mississippi en el centro de los Estados Unidos (EE. UU.); así mismo, los depósitos se producen principalmente en dolomía como rellenos de espacios abiertos, brechas de colapso, y / o como reemplazo del carbonato en la roca caja. Con menos frecuencia, sulfuro y minerales de ganga ocupan porosidad de carbonato primario. Los depósitos son epigenéticos, haber sido emplazado después de la litificación de las rocas huésped. (pág. 185)

A su vez, Paradis S, (2007) cita a Leach D & Sangster D.F. (1993), donde refirió que:

Los depósitos de MVT se originan a partir de una solución salina basal metalífera con fluidos a temperaturas en el rango de 75 a 200 ° C. Están ubicados en zonas de plataforma de carbonato, típicamente en un antepaís orogénico relativamente poco deformado, comúnmente en cinturones de sobreescurrimiento, y rara vez en zonas de rift. (pág. 185)

Por otra parte, Tuanama N. (2016), indicó lo siguiente:

Los depósitos Tipo Mississippi Valley son depósitos estratoligados, que hospedan cuerpos de sulfuros en rocas calcáreas, compuestos predominantemente por esfalerita y galena. El depósito ocurre en dolomías

rellenando espacios vacíos, dentro de brechas y/o remplazamiento en rocas calcáreas. El depósito es epigenético emplazado después de la litificación de las rocas huésped. Los depósitos Tipo Mississippi Valley se originan en cuencas salinas a temperaturas entre 75°-200°C. Se localizan en plataformas carbonatadas, típicamente en relativa asociación con las cuencas de ante país del cinturón orogénico y, raramente en zonas de rift. En otros distritos mineros del mundo pueden tener hasta 300 "ore bodies", los cuales tienen varios millones de toneladas de recursos a lo largo de cientos de kilómetros cuadrados. (pág. 8)

2.2.2.1. Principales características.

Leach D. (1993), mencionó las características más importantes de los depósitos de plomo-zinc MVT son:

(1) la mayoría de los depósitos son en dolomía, menos comúnmente en caliza o arenisca, (2) el mineral es epigenético y estratificado, (3) los depósitos no son asociado con la actividad ígnea, (4) los depósitos están a poca profundidad en los flancos de las cuencas, (5) los depósitos están en la plataforma de secuencias carbonatadas, ubicadas en rocas relativamente poco deformadas que bordean los antepaís o en los cinturones de sobreescurrimiento (Fig. 3). (6) la mayoría de los depósitos se encuentran en distritos que cubren cientos de kilómetros cuadrados; incluso se pueden formar varios distritos provincias metalogénicas, (7) depósitos forman distritos que se localizan por características geológicas, incluidas brechas, márgenes de depósito de unidades de esquisto (bordes de esquisto), tractos de facies, fallas y máximos de sótanos que permiten hacia arriba migración de fluidos de mineral, (8) las temperaturas de deposición de mineral son bajas (50°C a 200°C), pero típicamente más altas que aquellas atribuible a gradientes térmicos locales controlados por el basamento; los distritos están comúnmente en equilibrio térmico con respecto a las rocas huésped circundantes, (9) los depósitos son mineralógicamente simples; los minerales dominantes son esfalerita, galena, pirita, marcasita, dolomita, calcita y cuarzo, (10) la alteración asociada consiste principalmente en dolomitización, brecha, disolución de roca huésped, y disolución / cristalización de feldespato y arcilla, (11) evidencia de roca huésped de carbonato. la disolución, expresada como depresión, brecha de colapso, o alguna combinación de estos, es común, (12) fluidos minerales eran salmueras basales densas, que generalmente contienen de 10 a 30 por ciento en peso de sales, (13) los datos isotópicos indican corteza las fuentes tanto de metal como de azufre reducido, (14) las texturas minerales de sulfuro son extremadamente variadas; el mineral varía de grueso cristalino a grano fino, masivo a diseminado. (pág. 234)

Por otro ladoTritlla J. (2006) cita a Kisvarsanyi G. (1983) donde describen las características comunes de los yacimientos tipo Mississippi Valley:

- Suelen encajonar en series carbonatadas de plataforma, de grosor variable.
- 2. Son mineralizaciones epigenéticas de sulfuros de zinc y plomo (esfalerita y galena), acompañados de sulfuros de hierro (pirita y marcasita), y carbonatos (calcita y dolomita). Pueden también aparecer barita, fluorita, calcopirita y cuarzo que pueden llegar a ser localmente abundantes, o en algunos casos, llegar a constituir la mayor parte de la mineralización. La relación Zn/(Zn-Pb) suele estar comprendida entre 0.6 y 1, y casi siempre se cumple que Zn>Pb>>>Cu.

- 3. En muchos distritos, estos depósitos están acompañados de hidrocarburos, a menudo bajo la forma de bitumen o bien en inclusiones fluidas de hidrocarburos líquidos y sólidos atrapados en los minerales que constituyen el depósito.
- 4. La morfología de los depósitos puede ser muy variada, y consisten en mantos de reemplazamiento, masivos a bandeados; relleno de bolsadas, a veces de origen kárstico (karst hidrotermal); cementando brechas hidráulicas o de colapso, cementos ocupando la porosidad de antiguos biostromas, a menudo de rudistas o coralinos, relleno de fracturas o filones, etc. Estos depósitos suelen estar limitados a un sólo nivel estratigráfico, generalmente dolomitizado, aunque esto no siempre se cumple.
- 5. Los distritos suelen estar formados por un número elevado de depósitos de pequeño tonelaje (<2.10Mt), con unas leyes máximas alrededor del 10% de Zn+Pb. La distribución de estos depósitos suele estar controlada por elementos estratigráficos (límites litológicos, cambio de facies, distribución de porosidad, karst), estructuras (fracturas, cabalgamientos, brechas tectónicas, etc.) o la combinación de ambos, localizándose siempre en unos niveles determinados, de ahí su carácter estratoligado.</p>
- 6. Texturalmente, los sulfuros muestran una gran variedad, desde reemplazamiento coloidales de tamaño de grano muy fino hasta cristales centimétricos a decimétricos ocupando cavidades, Las texturas indicativas de precipitación rápida (coloformes, dentríticas, esqueléticas) pueden ser las predominantes en algunos depósitos.

- 7. Estos depósitos suelen aparecer encajonados en series estratigráficas carbonatadas, mayoritariamente dolomitizadas. No obstante, existe algunos depósitos (Laisvall, Suecia) que encajan en rocas silicaclásticas.
- 8. Se forma a poca profundidad (generalmente inferior a 1,500 metros), a menudos en altos estructurales.
- 9. Genéticamente, nunca están asociadas a rocas ígneas.
- Suelen estar asociadas a regímenes tectónicos tanto compresionales (EE. UU) como extensionales (algunos depósitos europeos y latinoamericanos).
- 11. No aparecen exclusivamente en periodos geológicos concretos, sino que se conocen desde el Proterozoico (Canadá, Sudáfrica) hasta tiempos recientes.
- 12. Estos depósitos se han formado a partir de soluciones de cuenca similares a las aguas de formación petroleras, con temperaturas, determinadas mediante inclusiones fluidas en cuarzo, esfalerita, dolomita, barita, calcita, y fluorita, que se sitúan entre 80 y 200°C, y salinidades de hasta el 30% en sales en peso, NaCl y CaCl₂ esencialmente. El mecanismo más viable para el transporte de Zn y Pb es mediante complejos clorurados. El F se puede transportar mediante complejos de Mg y Ca (Spirakis, 2004; Tritlla et al., 2004b). A menudo, los fluidos acuosos están acompañados por metano, hidrocarburos líquidos y suele aparecer bitumen tanto bajo la forma de sólidos atrapados en las inclusiones fluidas como acumulado en el depósito.
- La composición isotópica del oxígeno y del carbono de las rocas encajonantes están ligeramente empobrecidas con respecto a las

- rocas regionales, hecho que indica que recristalizaron en presencia de un fluido.
- 14. Las composiciones isotópicas del oxígeno y el deuterio de las aguas contenidas en las inclusiones fluidas son similares a los de los fluidos presentes en las cuencas sedimentarias.
- 15. Los datos isotópicos de plomo, muy radiogénicos, sugieren un origen cortical para los metales, que muy probablemente fueron lixiviados de materiales sedimentarios de la misma cuenca, o bien de materiales presentes en el zócalo. El origen de azufre esta casi siempre asociado a una fuente evaporítica (evaporación de agua marina; lavado de evaporitas), aunque el amplio rango de composiciones que suelen observarse en algunos depósitos sugiere que esta composición puede estar modificada por procesos de oxidación/ reducción en presencia de materia orgánica.
- 16. La reconstrucción total de sedimentos por encima de la mineralización en el momento en que esta se formó, conjuntamente con un gradiente geotérmico anómalo, permiten calcular temperaturas en el área mineralizada que siempre son inferiores a las encontradas mediante inclusiones fluidas. (págs.: 105-106)

2.2.2.2. Modelos genéticos.

Los modelos de formación de los depósitos de tipo MVT dependen en gran medida de dos factores fundamentales: el tipo de circulación de los fluidos y los procesos de precipitación.

2.2.2.2.1. Modelos de circulación de los fluidos.

En efecto, Tritlla J. (2006), mencionó al respecto que:

La formación de los depósitos de tipo MVT está íntimamente relacionada con la circulación de salmueras en una cuenca sedimentaria. El mecanismo de movilización de los fluidos depende del tipo de orógeno y de en qué estadio de evolución se encuentra la cuenca en el momento de la movilización y expulsión de los mismos. Debido a que en la mayoría de las ocasiones no se conoce la edad de formación del depósito, es habitual que se propongan modelos de flujo completamente diferentes, o hasta antagónicos, para interpretar la génesis de un mismo depósito. (pág. 119)

De igual modo, Tritlla J. (2006), cita a Garven G & Freeze R.A. (1984) y Garven G, (1985), donde enunció lo siguiente:

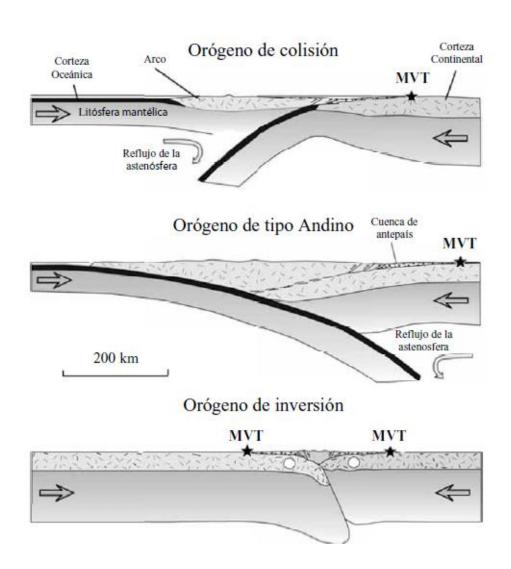
El modelo más aceptado hasta el momento y especialmente válido en los depósitos del Valle del Mississippi es el propuesto por Garven G. y Freeze R.A. (1984a, b) y Garven G. (1985), basado en la circulación de fluidos debido a gradientes topográficos. En contextos tectónicos compresivos la formación del orógeno implica la constitución de un importante gradiente topográfico que permite establecer el flujo de fluidos meteóricos entre las partes más elevadas tectónicamente y las cuencas de antepaís asociadas. Este tipo de modelo permite justificar la migración de fluidos a escala de cuenca u orógeno al permitir velocidades de flujo altas (≥ 10 m por año) durante largos periodos de tiempo (algunos millones de años). Además, debido a su alta velocidad de flujo, es un

mecanismo muy eficiente para transportar grandes cantidades de calor. (pág. 120)

2.2.2.2. Mecanismos de precipitación.

Tritlla J. (2006) cita a Beales F.W. (1975), hizo referencia que: "Uno de los modelos más aceptados para la precipitación es el que supone un transporte por separado de los metales y el azufre, produciéndose la mineralización en el sitio en donde ambos fluidos se mezclan." (pág. 120)

En relación con lo que se trata, Tritlla J, (2006) cita a Garven G. (1985) y Bethke C.M. & Marshak S. (1990), donde indicó que:


Uno de los modelos conceptuales más aceptados para explicar el origen de las soluciones mineralizantes y el mecanismo de movilización de las mismas, es el que involucra aguas meteóricas que se infiltrarían e irían evolucionando en profundidad а medida que interaccionasen con materiales de composición diferente, convirtiéndose paulatinamente en soluciones mineralizantes (Fig. 5). Su movimiento sería provocado esencialmente por las variaciones en los niveles piezométricos de la cuenca, así como también podría ser debido a cambios de densidad del fluido debido al calentamiento de las aguas como consecuencia de un gradiente geotérmico anómalo.

Otros autores (Noble, 1963), (Jackson & Beales, 1967) proponen la compactación de la cuenca como un mecanismo que daría lugar a un flujo continuo de la

solución mineralizante. Para poder explicar la conservación de la temperatura de la solución durante centenares de kilómetros, (Sharp, 1978) y (Cathles & Smith, 1983) proponen un flujo episódico de la solución hacia la roca carbonatada, como consecuencia de una sobrepresión. (pág. 120)

Figura 5

Orógeno Colisional, tipo Andino y de Inversión

Fuente: Muñóz, (1992); Leach D. & Sangster D.F. (1993)

2.2.2.3. Marco geológico.

2.2.2.3.1. Alteración.

Paradis S. (2007) cita a Kyle JR., (1981), Sass-Gustkiewicz M. (1982) y Leach D & Sangster D.F. (1993), donde enunció que:

La mayoría de los depósitos de MVT muestran características de brecha hidrotermal, recristalización, disolución, dolomitización y silicificación Las brechas hidrotermales conocidas como brechas de colapso resultan de la disolución del carbonato subyacente y se interpretan como karst meteórico o karts hidrotermal. (pág. 192)

En tal sentido, Paradis S. (2007), señaló al respecto: "Extensa dolomitización hidrotermal forma una envoltura alrededor de la mayoría de los depósitos, que se extiende decenas a cientos de metros más allá de los cuerpos de sulfuro." (pág. 192)

Paradis S. (2007) cita a Leach D & Sangster D.F. (1993), donde hace referencia que: "Los halos dolomíticos pueden ser pre, syn o post-sulfuros. Esta dolomitización hidrotermal consiste en Dolomita blanca cristalina gruesa y dolomita de silla de montar como cemento. "(pág.192) Así tamnién Paradis S, (2007) cita a Randell R.N. & Anderson G.M. (1996), donde describió que: "La caliza dolomitizada forma un halo de mínimo de longitud de 1 km alrededor y muy por debajo del yacimiento en Polaris." (pág.193)

Al respecto, Tritlla J, (2006) cita a Tornos F. (1997), donde mencionó que:

Las alteraciones hidrotermales en estos depósitos, debido a la capacidad tamponadora de la roca encajonante, son muy poco variadas en comparación con las que presentan las rocas silico-alumínicas. El cambio mineralógico más extendido consiste en la dolomitización de la roca encajonante, si bien también pueden aparecer silicificaciones y/o muscovitizaciones.

Los MVT, tal y como ya se ha comentado, encajan en calizas o en dolomías, si bien estas últimas son dominantes. En distritos como Pine Point (Canadá) y Silesia (Polonia) todo el distrito está encajado en una amplia zona discordante de dolomía secundaria fuera de la cual la roca regional es una caliza; en otros distritos la dolomía secundaria aparece de forma local y se encuentra rodeando las zonas mineralizadas. Otras alteraciones que se han descrito y que afectan a la roca regional son la presencia de diseminaciones de sulfuros similares a los que aparecen en la mineralización (Leach D., 1979); (Coveney, 1987), la presencia de feldespatos autigénicos en las rocas carbonatadas (Hearn & Sutter, 1987), la illitización de las bentonitas (Elliot & Aronson, 1987) y la alteración hidrotermal de los carbones (Daniels, 1990).(pág. 110)

2.2.2.3.2. Mineralización.

Al respecto, Paradis S, (2007) cita a Randell R.N. & Anderson G.M. (1996) y Dewing K, (2007), donde citó que:

Los depósitos de MVT tienen conjuntos minerales simples que consisten de esfalerita, galena, pirita, marcasita, dolomita, calcita, cuarzo, y ocasionalmente barita, fluorita, celestita, yeso, anhidrita, azufre nativo y pirrotita. Calcopirita, bornita, y otros minerales de cobre normalmente no son constituyentes de depósitos MVT y solo abundan en algunos distritos. (pág. 189)

Así mismo Leach D, (1993), dijo sobre el tema que:

La mayoría de los depósitos de MVT tienen conjuntos minerales simples que consisten en galena, esfalerita, pirita y marcasita. La consideración ambiental más importante para los depósitos de MVT puede ser su contenido de sulfuro de hierro. La abundancia de minerales de sulfuro de hierro en relación con el de otros minerales de sulfuro en depósitos MVT varía de cero a dominante. La calcopirita, la bornita y otros minerales de sulfuro de cobre son abundantes en algunos distritos. Aunque la mayoría de los distritos se caracterizan por ensamblajes minerales bastante simples [...]. (pág. 237) Algunas de estas fases menores están presentes en pequeñas cantidades en muchos distritos de MVT.

Estilos de mineralización

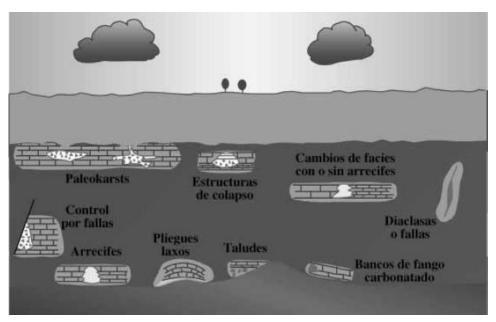
Leach D. (1993), indicó al respecto lo siguiente:

El mineral MVT es extremadamente variado en carácter y forma (Fig. 6). Los cuerpos van desde zonas de reemplazo masivo hasta espacios abiertos rellenos de fracturas y brechas a grupos diseminados de cristales que ocupan el espacio intergranular de los

poros. [...] En algunos distritos, especialmente en Pine Point, Silesia, Polaris y Cadje, gran parte del mineral forma granos extremadamente finos, agregados laminados de esfalerita botroidal (coloformo), comúnmente con galena dendrítica o esquelética intercalada. La mayoría de los depósitos de MVT muestran evidencia clara de que la deposición en espacios abiertos estuvo acompañada de disolución y reemplazo de carbonato de la roca caja. (pág. 237)

Minerales ganga

Leach D, (1993), mencionó lo siguiente:


El mineral de ganga más abundante es la dolomita hidrotermal, que puede formar halos de alteración alrededor de depósitos de mineral MVT (por ejemplo, el norte de Arkansas, el este de Tennessee y Tri-State). La barita y la fluorita son abundantes. minerales de ganga en algunos distritos. Otros minerales de ganga comunes incluyen calcita y cuarzo. (pág. 237)

Paradis S. (2007) cita a Dewing K. (2007); Hannigan P. (2007), donde refirió que:

El material orgánico, como el hidrocarburo, es común en algunos depósitos MVT (por ejemplo, Polaris, Pine Point, Robb Lake, Jubilee, Walton) pero no está presente en cantidades significativas en otros (por ejemplo, Monarch-Kicking Horse, Gays River). En Pine Point y Polaris, el pyrobitumen es común, aunque volumétricamente pequeño, componente de los depósitos que se produce en vugs como costras o gotas. (pág. 191)

Figura 6

Trampas Sedimentarias y/o Estructurales para Depósitos MVT

Fuente: Paradis S, (2007). Modificado de Callaham (1967)

2.2.2.3.3. Texturas.

Paradis S, (2007) cita a Leach D & Sangster D.F. (1993), donde explicó al respecto que:

Las texturas de sulfuro están relacionadas principalmente con el relleno de espacios abiertos, de brechas, fracturas y vugs. Reemplazo de carbonato en rocas hospedantes, sedimentos internos, y diseminaciones de sulfuros también se observan (por ejemplo, los depósitos de:

Polaris, Pine Point, Robb Lake). Los sedimentos internos se definen como bien estratificados, materiales que han llenado parcial o totalmente el espacio entre los fragmentos de brecha. Los materiales consisten en granos de dolomita, cristales de sulfuro del tamaño de arena, y fragmentos de sulfuro-carbonato (Kendall, 1960); (Sass-Gustkiewicz et al, 1982); (Randell & Anderson, 1990); (Rhodes et al, 1984); (Leach D & Sangster D.F, 1993) La mineralización de las brechas es de varios tipos de texturas: craquelados, mosaicos, escombros y brechas de matriz de roca ("RMB"). Sulfuros, espato blanco y dolomita de silla de montar constituyen el cemento entre los fragmentos. Descripciones de las brechas se puede encontrar en (Ohle, 1959), (1985); (Sangster, 1988), (1995); (Leach D & Sangster D.F, Mississippi Valley-type lead-zinc deposits, 1993), (Paradis et al, 1999), y (Nelson et al, 2002), por lo tanto, en estas características de espacio abierto, las texturas minerales son variadas, los sulfuros son diseminado, masivo y bandeado. Sulfuros diseminados ocurren como cristales finos a gruesos de esfalerita y galena superpuestos, o intercalado con espato blanco cristalino y cemento de dolomita [...] La esfalerita también forma agregados masivos de coloformo de grano grueso y cristales botroidales y láminas de grano fino cristales. (pág. 191)

Tritlla J, (2006) cita a Dzulinski S, (1985) y Sass-Gustkiewicz M & Dzulynski S. (1982) donde mencionó las texturas en los yacimientos MVT:

En estos depósitos es frecuente encontrar texturas relacionadas con el relleno de espacios vacíos (drusas, geodas), tanto de aquellos que ya existían en la roca encajonante (cavidades kársticas, porosidades primarias, etc.) como de los generados por el mismo proceso mineralizante ("karst hidrotermal". Los minerales que precipitan en estos espacios vacíos presentan texturas que van desde grandes cristales idiomórficos y, ocasionalmente (decimétricos métricos). hasta estructuras bandeadas formas botroidales. con constituidas por pequeños cristales alotriomórficos. (pág. 107)

Tritlla J, (2006) cita a Ohle F.L. (1985), nos dijo que:

En las estructuras bandeadas, los cristales crecen radialmente presentando cambios composicionales que pueden dar lugar a diferentes niveles coloreados, como ocasionalmente se observa en crecimientos esqueléticos de fluorita, así también son abundantes las brechas gravitacionales generadas por el colapso de la cavidad debido a movimientos sísmicos, disoluciones generalizadas, etc. En los clastos de estas brechas a menudo se produce la precipitación, en bandas concéntricas (cocardas) de los mismos minerales formadores del depósito. (pág. 107)

Tritlla J, (2006) cita a Radke B.M. & Mathis R.L. (1980), Machel H.G. (1987) y Gregg J.M. & Sibley D.F. (1984), enunció que: "Una de las texturas que más información aporta sobre las condiciones de precipitación es la

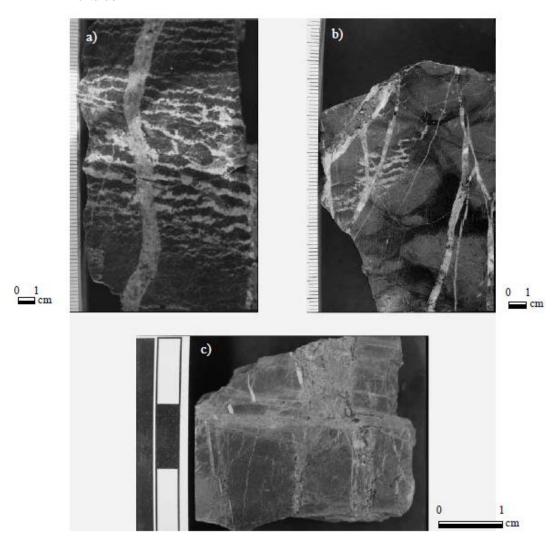
presencia de dolomita en "silla de montar" ("saddle dolomite", "baroque dolomite"; dolomita "xenotópica-c". (pág. 107)

Tritlla J, (2006), hizo referencia que:

Otras texturas interesantes, pero que aparecen con mucha menor frecuencia, son los cristales lenticulares de calcita, tanto aislados como agrupados en rosetas, y también calcitas con texturas en mosaico, ambas dispuestas en el interior de una matriz de dolomita impura micrítica o esparítica fina. Estas calcitas se han interpretado pseudomorfos de como evaporíticos primarios (yeso y anhidrita) y no como a partir de la precipitación asociada a la mineralización. Tanto las rosetas los cristales lenticulares como son morfológicamente similares a los cristales primarios de yeso que aparecen en ambientes tipo "sabkha" ("rosas del desierto"), mientras que las texturas en mosaico recuerdan las texturas "chicken-wire" de la anhidrita, sugiriendo que la fuente del azufre está en relación con la disolución de niveles evaporíticos. (pág. 107)

También Tritlla J, (2006) cita a Fontboté L. (1993), donde hizo hincapié a las texturas asociadas a los yacimientos MVT:

Otras texturas que pueden estar asociadas a los yacimientos de tipo MVT son los bandeados conocidos como "ritmitas" (*Diagenetic Crystallization Rhitmites*, DCR), texturas "cebra", "*rubanné*" o "laminadas" (Fig. 7). De acuerdo con la ritmicidad viene dada por la alternancia de


bandas oscuras y claras, correspondientes a diferentes generaciones de carbonatos. Las bandas oscuras, en donde el reemplazamiento de la fábrica sedimentaria original no se ha producido de forma total, están compuestas por un agregado de grano fino-medio de dolomita con o sin esfalerita y, subordinadamente, pirita. Las bandas claras, en donde la disolución ha sido completa, corresponden a grandes cristales de dolomita o esfalerita. (pág. 109)

Por otro lado, Tritlla J, (2006) cita a Sibson R.H. (1990) y Jebrak M, (1992), donde describió que:

A menudo es posible observar una transición entre las texturas ritmíticas y brechas mineralizadas, interpretándose como el producto de un mismo proceso. Así, si la presión del fluido responsable de la formación de las ritmitas supera al esfuerzo principal mínimo σ_3 se pueden generar fracturas hidráulicas que, en un estadio más evolucionado, pueden dar lugar a brechas hidráulicas (pág.109)

Figura 7

Texturas MVT

Nota: (a) Ritmita de tipo "cebra" constituida por alternancias claras de dolomita hidrotermal y oscuras de dolomita recristalizada, Betxí (Castellón, España) ;(b) Ritmita de tipo "cebra" en dolomía cortada por un episodio de fracturación hidráulica, con mineralización (Castellón, España); (c)Intensa fracturación hidráulica afectado una roca doloesparítica, Betxí (Castellón, España)

2.2.2.3.4. Litología.

Paradis S, (2007) cita a Leach, D., Taylor, R., Fey, D., Diehl, S., Saltus, R. (2010), donde hizo referencia a la roca caja favorable para yacimientos MVT:

Usualmente la mineralización se hospeda en las dolomías y menos frecuentemente en calizas. La dolomita es de grano grueso, blanca, que ha reemplazado a una dolomita de grano fino, la cual a su vez ha reemplazado a una caliza. Los cuerpos mineralizados por ejemplo en el depósito de "Pine Point" están encapsulados en una zona discordante entre una dolomita de grano grueso con textura "vuggy" y una dolomita blanca con estructura "silla de montar" y ganga de calcita. Al Este de Tennessee, Alpine, y Newfoundland Zinc districts, la mineralización se encuentra en las dolomías mientras que en Jubilee (Nova Scotia), el depósito hospedado esta exclusivamente en caliza., (pág. 188)

Rocas Dolomíticas.

Warren J, (2000), mencionó al respecto que:

El nombre original "dolomie" fue dado por N.T. Saussare, en 1792 en honor del geólogo francés Deodat Guy de Dolomieu (1750-1801) y fue aplicado por primera vez en los Alpes (Tiroleses). Usualmente, las rocas carbonatadas antiguas se componen de dos minerales principales, la calcita y la dolomita. Cuando una roca posee en su mayor parte calcita, se le conoce como caliza y si posee más dolomita se le conoce como dolomía, en inglés la roca se llama igual al mineral "dolomite". (pág. 3).

Del mismo modo, Machel H.G., (2016), comentó al respecto que:

Las dolomías pueden dividirse en dos familias principales, las dolomías penecontemporáneas se forman inmediatamente después de la depositación de los precursores de los carbonatos como resultado de las condiciones geoquímicas que prevalecen en el ambiente de depositación de la roca precursora. [...] Las dolomías postdeposicionales se forman después que el sedimento carbonatado ha sido depositado y removido subsiguientemente de la sedimentación activa. Esto puede suceder a través de la progradación de la superficie sedimentaria, el sepultamiento y la subsidencia, el levantamiento y la emergencia, o las fluctuaciones eustáticas del nivel del mar (pág. 11).

Spalletti L.A. & Schwarz E. (2010), hicieron referencia que:

La dolomita puede precipitar en forma primaria en aguas marinas o lacustres, pero se sostiene que los volúmenes de dolomita primaria son comparativamente escasos. Se considera más común la dolomitización a expensas del carbonato de calcio. Consiste en un proceso diagenético que puede estar asociado con el ambiente de depositación (penecontemporáneo o diagenético temprano) o puede ocurrir mucho más tardíamente (durante el soterramiento).

Dolomía secundaria.

Rodgers J, (1954), comentó al respecto:

Se forman a través del reemplazo de CaCO₃ por CaMg(CO₃)₂. Es un producto de disolución del carbonato original y reprecipitación metasomática. Entra el Mg a la fase sólida y pasa el Ca a la fase liquida. El proceso de dolomitización se da cuándo la concentración de Mg o de relación Mg/Ca es elevada. (pág. 137)

Dolomía primaria.

A su vez, Rodgers J, (1954), indicó que:

"La dolomía primaria consta de partículas que se formaron primero como dolomía mediante la precipitación directa del agua de mar u otra solución acuosa. Este proceso genera sedimentos dolomíticos no litificados." (pág. 137) Es comparativamente poco frecuente, precipitación química espontánea de dolomita se ha registrado en ambientes marginales (planicies mareales, albuferas, lagos vecinos al mar) y en condiciones inter a supramareales. Se conocen ejemplos de precipitación primaria en las Bahamas, en la Península de Florida, en la costa del Golfo de Arabia, en algunos sectores costeros (albúferas) del norte Brasil y del "lago Coorong" en Australia. Aparecen dentro del sedimento o como parte de costras superficiales (mudcracked dolomite crusts). Por lo común sus cristales son

muy pequeños (rombos de 1 a 5 micrones). Esta protodolomita se vincula con procesos de fuerte evaporación que se producen en regiones muy áridas (sabkhas no evaporíticos) hasta en regiones relativamente húmedas, pero con una estación seca que favorece la evaporación. (pág. 138)

Modelos de dolomitización

También Warren J, (2000), propuso que:

Después de la deposición de los sedimentos, en la medida que la roca subside, las condiciones iniciales de las aguas connatas y de los sedimentos en presión (P), temperatura (T) y composición (X), tienden a ser modificadas por la interacción con fluidos diagenéticos con características en P, T y X diferentes. Estos cambios suelen hacer que la roca experimente sucesivos reequilibrios químicos y texturales durante su historia. Así, el proceso dolomitizador se compone en realidad de complejos eventos tectono-hidráulicos que provocan el flujo de fluidos de distintas condiciones P, T, X a través de los poros (bordes de grano, fracturas, etc.) de la roca permitiendo la interacción (agua-roca) y el reequilibrio continúo de los minerales. Así la porosidad/permeabilidad es la característica única de la roca que permite o impide que la roca se dolomitice. (pág. 10)

Los modelos más reconocidos en la literatura de acuerdo con (Warren, J., 2000) se clasifican según el tiempo en que se formaron con respecto a la sedimentación y, en otros casos, a la actividad de la materia orgánica (Fig. 8).

Modelos sindeposicionales:

1. Modelo tipo sabkha

Warren J, (2000), refirió lo siguiente:

Sabkha es una transliteración tomada del árabe que significa lago salado. Es un mecanismo contemporáneo a la sedimentación, que se localiza en una zona en donde el agua marina fluye sobre sedimentos perimareales y que, debido a la gran evaporación que allí se origina, precipitan minerales evaporíticos. El incremento de densidad de la salmuera originada por evaporación provoca que esta se percole y dolomitice los lodos calcáreos de aragonita que se encuentran a menos de un metro de profundidad por debajo de la superficie del sabkha. (pág. 11)

2. Dolomías lacustres de tipo "Coorong"

Al respecto, Warren J, (2000), indicó que:

La dolomita en este modelo precipita en forma laminar y masiva en el centro de cuencas lacustres, márgenes de playa y planicies de lodo. Esta dolomita está representada en la región de

Coorong en el SE de Australia, de donde obtiene su nombre. (pág. 14)

Modelos epigenéticos o de enterramiento somero:

1. Modelo por flujo de agua marina

Tuanama N, (2016), mencionó al respecto:

Para que se forme la dolomita esta debe tomar el Mg directamente del agua de mar (Warren, J., 2000), provocando con ello un grave problema de flujo: ¿Cómo introducir grandes cantidades de agua marina en formaciones sedimentarias cercanas? Según (Land, L.S., 1989), requerirían cerca de 807 veces el volumen de agua para dolomitizar un volumen de caliza típica. (Land, L.S., 1989) propuso que el magnesio puede ser bombeado por la acción de las mareas o por convección geotérmica de tipo "kohout" (celdas de convección térmica que se desarrollan en los márgenes continentales. (Mazzullo, Reid, & Gregg, 1987), renombraron a este tipo de dolomía como de submarea. La dolomita también puede precipitar como un cemento marino directamente en poros rellenos de agua de mar, siempre y cuando exista un flujo constante (Land, 1985). (pág. 12)

2. Modelo de reflujo

A su vez, Warren J, (2000), comentó al respecto que:

Estas rocas se forman debido al flujo de salmueras generadas en lagunas marinas por evaporación, que fluyen a través de la caliza y empiezan a desplazar el agua connata, dolomitizando las rocas infrayacentes. Este mecanismo, a diferencia de los anteriores, no se ha observado que ocurra en la actualidad. La evaporación del agua marina en lagunas o cuencas hipersalinas causa la precipitación de yeso, que incrementa la relación Mg/Ca de la salmuera evaporítica residual. La evaporación subsecuente origina la precipitación de halita y evaporitas potásicas, produciendo salmueras con densidades superiores a 1.03 g/cc. (pág. 20)

3. Modelo por mezcla de aguas marinas y meteóricas (tipo Dorag)

Por su parte, Warren J, (2000), dijo:

El modelo de "zona de mezcla de aguas marinasmeteóricas" está basado en la idea de que la
mezcla de agua meteórica con agua marina
puede producir un fluido subsaturado con
respecto a la calcita y la aragonita, y
supersaturado con respecto a la dolomita. El Mg
proviene del agua marina y el bombeo es de tipo
gravitatorio, formado en sistemas abiertos (flujo
sin restricción) o confinados (flujo entre capas
impermeables). Este modelo ha sido
ampliamente utilizado para explicar la génesis de

secuencias dolomitizadas antiguas en ausencia de evaporitas. (pág. 31)

Modelos de alta temperatura:

1. Modelo por enterramiento profundo

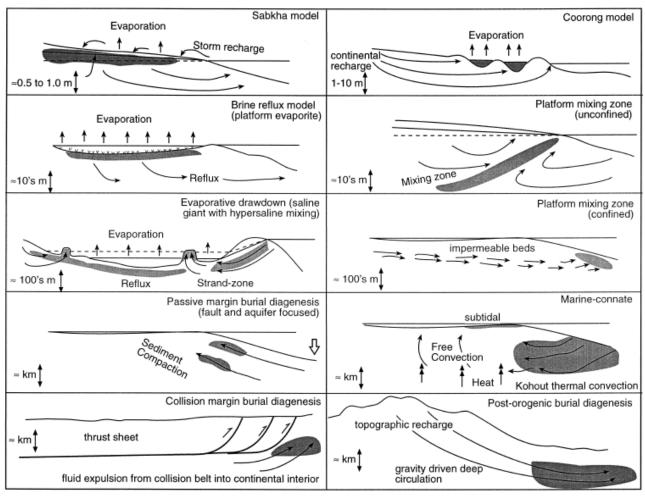
Warren J, (2000), indicó:

Este es uno de los modelos actualmente más aceptados para explicar la dolomitización de grandes volúmenes de roca, ya que supera las limitaciones cinéticas que presentan los modelos de dolomitización en ambientes más someros y de menor temperatura. Las fuentes de fluido más citadas para la dolomitización por sepultamiento son: Salmueras evaporíticas residuales ricas en Mg, agua de mar modificada, aguas de compactación de lutitas. Las últimas dos fuentes propuestas son las más improbables, debido a la gran cantidad de agua que se necesita para dolomitizar grandes volúmenes de roca. (pág. 40)

2. Dolomitización termobárica

Tuanama N, (2016) cita a Esteban M & Taberner C. (2003), donde describió:

Este modelo, se forma como una desambiguación del "enterramiento profundo", dado que las mismas características de una dolomitización por subsidencia, se pueden encontrar si un fluido con alta entalpía es el que se moviliza a zonas someras de la corteza. El flujo de los fluidos en el subsuelo puede ser


lateral o vertical, haciendo que estos depósitos de dolomía puedan asumir muchas formas y tamaños. (pág. 13)

Procesos de dedolomitización

Tuanama N, (2016), hizo referencia al respecto que: La dedolomitización consiste en el reemplazamiento de dolomita por calcita. Este proceso de neomorfismo suele ser retentivo, preservándose los cristales con forma rómbica de la dolomita que ha sido reemplazada. El proceso de dolomitización ocurre por la aparición de sulfatos de calcio, anhidrita, (ejemplo por oxidación de sulfuros), ante los cuales la dolomita se vuelve fuertemente inestable. La dedolomitización también puede producirse por circulación de aguas con fuerte nivel de oxidación. (pág. 15)

Figura 8

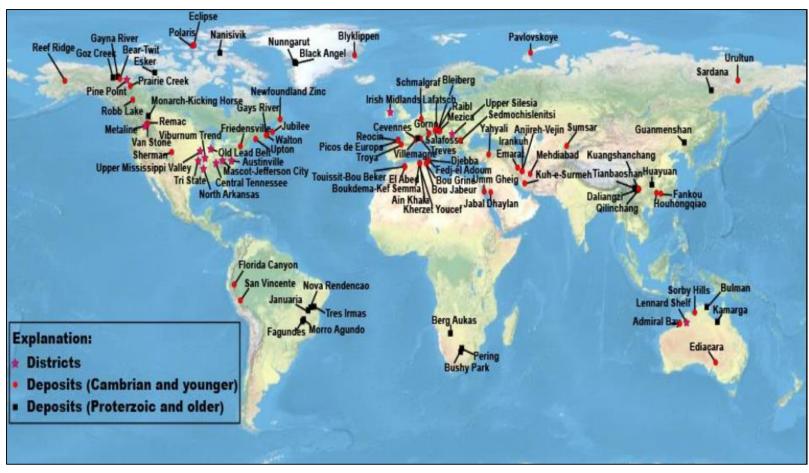
Modelos de Dolomitización

Fuente: Warren, J. (2000)

2.2.2.3.5. Tectónica.

Paradis S, (2007) cita a Leach et al, (2001) y Bradley D & Leach D, (2003), donde indicó:

Los vínculos genéticos entre la mineralización MVT y procesos tectónicos a escala regional y global. Ahora está claro que los depósitos de MVT son productos de enormes sistemas hidrotermales que dejaron rastros mineralización en un área amplia, y que la ocurrencia casi oblicua de depósitos MVT en los flancos de las cuencas sedimentarias cratónicas, refleja una migración de salmueras de cuenca profunda a secuencias carbonatos. Por lo tanto, el marco hidrogeológico regional es de importancia primordial en la evaluación de grandes áreas para su potencial para contener depósitos MVT. (pág. 198)


A su vez, Tuanama N (2016) cita a (Leach et al (2001), donde explicó que:

Relacionan enlaces genéticos entre mineralización Tipo Mississippi Valley y los procesos tectónicos a escala regional y global. Las cuencas están controladas por fallas en márgenes continentales o cuencas rift intracratónicas. Una característica es la acumulación de material en cuencas de segundo o tercer orden o hemigrabens (sic) rodeados por fallas de propagación sinsedimentarias. Es ahora claro que los depósitos Tipo Mississippi Valley son el producto de enormes sistemas hidrotermales que mineralizan grandes áreas principalmente en los bordes de cuencas donde la migración de fluidos interactúa con

rocas calcáreas. En Norte América, los depósitos Tipo Mississippi Valley han sido atribuidos a una migración de fluidos de gran escala principalmente durante un proceso orogénico convergente. El modelo de flujo topográfico asociado con la migración de fluidos en un adecuado régimen tectónico puede describir mejor la mineralización de los depósitos tipo Mississippi Valley. Otros ejemplos en Australia, Europa y el norte de África (Fig. 9) atribuyen el mecanismo de migración de fluidos mineralizantes a ambientes compresivos. (pág. 21)

Figura 9

Depósitos y Distritos Tipo Mississippi Valley de Pb-Zn

Fuente: Leach, D., Taylor, R., Fey, D., Diehl, S., Saltus, R., (2010)

2.2.2.3.6. Dimensiones, ley y volumen.

Tuanama N, (2016) cita a Sangster D. (1995) y Leach D & Sangster D.F. (1993), describió que:

El tamaño de los cuerpos mineralizados puede ser dificultoso de dimensionar debido a la irregular y variable forma del mismo. En Robb Lake, diferentes cuerpos mineralizados se extienden a lo largo de más de 300 metros de extensión sobre el plano de estratificación, cortando más de 50 metros de sección estratigráfica. Otros cuerpos pequeños corren paralelos a estratificación. El tamaño y ley de un depósito tipo Mississippi Valley individual es complejo, como lo mencionan (Sangster, D., 1990), (Sangster, D., 1995) y D., Sangster, D. F., 1993), (Leach, diferentes depósitos/distritos son minados antes de concluir el proceso de evaluación de las reservas y, los MVT tienden a crecer a partir de un "cluster" formando distritos mayores. La producción y reservas dependerán de cada mineralizado individual. Existen 80 cuerpo depósitos/distritos MVT conocidos en el mundo, de los cuales 60 se localizan en Canadá (Figura 4). El mejor recurso geológico estimado en la mayoría de MVT individuales es de 1 a 10 Mt con 4% a 10% Zn y en la mayor parte de los casos el Zn representa la mayor parte del sulfuro. Los depósitos de Polaris y Prairie Creek son usualmente grandes (22 y 12 Mt respectivamente) y tienen valores de Zn elevados 17% y 22.6% Pb+Zn

respectivamente (Leach, Taylor, Fey, Diehl, & Saltus, 2010). (pág. 22

2.2.3. Yacimiento tipo Mississippi Valley-Perú

3.2.3.1. Depósitos metálicos asociados con rocas Pérmicas-Triásicas-Jurásicas

En este punto, Carlotto, (2007) mencionó al respecto que:

En el Hetangiano la cuenca del Pucará registra dos áreas paleogeográficas diferentes. La primera se ubica al Este en la Zona Subandina que está conformada por dolomitas de ambiente peritidal con niveles evaporíticos. Estas rocas hospedan yacimientos tipo *Mississippi Valley* como San Vicente. La otra área paleogeográfica constituye el Pucará central que está caracterizado por facies calcáreas de ambiente más profundo y niveles volcánicos, donde se tiene yacimientos tipo estratoliados [sic]. Esto nos permite plantear que el Pucará estuvo limitado al oeste por un arco volcánico durante el Sinemuriano-Toarciano, como lo muestran los niveles superiores de la Formación Aramachay y gran parte de la Formación Condorsinga cerca del Domo de Yauli y Morococha; por otro lado, relacionado al magmatismo Pérmico-Triásico-Jurásico se tienen depósitos de uranio asociados a algunos depósitos metálicos de níquel-cobalto-cobre y diques aplíticos. (pág. 10)

2.2.3.2. Franja de depósitos tipo Mississippi Valley (MVT) de Pb-Zn del Eoceno-Mioceno.

A su vez, Carlotto V. (2009), dijo que: "Se sitúa a lo largo de la Zona Subandina del centro y norte del Perú y paleogeográficamente corresponde a la parte oriental de la cuenca Pucará, con orientación NNO." (pág. 48)

2.2.3.1.1. Geología

También Carlotto V, (2009), mencionó lo siguiente:

La geología está caracterizada por un substrato de gneises del Complejo de Marañón ahora datados del Paleozoico inferior, con afloramientos alongados NO-SE y que corresponden a bloques controlados por fallas NO-SE. Encima, sobreyacen en discordancia las filitas y esquistos del Grupo Excelsior (Paleozoico inferior) y las rocas volcánicas y sedimentarias del Grupo Mitu (Permo-Triásico). (pág. 48)

2.2.3.1.2. Control litológico.

Carlotto V, (2009), hizo hincapié al respecto:

El control litológico de estos yacimientos está dado por las carbonatadas del Grupo Pucará rocas (Noriano-Pliensbachiano) que sobreyacen en discordancia al Grupo Mitu e infrayacen también en discordancia a la Formación Sarayaquillo conformada de areniscas fluvio eólicas medio-superior), (Jurasico 0 а la Formación Goyllarisquizga de conglomerados y areniscas (Cretácico inferior). Para la descripción de esta franja tomaremos dos zonas de referencia, San Vicente al sur y Bongará al norte. (pág. 48)

2.2.3.1.3. Control Estructural

Carlotto V. (2009), señaló que:

La franja está controlada por el sistema de fallas NO-SE San Francisco-Satipo-Pangoa y cabalgamientos que ponen en contacto la Cordillera Oriental sobre la Zona Subandina. Los depósitos conocidos son San Vicente, Piñon, Sillapata, Huacrash-Aynamayo, Puntayacu, Pichita Caluga, Cascas, Ninabamba, Raymondi Sur, Tambo María, Pampa Seca, San Roque, Bolívar, Soloco y Bongará. Al oeste de la franja, también es posible encontrar depósitos MVT de Pb-Zn, distribuidos puntualmente en anticlinales cerrados; siendo los más conocidos Ulcumayo y Shalipayco. La edad de mineralización de los depósitos es asumida como eocena o miocena, pero siempre relacionados con eventos tectónicos compresivos importantes. (pág. 49)

(Carlotto V, 2009), hizo referencia con respecto al control estructural en la franja de depósitos MVT.

Para esta franja se plantean dos modelos regionales que tienen que ver con la mineralización MVT, pero ambas parten de un mismo contexto de cuenca, es decir de tipo rift, cuyas fallas normales van a controlar los cambios de facies, espesores y removilizaciones de las soluciones mineralizantes. En el caso de San Vicente, estas fallas sufren una inversión tectónica, la cuenca comienza a levantarse y las fallas se transforman en cabalgamientos (Sec. 1), asociados con eventos mayores de la deformación andina del Eoceno o Mioceno. (pág. 50)

2.2.3.1.4. Estratigrafía.

Al respecto, Carlotto V, (2009) cita a Rosas S. et al (2007), donde mencionó que:

El Grupo Pucará que hospeda la mineralización MVT de esta franja está dividido en tres unidades. La Formación Chambará (Noriano-Retiano), conformada por calizas con

algunas intercalaciones centimétricas de lutitas negras, se habría depositado en medio nerítico suficientemente profundo de poca energía; tiene espesores de 25 a 1180 m. La Formación Aramachay (Hettangiano- Sinemuriano) consiste de margas, calizas y lutitas bituminosas, cuyos espesores van de 8 a 250 m y se han depositado en una cuenca anóxica de aguas estancadas, relativamente profundas. La Formación Condorsinga constituye una secuencia carbonatada que puede alcanzar 500 a 1200 m de espesor, formada por calizas oolíticas, bioclastiticas y calcarenitas de plataforma carbonatada poco profunda que alcanzan los medios intertidales a supratidal (dolomías). (pág. 49)

2.2.3.1.5. Franja Sur-San Vicente.

A su vez, Carlotto V, (2009) cita a Dávila et al, (2000), indicando lo siguiente:

"En el área de San Vicente, [...] tiene rocas intrusivas del granito de San Ramón y la granodiorita de Tarma ambas de edad permo-triásica." (pág. 49)

También Carlotto V, (2009) cita a Mégard F, (1984) y Gil W, (2002), donde describió lo siguiente:

Las rocas metamórficas del basamento y los intrusivos se encuentran cabalgando a las rocas carbonatadas del Grupo Pucará a lo largo del corrimiento NO-SE con vergencia NE del sistema San Vicente-Oxapampa-Pozuzo. Zonas con cabalgamientos menores también ocurren en el Grupo Pucará. La faja corrida y plegada de la Zona Subandina está relacionada principalmente con el

evento tectónico del Mioceno, sin embargo, no se descarta que este tuviera un inicio en el Eoceno. (pág. 49)
Así mismo, Carlotto V, (2009) cita a Fontboté L & Gorzawski H, (1990) y Dávila D. et al, (2000), donde mencionó:

En San Vicente, la esfalerita y la galena son los minerales de mena, con accesorios de pirita y trazas de marcasita, calcopirita sulfosales. La ganga consiste predominantemente de dolomita con accesorios de calcita. Los principales horizontes de mena están hospedados en calizas oolíticas dolomitizadas de facies de barrera peri-tidal del Grupo Pucará. Ellos están delimitados lateralmente por facies dolomitizadas lagunares y niveles más finos, más profundos y de facies anóxicas. Los horizontes tienen formas lenticulares y son paralelos a subparalelos a la estratificación. Sin embargo, en las partes más profundas de la mina algunos cuerpos mineralizados son paralelos а los planos cabalgamiento. (pág. 50)

2.2.3.1.6 Franja Norte-Bongará.

Al respecto, Carlotto V, (2009), dijo: "En el área de Bongará, las direcciones regionales de las estructuras son NO-SE, NNO-SSE, con fallas locales subordinadas NE-SO. Los sistemas de fallas dominantes son inversos y algunos normales, las vergencias de las estructuras, son tanto al este y oeste". (pág. 50)

Del mismo modo, Carlotto V, (2009) cita a Reid, (2001), donde enunció lo siguiente:

En Bongará la dolomitización es el principal tipo de alteración y mineralización, está fuertemente controlada por la litología y la estructura. Los sulfuros se presentan principalmente en forma de esfalerita, galena y pirita. Las rocas intensamente dolomitizadas y mineralizadas ocurren en la Formación Chambará adyacente a la parte este de la Falla Oeste (Cañón Florida). Los efectos de la dolomitización y la mineralización en Florcita están confinados a zonas de fractura y falla cerca del contacto entre las formaciones Condorsinga y Goyllarisquizga. Los sulfuros fueron depositados por soluciones en brechas de colapso desarrollados en la Formación Condorsinga y también en las areniscas suprayacientes de la Formación Goyllarisquizga. (pág. 50)

Así mismo, Carlotto V, (2009), enunció que:

Características de disolución incluyendo los sedimentos internos, las brechas *crackle*, brechas mosaico y de colapso, así como estilolitos y corrosión en dolomitas tardías, son comunes en la parte media de la Formación Chambará, asociadas con fallas, como la Falla Oeste.

Estas características de disolución son indicativas de rocas de alta porosidad inicial y permeabilidad a través de las cuales fluyeron los fluidos hidrotermales creando una porosidad secundaria y condiciones favorables para la precipitación de las menas de Zn-Pb. (pág. 50)

2.2.3.1.7. Aspecto tectónico.

Por otra parte, Carlotto V, (2009) cita a Muñoz C. et al (2000), Rosas S. et al, (1997), Kobe H. W., (1995); Rosas

& Rosas S. (1994) y Rosas S & Fontboté L, (1995), donde indicó lo siguiente:

Como se sabe los depósitos MVT se emplazan en cuencas sedimentarias y en el caso de esta franja hay un control estructural regional, ya que la cuenca ha evolucionado en un contexto de rift continental. En efecto, durante el Noriano-Retiano una tectónica en extensión produce la individualización de grábenes y/o semigrábenes de la cuenca Pucará de dirección NO-SE (Formación Chambará), separados de altos a través de fallas normales, las que controlan la sedimentación rápida y potente, que producen cambios bruscos relacionados con una subsidencia tectónica, y que posteriormente serán el factor principal para la movilización de los fluidos mineralizados. Durante el Hettangiano-Sinemuriano, movimientos de distensión produce el hundimiento tectónico de la cuenca y depósitos de calizas en medios más profundos (Formación Aramachay), además del emplazamiento de rocas volcánicas basálticas con características de rift intraplaca y posibles fuentes de Pb-Zn- Ag. (pág. 50)

A su vez, Carlotto V, (2009), comentó que:

Finalmente, la sedimentación arcillosa, confinada y condensada del Hettangiano continúa hasta el Sinemuriano superior con precipitación de fosfatos, luego pasa progresivamente a carbonatos de plataforma progradante, abierta y muy poco profunda de edad Pliensbachiana de la Formación Condorsinga y que

corresponde a un periodo de calma tectónica o sag térmico. (pág. 50)

Por último, Carlotto V, (2009) cita a Loughman D.L. & Hallam A. (1982), donde indicó lo siguiente:

Finalmente, el clima caliente y desértico que se da en estos periodos, explicaría el paso hacia el este, a la actual Zona Subandina y Llanura Amazónica, de depósitos carbonatados a depósitos terrígenos finos parcialmente evaporíticos como se observa en los pozos petroleros de las cuencas Marañón y Ucayali; lo que ha favorecido también al desarrollo de facies favorables para el control litológico estratoligado, la movilización de los fluidos, la alteración y la mineralización de esta franja. (pág. 50)

2.3. Definición de Términos Básicos

- MVT: Del inglés *Mississippi Valey Type*. Tipo de yacimiento de Pb-Zn emplazado en rocas carbonatadas marinas de la plataforma continental (calizas alteradas en parte a dolomías). Sus distritos son extensos, cubriendo cientos e incluso miles de km², aunque los depósitos individuales son pequeños (generalmente < 2 Mt). Normalmente el zinc supera al plomo, y la ley conjunta es inferior al 10%. Estos yacimientos se formaron con posteridad al depósito de las rocas carbonatadas, ya sea durante la etapa diagenética o una posterior, por efecto de soluciones salinas originadas en la propia secuencia sedimentaria y soluciones hidrotermales. (Oyarzún J & Oyarzun R., 2014, pág. 120)
- Betumen: Es un mineral rico en hidrocarburos, compuesto de sustancias orgánicasn (carbono e hidrógeno), proviene de la putrefacción de los materiales orgánicos que dan lugar a la formación del carbón y del petróleo. (Dávila J., 2006, pág. 77)

- Bituminoso: Roca o material que contiene betumen. Ejm. Pizarras bituminosas, carbón bituminoso, caliza bituminosa, etc. (Dávila J., 2006, pág. 82)
- Brecha: Roca constituida por clastos angulares de tamaño centimétrico, decimétrico o métrico (megabrecha), que contiene un material más fino (matriz) y un cemento que los une. Las brechas pueden matriz o clasto soportadas dependiendo si los clastos flotan en una matriz o están en contacto entre ellos. Las brechas pueden tener distintos orígenes: sedimentarias, piroclásticas, magmáticas, tectónicas (brecha de zona de falla), hidrotermales, etc. En depósitos como los del tipo chimenea de brecha pueden contener parte importante de la mineralización del yacimiento. Así determinar el tipo de brecha en un yacimiento puede tener gran importancia en lo que se refiere a definir zonas de interés económico dentro del mismo. En yacimientos minerales se pueden reconocer los siguientes tipos de brecha: 1) de aplastamiento: brecha tectónica, sin participación activa de fluidos. 2) de trituración: brecha tectónica, sin participación activa de fluidos. 3) Hidráulica: brecha hidrotermal de implosión. 4) De explosión: brecha hidrotermal por explosión. 5) De colapso: brecha tectónica por relajación, sin participación activa de fluidos. (Oyarzún J. & Oyarzun R., 2014, pág. 16)
- Cuenca sedimentaria. Dominio geológico deprimido y generalmente subsidente, que recibe sedimentos provenientes de la erosión de otros dominios situados a mayor altura. Las cuencas de sedimentación pueden ser continentales, transicionales, como el ambiente de los deltas, o bien marinos. La plataforma marina es un ambiente de sedimentación muy importante para la formación de yacimientos de petróleo, así como lo son los ambientes transicionales subsidentes de zonas húmedas para la formación de depósitos de carbón. En el campo de los yacimientos minerales las cuencas también juegan un papel importante, especialmente en lo que se refiere a los procesos

- diagenéticos que en estás tienen lugar. Por ejemplo, los yacimientos tipo Mississippi Valley de Pb-Zn se asocian a facies carbonatadas que han sufrido dolomitización. (Oyarzún J. & Oyarzun R., 2014, pág. 37)
- Diagenético: Se dice de un mineral formado o removilizado durante la etapa diagenética de un sedimento, esto es, mientras opera opera el conjunto de cambios post deposicionales físicos y químicos. Durante esta etapa de transición, entre la deposición del sedimento y la formación de la roca sedimentaria, se pueden formar notables estructuras, como las de tipo zebra presentes en algunos yacimientos estratiformes de esfalerita (blenda): bandas claras y oscuras mineralizadas alternadas (zebra rocks). La dolomitización desempeña un papel principal en la formación de yacimientos de Pb-Zn en rocas carbonatadas. (Oyarzún J. & Oyarzun R., 2014, pág. 41)
- Diapiro: Cuerpo intruido de manera forzada, por efecto de fuerzas que generan un impulso vertical hacia la superficie, de manera que el cuerpo corta las rocas que encuentra en su camino. Un diapiro puede haber intruido en estado fundido o bien en estado sólido-fluido. Este último es el caso de los domos de sal, donde la presión vertical sobre un estrato salino produce su intrusión vertical a través de una zona de debilidad. (Oyarzún J. & Oyarzun R., 2014, pág. 41)
- Distrito minero: Se denomina así a un conjunto de minas presentes en un área geográfica de extensión limitada (algunos km²). Un distrito normalmente comprende minas que producen el mismo metal o metales, aunque puede haber casos en que se producen dos o más metales. (Oyarzún J & Oyarzun R., 2014, pág. 44)
- Epigenético: Se dice que un yacimiento es epigenético respecto a su roca encajonante (roca caja, host rock) si esta se formó bastante tiempo antes que ocurriera la mineralización. Por ejemplo, un filón (veta) se alberga en un

encajonante que ha sido previamente fracturado (sin una fractura no hay filón), podemos decir que esa mineralización filoniana es epigenética. Por otra parte, que una mineralización sea estratiforme ese hecho no la transforma en singenética, ya que el cuerpo mineralizado puede ser posterior a la formación de la roca. (Oyarzún J. & Oyarzun R., 2014, pág. 52)

- Escudos: Se denomina así a dominios litoestructurales corticales de dimensiones continentales. Aunque sus terrenos experimentaron procesos orogénicos en el pasado, los escudos se han comportado como bloques tectónicos estables desde fines del Precámbrico hasta la actualidad. Mineralizaciones típicas de los escudos son las chimeneas diamantíferas, los grandes cuerpos máficos lopolíticos con Cr-Ni y platinoides, las carbonitas con tierras raras, yacimientos ferríferos tipo BIF, etc. (Oyarzún J. & Oyarzun R., 2014, pág. 53)
- Esfalerita: Principal mena de zinc, de composición ZnS. Se reconoce tanto en yacimientos hidrotermales filonianos o mantíferos, como en skarns, y sedimentarios del tipo Mississippi Valley. (Oyarzún J. & Oyarzun R., 2014, pág. 54)
- Estratiforme: Cuerpo mineralizado concordante, cuya morfología sigue la forma de las capas de una secuencia estratificada. El término equivalente en rocas volcánicas es mantiforme, para los yacimientos tipo manto, que se adaptan a la secuencia de rocas volcánicas. (Oyarzún J. & Oyarzun R., 2014, pág. 55)
- Estratoligado: En inglés stratabound. Mineralización cuya distribución está ligada a determinadas capas de una secuencia volcánica o sedimentaria.
 Esta mineralización puede o no ser estratiforme o cambiar diferentes morfologías. (Oyarzún J. & Oyarzun R., 2014, pág. 56)

- Estructuras: Se refiere a rasgos morfológicos asociados al proceso de formación de una roca o un macizo rocoso, por ejemplo, una colada de lava, un dique, un estrato sedimentario, o al posterior efecto de procesos tectónicos deformativos (plegamientos, diaclasamiento, falllamiento, cizalla dúctil). También se aplica en rocas sedimentarias, donde se reconocen estructuras que permiten reducir los procesos deposicionales, por ejemplo, ripple marks o grietas de desecación entre muchas. Las estructuras, junto a la litología, ejercen un control principal en la distribución de las mineralizaciones a sus distintas escalas. (Oyarzún J. & Oyarzun R., 2014, pág. 56)
- Evaporitas: Yacimiento de minerales salinos, formados por la saturación de las soluciones debido al proceso de evaporación en cuencas de regiones áridas o hiperáridas como la del salar de Atacama (Chile). En yaciemitos evaporíticos se encuentran sales muy solubles, como cloruros y sulfatos de Na, Mg, y Ca. (Oyarzún J. & Oyarzun R., 2014, pág. 58)
- Facies: Término que denota tanto el singular como el plural (la facies, las facies). Indica rasgos distintivos de una unidad sedimentaria, de rocas ígneas, o metamórficas. Por ejemplo: facies carbonatadas marinas fosilíferas. Las características de las facies son indicativas de las condiciones específicas de formación de la roca. El concepto es muy útil en exploración minera de yacimientos emplazados en rocas sedimentarias, así como en determinadas facies metamórficas. (Oyarzún J. & Oyarzun R., 2014, pág. 63)
- Falla: Se trata de una fractura frágil en una roca, a lo largo de la cual se ha producido un desplazamiento visible paralelo a la superficie de la fractura. Si no existe tal desplazamiento a lo largo del plano de rotura, entonces hablamos de una "diaclasa". Debido a su movimiento, estas estructuras pueden dar lugar por trituración a las llamadas rocas de falla que incluyen

- principalmente brechas, microbrechas, y la denominada harina de falla (fault gouge). (Oyarzún J. & Oyarzun R., 2014, pág. 63)
- Ganga: Minerales constituyentes de la mineralización de un yacimiento que no tienen interés económico para quienes explotan el yacimiento, a diferencia de los minerales de mena que sí la tienen. Generalmente el término se utiliza para silicatos (generalmente cuarzo) o minerales no metálicos (generalmente calcita). Los minerales de ganga de una explotación pueden llegar a adquirir valor económico, por ejemplo, la barita (baritina) de una explotación de plata. Esto depende de: 1) el precio que alcancen; 2) la existencia de un poder de compra local; 3) las inversiones requeridas para su concentración, etc. (Oyarzún J. & Oyarzun R., 2014, pág. 71)
- Guías geológicas de exploración: Las guías de exploración son:1) guías morfológicas; 2) guías litológicas; 3) guías estructurales; y 4) guías mineralógicas. Si queremos buscar un determinado tipo de yacimiento primero debemos conocer su forma, esto es, si es tabular o tubular, o si es irregular (guías morfológicas). Segundo debemos saber a qué tipo de rocas se asocia, por ejemplo, si hablamos de skarns entonces buscaremos los contactos entre intrusiones graníticas y calizas (guías litológicas). Por otra parte, deberemos comprender el marco estructural en el que se encuentran, por ejemplo, la relación entre fallas y filones, las zonas más favorables de una falla para albergar mineralizaciones, etc. (guías estructurales). Por último, debemos conocer la mineralogía (sulfurada y silicatada) que suele acompañar ese tipo de mineralizaciones, por ejemplo, patrones zonales de alteración hidrotermal de la fase sulfurada en pórfidos cupríferos, o la presencia/ ausencia de determinados tipos de granate para el caso de los skarns (guías mineralógicas). (Oyarzún J. & Oyarzun R., 2014, pág. 79)
- Hidrotermal: El término se aplica a toda solución acuosa caliente de origen natural. Las soluciones hidrotermales pueden tener distintos orígenes, por

ejemplo: 1) agua contenida en solución en un magma y liberada en el curso de su cristalización; 2) agua contenida en sedimentos, que se separa en el curso de la diagénesis y litificación de las secuencias; 3) aguas subterráneas calentadas por efecto de un alto gradiente geotérmico debido a un cuerpo magmático en cristalización, al desarrollo de un rift, etc. Las soluciones hidrotermales salinas, tienen un especial potencial para lixiviar metales de las rocas, así como para transportarlos, debido a su capacidad para formar iones metálicos complejos con los aniones que contienen (p.ej. complejos clorurados). La etapa hidrotermal constituye la última fase de la cristalización de un magma, después de la cristalización principal, la etapa pegmatítica y la neumatolítica. (Oyarzún J. & Oyarzun R., 2014, pág. 84)

- Karst: El término designa la topografía de hundimiento, formación de cuevas, y drenaje subterráneo que se producen en terrenos de afloramientos de rocas carbonatadas, en regiones de clima lluvioso. Estos rasgos morfológicos e hidrogeológicos son consecuencia de la disolución del carbonato de calcio: CaCO₃+CO₂+H₂O → Ca²++2HCO₃-. Aunque los yacimientos estratoligados de Pb-Zn del tipo Mississippi Valley se formaron debido a la acción de extensos sistemas hidrotermales, parte de la mineralización se asocia a rasgos de probable origen kárstico en las rocas carbonatadas que albergan la mineralización sulfurada. (Oyarzún J. & Oyarzun R., 2014, pág. 96)
- Litología: El término abarca todo lo referente a las rocas, incluido su metamorfismo y alteración hidrotermal. Junto con la estructura (control estructural), la litología ejerce un control principal sobre la distribución de la mineralización de un yacimiento. La litología es una parte esencial de las guías geológicas de exploración, ya que muchos yacimientos se asocian a litologías específicas, por ejemplo, yacimientos de Pb-Zn estratiformes en rocas carbonatadas. (Oyarzún J. & Oyarzun R., 2014, pág. 102)

- Mena: En inglés *ore*. Se entiende por mena un conjunto de minerales de los cuales uno o más de ellos (generalmente de carácter metálico) presenta valor económico. Los minerales sin valor económico que acompañan a la mena (normalmente de carácter no metálico: silicatos y/o carbonatos) constituyen la ganga. Mena y ganga son términos ambiguos. Por ejemplo, un sulfuro integrante de la mena, sin interés económico en una mina (p. ej., pirita) no será denominado ganga, mientras que un no metálico (p. ej., barita; baritina) que puede llegar a tenerlo, generalmente se considera como tal. Digamos que el término mena se asocia a la mineralización metálica (con o sin valor económico) y el término ganga a la mineralización no metálica (con o sin valor económico), aunque esto escape a la definición estricta de ambos términos. (Oyarzún J. & Oyarzun R., 2014, pág. 111)
- Metalotecto: Término propuesto por Pierre Routhier para aquellos factores o contextos geológicos responsables de la formación de determinados tipos de yacimientos que pueden ser utilizados en exploraciones mineras. Por el ejemplo el metalotecto del Pucará. (Oyarzún J. & Oyarzun R., 2014, pág. 112)
- Mineralización: El término denota el proceso de formación de minerales y
 generalmente se utiliza para minerales de interés económico. Por extensión
 el término se utiliza también para designar una concentración de minerales
 ya formados. (Oyarzún J. & Oyarzun R., 2014, pág. 117)
- Orógeno: Se denomina así a una cadena de montañas nacida de los esfuerzos compresivos horizontales en una faja de inestabilidad tectónica (por ejemplo, los Andes, los Himalayas). El proceso tectónico que da lugar a la formación de esta cadena es complejo y se denomina orogénesis. Los procesos orogénicos se interpretan en términos de la teoría de la tectónica de placas. Los orógenos de tipo Andino, que implican la subducción de corteza oceánica bajo un borde continental presentan ricas mineralizaciones

- de elementos de sulfofilos (Cu, Mo, Pb, Zn, etc.), así como de hierro y metales preciosos (Au y Ag). (Oyarzún J. & Oyarzun R., 2014, pág. 127)
- Paragénesis: Designa la secuencia de minerales depositados en un yacimiento, indicando su relación de tiempo mediante un diagrama que muestra los nombres de los minerales en el eje Y (ordenada). La paragénesis se determina en muestras que son estudiadas macroscópica y microscópicamente; si un mineral corta a otro, el que corta es más joven; si uno reemplaza a otro, el reemplazante es más joven, igual que el que rodea a otro; si están interdigitados son contemporáneos, etc. Puesto que la paragénesis refleja el efecto de un pulso mineralizador, nuevos pulsos pueden llevar a la repetición, al menos parcial, de la secuencia paragenética inicial. Es importante considerar que la paragénesis ilustra lo que ha ocurrido en un yacimiento a lo largo del tiempo, mientras que la zonación describe el efecto del proceso mineralizador en el espacio. (Oyarzún J. & Oyarzun R., 2014, pág. 131)
- Rift: Valle alargado de origen tectónico (simétrico o no), que puede (o no) representar la etapa inicial en la formación de una nueva dorsal oceánica. El control estructural principal de un rift son las fallas normales, típicas de un gran ángulo o lístricas. Es común que la formación de un rift vaya acompañada de la extrusión de magmas alcalinos. (Oyarzún J. & Oyarzun R., 2014, pág. 159)
- Roca madre: También: almacén; en inglés: reservoire rock y source rock. En geología del petróleo, la roca almacenadora es la roca porosa y permeable que alberga los depósitos de hidrocarburos líquidos o gaseosos. Por su parte la roca madre es aquella generalmente formada en una plataforma marina que recibe sedimentos de carácter pelítico, en un ambiente reductor, y cuya etapa sedimentaria-diagenética dio lugar a la evolución de la materia orgánica a petróleo. Dicha evolución fue seguida por la posterior migración

- de los hidrocarburos hasta su reemplazamiento en las rocas almacenadoras. (Oyarzún J. & Oyarzun R., 2014, pág. 160)
- Roca encajonante: También: roca encajadora, roca caja; en inglés: host rock, country rock. Son las rocas que albergan la mineralización de un yacimiento. También se puede aplicar a la roca que "encaja" una intrusión, o bien, lo más común, a ambas. (Oyarzún J. & Oyarzun R., 2014, pág. 160)
- Salmuera: Solución muy salina que contiene principalmente Na⁺, Ca²⁺, Mg²⁺, Cl⁻, SO₄²⁻ y HCO₃₋. Las salmueras pueden tener varios orígenes: 1) producto de la evaporación de cuerpos de agua dulce o de mar; 2) a partir de la evolución de aguas connatas presentes en sedimentos en procesos de diagénesis; y 3) de la cristalización de magmas, seguidas de fenómenos de ebullición, etc. Las salmueras tienen especial interés en geología económica por dos razones principales. Una de ellas es su contenido de elementos valiosos y precursoras de yacimientos salinos. La segunda razón es su capacidad para disolver y transportar metales en forma de iones complejos, principalmente de tipo clorurado que desempeñan un papel importante en la formación de algunos tipos de yacimientos metalíferos de origen hidrotermaldiagenético (p. ej., tipo Mississippi Valley de Pb-Zn), así como en aquellos directamente relacionados con la cristalización magmática en la etapa hidrotermal (p. ej., pórfidos cupríferos), como muestran las inclusiones fluidas de alta salinidad encontradas es estos yacimientos. (Oyarzún J. & Oyarzun R., 2014, pág. 165)
- Singenético: Se dice de una mineralización cuyo depósito es contemporáneo con la formación de la roca que las alberga. El término se opone a epigenético (la mineralización es claramente tardía respeto a la formación de la roca). Una situación intermedia es la de una mineralización diagenética en rocas sedimentarias, que es posterior a la sedimentación

misma, pero que acompaña al proceso de litificación de la roca encajonante. (Oyarzún J. & Oyarzun R, 2014, pág. 168)

- Tectónica: Es el estudio de los procesos de deformación de la corteza terrestre que actúan a gran escala, como el desarrollo de cinturones orogénicos, fallas mayores, movimientos de placas litosféricas y sus consecuencias, emplazamiento de cuerpos batolíticos, etc. (Oyarzún J. & Oyarzun R., 2014, pág. 178)
- Textura: La textura de una roca o mineral está configurada por rasgos estructurales finos, incluidos los relativos al crecimiento cristalino. Por ejemplo: textura sacaroidal de una roca microcristalina, textura coloforme de los minerales de una mena. También un enrejado fino de venillas constituye un rasgo textural. Posee especial importancia en lo que se refiere al tratamiento metalúrgico de minerales sulfurados. Por ejemplo, las texturas de exsolución generan problemas ya que la molienda, por fina que sea, no logra separar en ocasiones una fase de otra. También genera problemas el entrecrecimiento de minerales por la misma razón. (Oyarzún J. & Oyarzun R., 2014, pág. 183)
- Yacimiento mineral: También depósito mineral. Se denomina así a una concentración natural de minerales que presenta razonables posibilidades de ser explotada con provecho económico, ya sea en el en el presente o en un futuro relativamente cercano. (Oyarzún J. & Oyarzun R., 2014, pág. 204)

2.4. Formulación de Hipótesis

2.4.1. Hipótesis general

La implementación de guías de exploración logrará nuevos targets en el yacimiento tipo Mississippi Valley de San Vicente en Cía. Minera SIMSA.

2.4.2. Hipótesis específicas

- a. Describir los targets de exploración del yacimiento tipo Mississippi Valley de San Vicente en Cía. Minera SIMSA antes de la implementación de las guías de exploración.
- b. La implementación de guías de exploración logrará la identificación de nuevos targets en el yacimiento tipo Mississippi Valley de San Vicente en Cía. Minera SIMSA en la etapa de estudio.
- c. Describir los targets de exploración del yacimiento tipo Mississippi Valley de San Vicente en Cía. Minera SIMSA después de la implementación de las guías de exploración.

2.5. Identificación de Variables

- a. Variable independiente
 - Guías de exploración
- b. Variable dependiente
 - Targets

2.6. Definición Operacional de Variables e Indicadores

Tabla 1Definición Operacional de Variables e Indicadores

Variables	Definición Conceptual	Definición Operacional	Dimensiones	Indicadores
Guías de Exploración	Oyarzún J. & Oyarzun R (2014) defin Si queremos buscar un determinado tipo de yacimiento [] debemos conocer su forma, segundo debemos saber a qué tipo de rocas se asocia []; por otra parte, deberemos comprender el marco estructural en el que se encuentran [], por último, debemos conocer la mineralogía que suele acompañar ese tipo de mineralizaciones [] (p. 79)	Esta variable se va a medir mediante la ejecución de taladros diamantinos para determinar las características geológicas de ambiente de facies.	1) Guías morfológicas. 2) Guías litológicas. 3) Guías estructurales 4) Guías mineralógicas.	1) Guías morfológicas. Regulares Irregulares 2) Guías litológicas. Condiciones favorables 3) Guías estructurales Zonas Extensionales o de apertura. Fallas o estructuras asociadas 4) Guías mineralógicas.
Target	RAE (2014) define como: Target es un término de la lengua inglesa [] suele usarse en nuestro idioma con referencia a un objetivo, una meta o un blanco. (https://definición.de/target/)	Esta variable se determinará mediante la implementación de las guías de exploración para determinar nuevos blancos de búsqueda mineral del yacimiento.	1) Se describirá los targets de exploración antes de la implementación de las guías de exploración. 2) Se identificará nuevos targets mediante la implementación de guías de exploración. 3) Se describirá los targets de exploración después de la implementación de las guías de exploración.	1) Targets de exploración . 2) Identificar nuevos targets mediante la implementación de guías de exploración. 3) Targets nuevos de exploración.

Fuente: Elaboración propia

CAPITULO III

METODOLOGIA Y TECNICAS DE INVESTIGACION

3.1. Tipo de Investigación

Según los propósitos de la investigación, ésta fue de tipo Aplicativa, debido a que estará orientada a implementar las guías de exploración en el yacimiento tipo Mississippi Valley de San Vicente, con la finalidad de obtener nuevos targets de exploración que generen recursos de mineral.

Al respecto, Chávez. (2007), definió la investigación aplicativa como:

El tipo de investigación aplicativa tiene como fin principal resolver un problema en un periodo de tiempo corto. Dirigida a la aplicación inmediata mediante acciones concretas para enfrentar el problema. Por tanto, se dirige a la acción inminente y no al desarrollo de la teoría y sus resultados, mediante actividades precisas para enfrentar el problema. (pág. 134)

3.2. Métodos de Investigación

El método de investigación fue: Observacional, Descriptivo, Aplicativo y Exploratorio

 Observacional: Esta investigación partió de la observación, análisis de los datos obtenidos de la perforación diamantina, secciones geológicas y complementación de pozos exploratorios en el área de estudio.

- Descriptivo: Describió las características geológicas y estructurales del yacimiento, controles para la mineralización de Zn-Pb dentro del Grupo Pucará.
- Exploratorio: Nos permitió tener un conocimiento general del tema de estudio para nuevos targets de exploración en el yacimiento tipo Mississippi Valley de San Vicente que nos servirán como información para futuros estudios.

3.3. Diseño de Investigación

De acuerdo a Hernández R. (2006), propuso sobre el diseño de investigación:

Se refiere a los pasos, etapas y estrategias que se aplican para el logro de los objetivos planteados, este consiste en el planteamiento de una serie de actividades sucesivas, organizadas, adaptadas a los particulares de cada móvil de investigación, para indicar los pasos o pruebas a efectuar, así como las técnicas para la recolectar y analizar datos. (pág. 158)

En este estudio los diseños fueron: cuantitativo, experimental, prospectivo y trasversal.

Enfoque cuantitativo

Dado que se buscó comprobar la hipótesis previamente establecida, así como los objetivos trazados, el presente trabajo fue elaborado bajo el planteamiento metodológico del enfoque cuantitativo.

En tal sentido, Hernández, Fernández, & Baptista, (2003), indicaron:

Utiliza la recolección y el análisis de datos para contestar preguntas de investigación y probar hipótesis establecida previamente, y confía en la medición numérica, el conteo y frecuentemente en el uso de la estadística para establecer con exactitud patrones de comportamiento en una población. (pág. 12)

El presente estudio tuvo un diseño experimental porque busca implementar guías de exploración para mejorar la identificación de nuevos targets de exploración en

el yacimiento tipo Mississippi Valley de San Vicente, es decir el diseño experimental se caracteriza por la implementación de algo , para solucionar el problema identificado y es el que mejor se adapta a la necesidad del estudio.

Del mismo modo, Rojas (2013), describió:

"El diseño experimental busca medir probabilísticamente la relación causal que se establece entre las variables, y estar en posibilidad de confirmar o rechazar las hipótesis sometidas a pruebas." (p. 272)

El estudio también exhibió un diseño prospectivo.

El diseño prospectivo, "se refieren principalmente al planteamiento de la dirección en el tiempo del estudio, progresiva (hacia delante) [...] en el tiempo desde el momento en que se inicia el estudio." (Veiga de Cabo, 2008, pág. 87)

En el mismo contexto el estudio mostró un diseño transversal.

Por su parte Hernández R, Fernández C, & Baptista P. (2010), definieron el diseño transversal de acuerdo a lo siguiente:

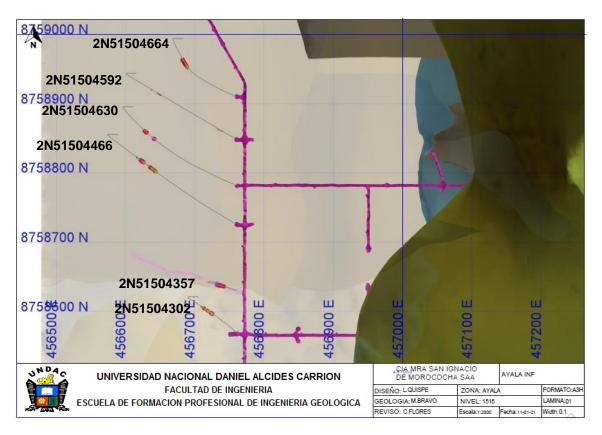
Es como tomar una fotografía de algo que sucede. (pág. 151)

Los diseños de investigación transeccional o transversal recolectan datos en un solo momento, en un tiempo único. Su propósito es describir variables y analizar su incidencia e interrelación en un momento dado.

3.4. Población y Muestra

3.4.1. Población

Para la siguiente investigación se tomó como población el yacimiento tipo Mississippi Valley (MVT) de San Vicente, alojados en el Grupo Pucará, unidad de 0.5 a 2.5 Km de espesor de edad Triásico-Jurásico inferior, que consiste principalmente de calizas y dolomías de origen marino con alto contenido de materia orgánica. El Grupo Mitu subyacente (capas rojas terrestres intercaladas con conglomerados polimícticos y productos volcánicos) se acumuló durante la etapa inicial de un sistema de rift (~240-


~215 Ma), ubicado en el distrito de Vitoc, Provincia de Chanchamayo, Departamento de Junín.

3.4.2. Muestra

Las muestras tomadas para este estudio correspondieron a cores de perforación diamantina (DDH) de los interceptos más representativos con respectivos muestreos espaciales del proyecto de Ayala Inferior de la campaña 2018 - 2019 en fase Inversión, que representan 32 sondajes de exploración con un metraje de 16,697 metros de perforación diamantina, ubicados en seis estaciones de perforación en la Galería 690 N en el Proyecto de Ayala Inferior, de los cuales se tomó 1 sondaje por estación de perforación para el presente estudio (Fig. 10).

Figura 10

Ubicación de Sondajes Muestras en el Target de Ayala Inferior, Galería 690 N

Fuente: Elaboración propia.

3.5. Técnicas e Instrumentos de Recolección de Datos

La técnica e instrumentos de recopilación de datos en el presente estudio fueron:

- La técnica que se empleó en el estudio fue la recolección de datos e información de: Columna estratigráfica de UEA San Vicente, secciones longitudinales y secciones transversales mina, revisión de logueos geológicos, mapeos geológicos de interior mina y superficie, informes y reportes de campo, estudio de petrografía de muestras de roca; así como información de revistas científicas, de la Sociedad Geológica del Perú, Congresos y Simposios de libre disponibilidad.
- Los instrumentos de recolección de datos que se empleó en el estudio fueron:
 Campaña de perforación diamantina SIMSA 2018-2019, muestreo de sondajes
 DDH, logueo de cores, muestro de canales de interior mina realizados por la
 Compañía Minera SIMSA e interpretación geológica.
- Los estudios y trabajos técnicos, boletines publicados referentes a la investigación en instituciones como: Society of Economic Geologists, U.S Geological Survey (U.S.G.S) La Sociedad Geológica Mexicana, Université de Geneve, Journal of South American Earth Saciences, INGEMMET y Sociedad Geológica del Perú.

3.6. Técnicas de Procesamiento y Análisis de Datos

Las técnicas para el procesamiento y análisis de los datos que se obtuvieron en el presente estudio fueron de la siguiente manera:

3.6.1. Etapa I

En esta etapa comprendió la recolección y evaluación de información geológica: mapas interior mina y superficie, logueos (teniendo en consideración tipo de roca, color de roca (N), cantidad de fluido (W), texturas, granulometría (fino, medio, grueso) tipo de mineralización (brecha, masivo, cebra, diseminado), minerales secundarios (pseudomorfos de sílice, pirita, azufre) y análisis de muestras de interceptos de perforación diamantina.

3.6.2. Etapa II

En esta etapa consistió en la preparación, descripción y análisis de los datos obtenidos de pozos de perforación diamantina en el logueo geológico y comprende:

- Tipo de Roca: Se describió el tipo de roca observado de manera macroscópica, de acuerdo a la clasificación obtenida para este tipo de yacimiento, donde se delimita el horizonte definido por el contacto entre calizas y dolomías.
- Granulometría: Se describió el tipo de granulometría presente de acuerdo a la porosidad de la roca utilizando la clasificación de Dunham.
- Color (N): Se describió el color presente en la roca, utilizando una clasificación de 1 a 5 (que va de gris oscuro a blanco).
- Fluido (W): Se describió el porcentaje de fluido presente de GSD, WSD (dolomita gris, dolomita blanca) utilizando una clasificación en porcentaje (0-35%) que va de 1 a 5, también se describe la cantidad de calcita presente.
- Textura: Se describió y se clasifico macroscópicamente los diferentes tipos de texturas en el yacimiento.
- Mineralogía: Se describió el estilo de mineralización que presenta, como:
 masivo, brecha, cebra, diseminado de los minerales de mena del
 yacimiento, con una apreciación porcentual de contenido mineral en base
 a la experiencia.
- Minerales secundarios: Se describió los minerales de ganga como la dolomita, calcita, pirita y minerales de génesis como el bitumen y el azufre.
- Estructuras: Se medió las fallas, fracturas y venillas tomando los ángulos que forman respeto al core y si presentan relleno o son pulidas; así

mismo se describieron estructuras diagenéticas como: nódulos de chert, pseudomorfos de calcita, geodas, cavidades kársticas y estilolitos.

3.6.3. Etapa III

Esta etapa consistió en la interrelación de la información y datos disponibles organizados para iniciar las inferencias y postulados para ser llevados a programa de perforación para el presente estudio:

- Integración roca-granulometría: Para determinar los patrones de asociación por facies someras o profundas favorables para la mineralización.
- Integración roca-fluido (GSD-WSD): Para determinar los patrones de asociación por contenido de Gray sparry dolomite o White sparry dolomite favorables para albergar mineralización de Zn-Pb.
- Integración roca-textura.: Para determinar qué tipo de texturas están asociadas a la mineralización.
- Integración roca-control estructural: Para determinar zonas de extensión (apertura) y compresionales (cierre) donde pueda albergarse la mineralización.
- Integración roca-minerales accesorios: Para determinar controles de borde o aureolas mi mineralización ganga previa a mineralización económica.

3.6.4. Etapa IV

Esta etapa consistió en la interpretación de la información obtenida.

- Interpretación de secciones.
- Interpretación litológica.
- Interpretación estructural.

3.6.4. Etapa V

El área de estudio abarcó rocas carbonatadas de la cuenca del Pucará en la región Junín de la Selva Central Peruana. Las unidades estratigráficas estudias son de edad Triásico superior a Jurásico inferior en las formaciones: Chambará, Aramachay y Condonsinga, las cuales se encuentran sobreyaciendo al Grupo Mitu del Pérmico superior. En esta etapa se realizó la elaboración de mapas y modelos finales de las secuencias determinadas.

3.6.5. Etapa VI

Es la etapa se discutió las interpretaciones y resultados obtenidos en el estudio de investigación realizado y determinar su aplicación en la exploración y desarrollo en el yacimiento tipo Mississippi Valley de San Vicente. El registro de toda la información del estudio se procesó mediante el software Peoplesoft, el cual administra la data a otros softwares como Downhole Explorer para el registro de logueo y assay, Vulcan para el modelamiento en 3D y Leapfrog para secciones geológicas.

3.7. Tratamiento Estadístico

Para este estudio se analizó las muestras de core de perforación diamantina (DDH), en el Laboratorio Químico de Compañía Minera SIMSA y también se utilizaron software como: Peoplesoft, Excel, autocad, Downhole Explorer, Vulcan y Arcgis.

3.8. Selección, validación y confiabilidad de los instrumentos de investigación

- En este estudio de investigación están incluidos los taladros de perforación diamantina en la exploración (fase inversión) mina del Proyecto de Ayala Inferior 2018 y 2019 de la mina San Vicente, se excluyeron aquellos que no llegaron al objetivo planteado en la etapa de ejecución.
- La base de datos de sondajes incluyó: tipo de roca, granulometría, fluido (W),
 color (N), textura, mineralización y muestreo de cores, fueron almacenados en

el software Peoplesoft cuya funcionabilidad es la interacción de una base de datos global con otros softwares como el Donwhole Explorer para el desarrollo de secciones con taladros DDH y Vulcan para la visualización y modelamiento en 3D.

- La digitación de secciones transversales de la zona de Ayala Inferiror fueron trabajadas en Vulcan.
- Se realizó un modelo litológico en base a sondajes en Vulcan.
- Se realizó un modelo estructural en base a mapeos interior mina y superficie en Vulcan.
- El programa de exploración mina de sondaje fueron almacenados en Vulcan para su ejecución y seguimiento.

3.9. Orientación Ética

- En este estudio se guardó la debida confidencialidad de datos de las muestras de Compañía Minera San Ignacio de Morococha S.A. (SIMSA).
- En este estudio se evitó en todo momento de la investigación el plagio y se asegura que se citó a cada autor del que se haya recogido su estudio.

CAPITULO IV

RESULTADOS Y DISCUSION

4.1. Descripción del Trabajo de Campo

4.1.1. Descripción de la propiedad y ubicación

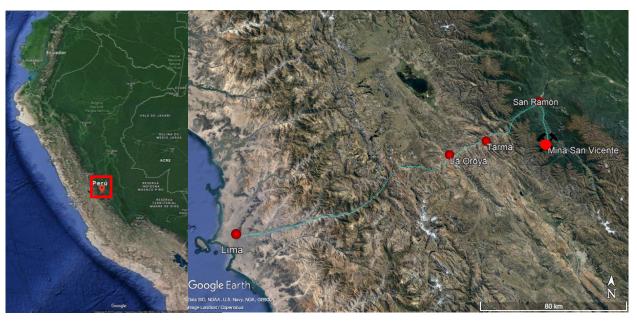
La mina San Vicente consiste en un complejo minero metalúrgico que incluye una mina subterránea, una planta concentradora, central hidroeléctrica y campamentos.

La Mina San Vicente, está ubicada en el Distrito de Vitoc, Provincia de Chanchamayo, Departamento de Junín a 17 Km. al Sur de la ciudad de San Ramón en el flanco occidental de la cordillera oriental, en ceja de selva y a una altura entre 1,400 y 2,000 m. sobre el nivel del mar.

Sus coordenadas UTM (WGS84-18S) son: 458,200E, 8'758'200N.

El campamento está a 1,100 m.s.n.m. las precipitaciones pluviales son intensas principalmente entre los meses de noviembre a marzo; la erosión fluvial ha generado valles profundos y encañados. El drenaje es principalmente dendrítico siendo su principal colector el Río Tulumayo, afluente del Chanchamayo; el clima es cálido y húmedo con exuberante vegetación.

4.1.2. Accesibilidad


El acceso es por la carretera Central, ruta Lima - La Oroya - Tarma - San Ramón, hasta el Kilómetro 293 (antes de San Ramón) desde donde se sigue un desvío hacia el sur (Fig. 11).

En resumen, se tiene:

Lima	La Oroya	188 Km
La Oroya	San Ramón	105 Km
San Ramón	San Vicente	17 Km
	Total	310 Km

Figura 11

Plano de Ubicación

Fuente: Elaboración propia

4.1.2.1. Clima

El clima de San Vicente es cálido y húmedo con una temperatura promedio de 25°C. Durante el año se tienen dos estaciones según la cantidad de precipitaciones: la estación seca, entre mayo y septiembre, y la estación húmeda entre octubre y abril.

4.1.2.2. Recursos locales

Los recursos locales están basados en San Vicente donde SIMSA provee a sus supervisores alojamiento y alimentación. Las comunicaciones son provistas por SIMSA además que existe cobertura de señal celular.

Los empleados y obreros de SIMSA viven en Vitoc, San Ramón y La Merced, siendo estas dos últimas localidades ciudades donde existen servicios de salud, educación, banca, comercios, etc.

4.1.3. Historia

En 1955 el Señor José Cárpena presento el denuncio 'San Vicente', del que obtenía pequeños lotes de Mineral de Plomo; en estas circunstancias, dio en opción su concesión a la firma Mauricio Hochschild & CIA. L TDA. S.A. la que a su vez formó con la Compañía Minera Canchamina S.A. la sociedad denominada 'Compañía Minera San Vicente S.A.'. Esta Sociedad, exploró el Yacimiento desde 1960 a 1963.

En octubre de 1963, la "Compañía San Vicente S.A., interesó a la "Cerro de Pasco Corporation" para que ingresara a la Sociedad con un porcentaje de 51% quedando el 32.66 % para Hochschild y el 16.33% para Chanchamina. En febrero de 1964, se reiniciaron las exploraciones del Yacimiento bajo control de "Cerro de Pasco Corporation", las que duraron hasta fines de abril de 1965; realizando hasta ese entonces 2,200 m. de labores y sondajes diamantinos, cubicando 850,000. T.M. con 18 % de Zn.

En agosto de 1966 La Compañía San Ignacio de Morococha S.A. se interesó en el Yacimiento San Vicente y tomó bajo contrato las concesiones.

En junio de 1973, la "Compañía Minera San Ignacio de Morococha S.A" adquiere el 100 % de las concesiones y continua con los trabajos de exploración, desarrollo y explotación a la fecha.

4.1.4. Marco geológico local y regional

4.1.4.1. Estratigrafía.

4.1.4.1.1. Precámbrico.

Conjunto rocoso que aflora al Oeste; localmente se le conoce como metamórfico de Marayniyoc, está constituido por esquistos y gneises de composición granítica con amplio desarrollo de estructuras metamórficas (Fig. 12).

4.1.4.1.2. Paleozoico.

Rocas sedimentarias que afloran al Oeste de Monobamba, caracterizadas por su litología de areniscas, limonitas con cierto grado de metamorfismo, algunas muestras son de naturaleza esquistosa (Fig. 12).

4.1.4.1.3. Grupo Tarma y Copacabana.

Rocas carbonatadas, que afloran en los alrededores de Monobamba y al Sur Este de San Ramón, caracterizada por su litología de calizas con abundantes bioclastos, la matriz es de naturaleza micrítica algo arcillosa, esta unidad ésta intercalada por material arcilloso limoso, de color gris verdoso. La edad es permocarbonífera (Fig. 12).

4.1.4.1.4. Granito San Ramón.

Cuerpo intrusivo de naturaleza batolítica que aflora al Este de San Ramón constituido por granitos y granodioritas de textura equigranular a microgranular con elevado porcentaje de feldespato potásico, de color rojizo (Fig. 12).

4.1.4.1.5. Granodiorita Tarma.

Intrusivo de naturaleza plutónica que junto con el granito de San Ramón constituyen el batolito de la Cordillera Oriental, de composición ácida con elevado porcentaje de potasio y desarrollo de fenocristales de feldespatos potásicos, según dataciones radiométricas tiene entre 240 a 280 M.A. (Fig. 12)

4.1.4.1.6. Grupo Mitu.

Sedimentos continentales de coloración rojiza y de tipo molásico, constituidos por areniscas, limolitas, yeso y conglomerados polimícticos. Constituye morfológica y litológicamente la unidad guía para determinar la posición estratigráfica del Grupo Pucará. Por relaciones de edad relativa se le considera del Permo-Triásico (Fig. 12).

4.1.4.1.7. Grupo Pucará.

Secuencia carbonatada de ambiente marino que constituye la unidad que alberga la mineralización de Zinc del tipo MVT. Basados en criterios litoestratigráficos y teniendo en cuenta además la importancia económica, se han diferenciado diez unidades, de las cuales cuatro secuencias dolomíticas tienen filiación con la mineralización de Zinc, las que se describen luego ordenadas del piso al techo (Fig. 12).

- Unidades Basales: Constituyen las unidades inferiores del Grupo Pucara, están en contacto directo sobre el grupo Mitu, el paso es transicional, aunque el cambio litológico es brusco. Están constituidas por calizas laminares y chérticas, dolomías micríticas, limolitas calcáreas, limolitas dolomíticas, calizas intraclásticas, todas ellas caracterizadas por su elevado porcentaje de cuarzo detrítico. Su espesor varía entre 160 a 380 m.
- Caliza Porosa Basal: Secuencia calcáreo dolomítica constituida por calizas dolomíticas
 porosas deleznables, sueltas, con niveles de
 brechas calcáreas, limolitas laminares, dolomías
 finas y algunos niveles oolíticos. Se han determinado
 espesores entre 60 a 180 m.
- Dolomía San Judas: Es la primera secuencia de dolomías ooides alternadas con niveles de dolomías finas. En esta unidad se han definido regional mente dos barras, denominadas San Judas y Piñón; estas facies constituyen el tipo de roca que alberga la mineralización de Zinc. En la barra San Judas, a la fecha se ha diferenciado tres mantos, en el cual el tipo de mineralización es de 'flujo'. Se tienen espesores entre 200 a 390 m.
- Caliza Neptuno: Similar en litología a la caliza porosa basal. Representa la segunda secuencia

porosa, la diferencia está en la posición estratigráfica y en la distribución de las capas. Un rasgo regional característico de esta unidad, es una secuencia de calizas oolíticas (facies de barra no dolomitizadas); su espesor varía entre 20 y 170 m.

- dolomías San Vicente: Es la segunda secuencia de dolomías ooides con niveles de dolomías finas, que son receptoras de la mineralización de Zinc. En esta unidad se han definido seis barras: Sillapata, Aynamayo, Uncush, San Vicente, Palmapata y Aguada Blanca. En la barra San Vicente, se ha detectado en la zona sur 6 mantos de zinc del tipo cebra, mientras que en la zona norte se tiene 9 mantos de zinc del tipo cebra y un manto de zinc del tipo masivo. Estratigráficamente muestran control definido ocupando las capas intermedias a inferiores; los espesores son muy variados y van desde 30 a 300 m.
- Caliza Uncush: Está constituida por calizas negras bituminosas laminares en la base y masivas al techo de toda la secuencia. Constituye la unidad guía para efectuar correlaciones estratigráficas, ya que representa un evento tectónico-sedimentario importante a nivel global. De otro lado la litología es bien diferenciable y típica solo de esta unidad lo que

- le da la categoría de unidad guía para todo el Pucara. Su espesor varía de 25 a 150 m.
- Dolomía Alfonso: Es la tercera secuencia favorable para albergar la mineralización de zinc. En esta unidad se ha desarrollado la barra Alfonso cuya litología es similar a las otras dos unidades, la diferencia radica en la distribución estratigráfica, así como en el grado de dolomitización y el tipo de estructura diagenética que se ha desarrollado, la cual representa el mayor o menor grado de receptividad a la mineralización; en esta secuencia se han detectado varios mantos, pero su distribución es errática y aislada, de otro lado las dimensiones son pequeñas respecto a San Vicente. La variación de espesores es entre 20 a 170 m.
- Caliza Arcopunco: Tercera secuencia porosa similar a las anteriores, la diferencia está en la posición estratigráfica y en la distribución real de los afloramientos, ya que esta unidad aflora solo al norte de la mina y al sur de Sillapata. Su espesor está entre 100 a 280 m.
- Dolomía Colca: Cuarta secuencia dolomítica favorable para albergar zinc, constituida de dolomías ooides; se ha detectado escasos indicios de mineralización de zinc, siendo necesario mayores estudios. El espesor varía entre 30 a 50 m.

 Unidades Superiores: Constituyen los niveles calcáreos sobre las secuencias favorables, litológicamente están constituidas por calizas laminares, dolomíticas, chérticas y nodulares, con niveles de dolomías micríticas. Alcanzan un espesor de 80 m.

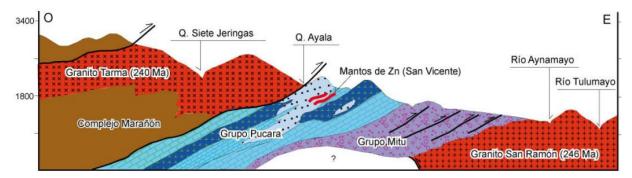
4.1.4.1.8. Sub volcánicos.

Dentro de las labores mineras, así como en superficie se tiene diques, lacolitos y sills que cortan la secuencia sedimentaria, pero están dolomitizados, la composición está entre intermedia a ácida, en algunas áreas muestran relación con piritización (Fig. 12).

4.1.4.1.9. Intrusivos menores.

Son pequeños cuerpos de tonalitas granodioritas que afloran a lo largo del contacto entre el Pucara y el Mitu; en la mayoría de los casos originan ligero metamorfismo de contacto del tipo marmolización (Fig. 12).

4.1.4.1.10. Formación La Merced.

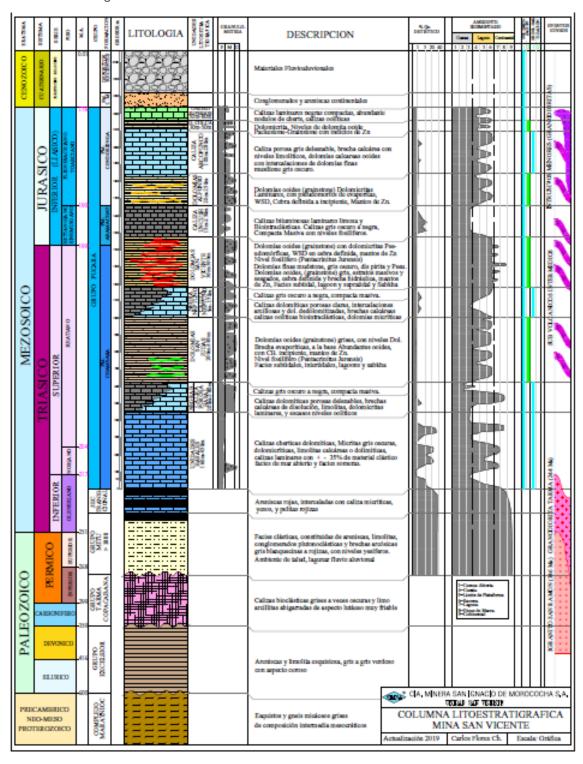

Constituye una secuencia de conglomerados, areniscas continentales y representan antiguos cursos de ríos que están localizados a lo largo del Valle de Chanchamayo, se consideran del Plio-Pleistoceno (Fig. 12).

4.1.4.1.11. Cuaternario.

Son depósitos actuales tanto de aluviales, coluviales, deslizamientos, derrumbes, etc., que son consecuencia

del modelado del paisaje actual y nos indican la morfología dinámica del valle de Chanchamayo (Fig. 12).

Sección 1
Sección Estructural Mina San Vicente



Nota: Se muestra el cabalgamiento que controla la mineralización de Zn-Pb del tipo Mississippi Valley.

Tomado de Dávila et al. (2000)

Figura 12

Columna Estratigráfica Mina San Vicente

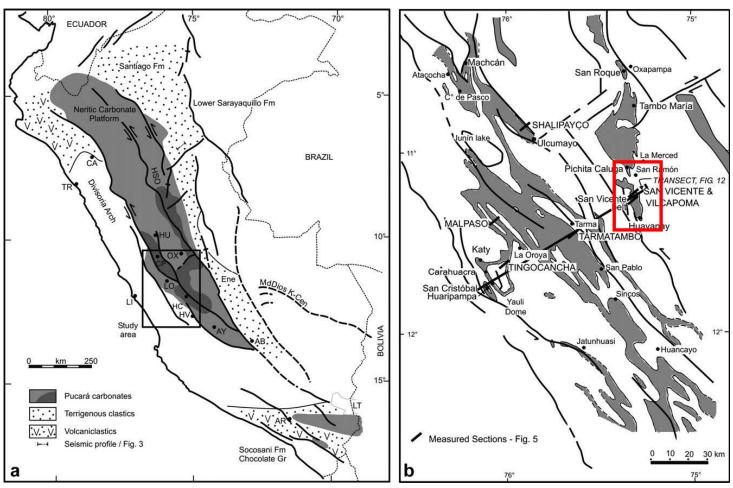
Fuente: Elaboración Geología SIMSA

4.1.5. Marco Geológico Regional

4.1.5.1. Cuenca Pucará

La depositación de las secuencias sedimentarias del Grupo Pucará empezó durante la trasgresión de mar sobre terrenos Paleozoicos conformados por sedimentos terrestres y lavas alcalinas del grupo Mitu, durante el período Noriano a lo largo de la margen Oeste de escudo Brasileño.

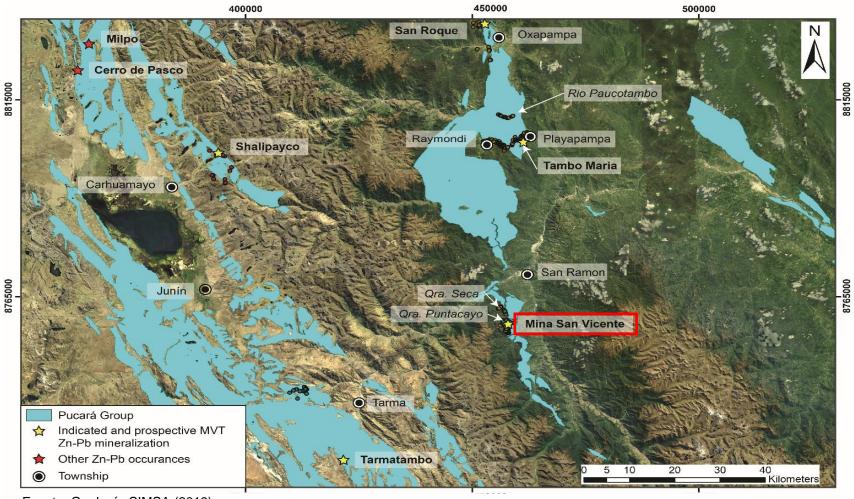
Durante la evolución de la cuenca del triásico superior – jurásico inferior, se desarrollaron dos sub-cuencas: cuenca Oeste y cuenca Este, la segunda cuenca es conocida por ser roca hospedante de yacimientos tipo MVT como, San Vicente, Pichita Caluga, Shalipayco, Tambo María, Ulcumayo, Julián, Cañón Florida, Cristal Bongará, entre otros (Fig. 13, 14).


La potencia de los sedimentos que conforman el Grupo Pucará se incrementó en la cuenca Este gracias a una subsidencia asimétrica de la cuenca causada por la actividad sin-sedimentaria tipo semigraben a lo largo del margen Este, mientras que durante el mismo período el margen Oeste fue pasivo.

Durante el régimen de extensión en la evolución temprana de la cuenca Pucará se formaron fallas NO – SE. La reactivación sinsedimentaria durante varios eventos de subsidencia del fondo de cuenca sirvió para canalización de fluidos mineralizantes.

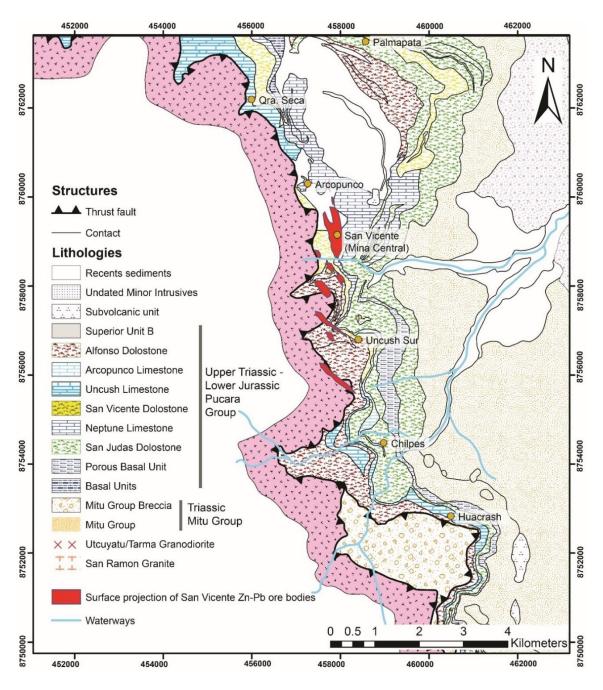
La presencia de fallas sin-sedimentarias es indispensable para la formación de yacimientos tipo MVT (Fig.15, 16).

Figura 13


Cuenca Carbonatada del Pucará

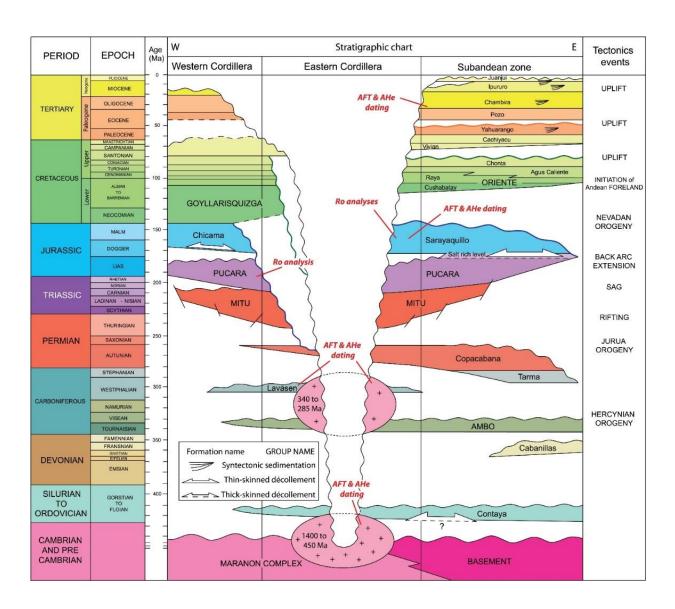
Fuente: Rosas et al., (2007)

Figura 14


Cuenca Pucará y mineralización de metales base

Fuente: Geología SIMSA (2019)

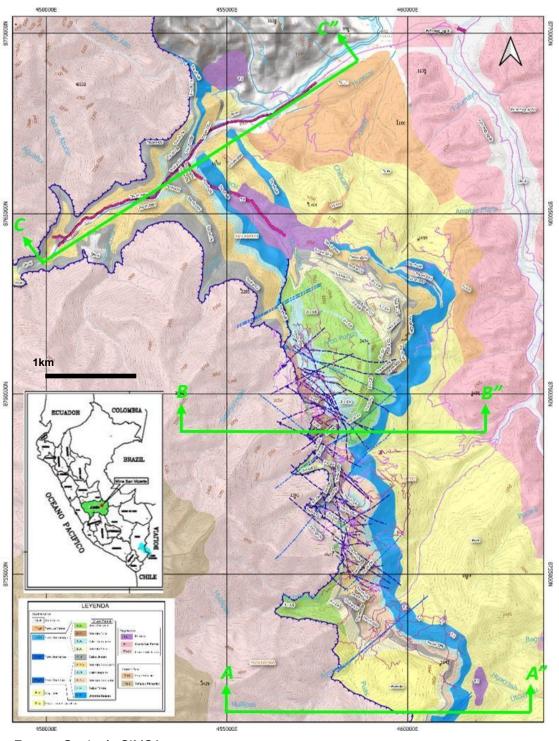
Figura 15


Plano Geológico Mina San Vicente

Nota: Fallas formadoras de cuencas activas durante la depositación de la cuenca Pucará, están en gran parte eclipsadas por la deformación andina posterior. Tomada de Geología SIMSA (2019)

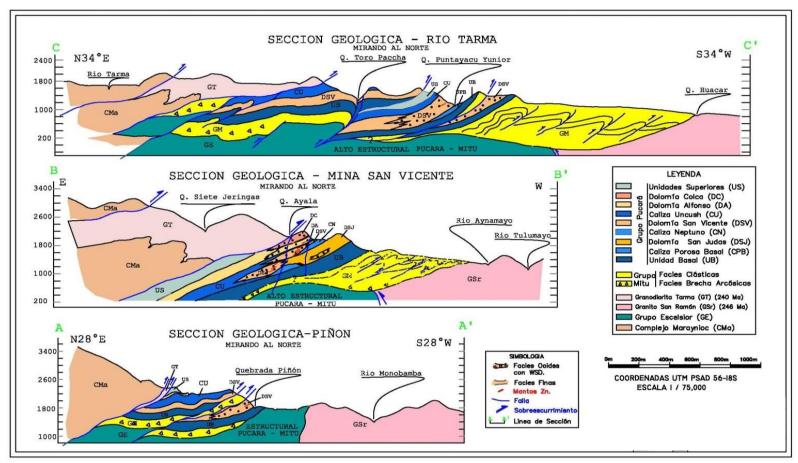
Figura 16

Carbonatos de la Plataforma Pucará Depositados en Secuencias de Rift del Grupo Mitu


Fuente: Eude et al. (2015)

4.1.5.2. Depósitos MVT hospedados en la parte central del Pucará

Se distribuyen principalmente en el Pucará oriental, en secuencias dolomíticas asignadas al Hetangiano. El depósito más relevante de este sector es la mina de Zn- Pb San Vicente. Los minerales de mena están conformados por esfalerita y galena, con más de 15 millones de toneladas de producción y reserva con 12% Zn y 1% Pb (Fontboté & Gorzawski, 1990).


Los principales horizontes mineralizados presentan una dolomitización tidal de facies lagunares con laminación criptoalgal y moldes evaporíticos y calizas oolíticas. El yacimiento de Zn-Pb de San Vicente aparentemente ha sido formado por procesos diagenéticos. Las temperaturas indicadas por geotermometría de azufre, indican un rango de temperatura de 75° C a 92° C; que coincide con las gradientes de soterramiento a una profundidad de 2 a 3 km aproximadamente y se asume que afecto la zona durante el Jurásico. El modelo basado en la reducción abiogénica de sulfatos durante la deposición de menas e introducción de Zn y Pb mediante salmueras es caracterizado por los radios isotópicos ligeramente altos de estroncio favorecidos por el ambiente marino y altas relaciones isotópicas de plomo. La relación de los cuerpos mineralizados con facies peritidales ricas en sulfatos es la principal evidencia de la existencia de dos reservorios separados por azufre y metales, donde los metales podrían provenir del basamento Precámbrico del escudo brasileño lo que está respaldados por los ratios de estroncio y plomo radiogénicos.

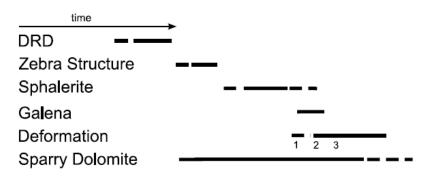
Plano 1
Geología Regional - Mina San Vicente

Fuente: Geología SIMSA

Sección 2
Secciones Transversales Regional - Mina San Vicente

Fuente: Geología SIMSA

4.1.6. Paragénesis y zonamiento

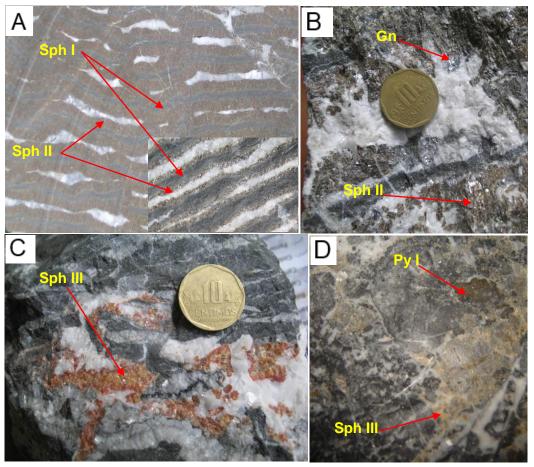

4.1.6.1. Secuencia esquemática tiempo mineralización y deformación:

Dolomita esparítica precipitado durante tiempo prolongado como reemplazos y en sitios extensionales (Fig. 17).

- Denota inicio de precipitación y relación con la esfalerita observada en dolomías.
- 2. Syndeformación, precipitación de la galena.
- 3. Mayor posmineralización y deformación.

Figura 17

Paragénesis Mina San Vicente


Fuente: Rudiger K. (2005)

4.1.6.2. Paragénesis

La mineralización de sulfuros en San Vicente consta de varias etapas (Foto 1) de cristalización cuya secuencia de eventos es:

- Pirita I: Fina masiva pseudomórfica.
- Esfalerita I: Gris fina masiva.
- Esfalerita II: Cristalizada oscura a clara.
- Galena fina: Gris plateada.
- Esfalerita III: Cristalizada naranja a amarilla.
- Pirita II: Cristalizada

Foto 1
Secuencia Paragenética

Nota: A. Esfalerita Gris (Sph I) y esfalerita rubia (Sph II); B. Esfalerita Rubia (Sph II) y parches de Gn; C. esfalerita anaranjada (Sph III); D. esfalerita amarilla (Sph III) y parches de pirita (Py I). Tomadas de Geología SIMSA

4.2. Presentación, Análisis e Interpretación de Resultados

4.2.1. Guías de exploración MVT - San Vicente

4.2.1.1. Guías morfológicas, Tipo de Depósito.

San Vicente es un yacimiento del tipo Mississippi Valley estratoligado con mineralización de Zinc y Plomo. El área mineralizada tiene una longitud de 11 Km. entre las zonas de San Vicente (Norte y Sur), Uncush Sur, Siete Jeringas y Chilpes, a lo largo de la cual se encuentran afloramientos a manera de lentes irregulares tanto en sentido horizontal como vertical.

4.2.1.2. Guías litológicas - San Vicente

4.2.1.2.1. Tipo de roca

Dolomía. Es una roca calcárea resistente al proceso kárstico, dado que está constituida por CaMg(CO₃)₂. típica de San Vicente, que va de tonalidades oscuras casi negras a gris clara, con granulometría fina a gruesas (Foto 2). Se identifica por que reacciona levemente al ácido clorhídrico. Este tipo de roca fue formada por procesos de dolomitización de las calizas por circulación de fluidos cargados de sales magnesianas preexistentes en la cuenca sedimentaria del Pucará. Es la roca caja de la mineralización y constituye los tres horizontes Alfonso, San Vicente y San Judas.

Foto 2

Dolomía

Nota: Dolomía masiva, N2, W1, grano fino. Tomado de interior Mina San Vicente.

- Caliza. Roca sedimentaria formada por la precipitación de carbonatos en las regiones batiales y de fondo marino compuesta esencialmente por carbonato de calcita (CaCO₃). En San Vicente se distinguen tres tipos de caliza las cuales se encuentran bien definidas.
 - 1. Caliza Porosa Basal. Secuencia calcáreo-dolomítica constituida por calizas-dolomíticas porosas deleznables, sueltas, con niveles de brecha calcárea, limonitas (arcillas) laminares, dolomías finas y algunos niveles oolíticos (Foto 3). A veces presenta textura kárstica producto de la lixiviación de los carbonatos, constituye toda la base del Pucara. Se han determinado espesores de 60 a 180 m., el color característico es el gris cenizo. Son deleznables al tacto, reaccionan fuertemente al ácido clorhídrico.

Foto 3

Caliza Porosa Basal

Fuente: Guía de Logueo S.V.

2. Caliza Neptuno. Cuya característica es una caliza porosa, arcillosa de color gris claro (Foto 4). Similar en litología a la caliza porosa basal, representa la segunda secuencia porosa, la diferencia está en la posición estratigráfica y en la distribución de las capas. Un rasgo regional característico de esta unidad es una secuencia de calizas oolíticas (facies de barra no dolomitizadas). Se suele presentar con arcillas y por tramos con textura kárstica producto de la lixiviación de los carbonatos. Su espesor varía entre 20 y 170 m. Reacciona fuertemente al ácido clorhídrico.

Foto 4

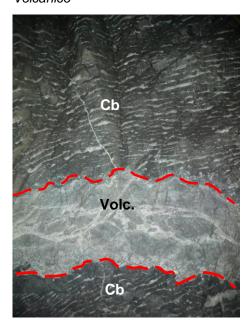
Caliza Neptuno



Fuente: Guía de Logueo S.V

 Caliza Negra Uncush. Está constituida por calizas negras bituminosas laminares en la base y masivas al techo de toda secuencia (Foto 5). Constituye la unidad guía para efectuar correlaciones estratigráficas, ya que representa un evento tectónico-sedimentario importante a nivel global, de otro lado la litología es bien diferenciable y típica de caliza negra laminar y bituminosa, al tacto pinta de negro los dedos, presenta venillas de calcita blanca paralela a la estratificación, esta caliza no es fosilífera y suele contener pirita fina diseminada en los estratos. Su espesor varía de 25 a 150 m. Reacciona fuertemente al ácido clorhídrico.

Foto 5


Caliza Negra Uncush

Fuente: Galería 8010, contacto caliza Uncush – dolomía SV.

Volcánico. Se caracteriza por ser de color gris claro de grano fino (afanítico), con puntos blancos de plagioclasas, reacciona al ácido clorhídrico, en algunos casos se presenta una textura jabonosa al tacto producto de la carbonatación (Foto 6). Se encuentra tanto en labores mineras como superficie formando diques, lacolitos y sills que cortan la secuencia sedimentaria, pero algunos están dolomitizados y carbonatados con presencia de venas de calcita. Su composición es intermedia a acida en algunas áreas muestran relación con pirita fina.

Foto 6
Volcánico

Fuente: Tj 8011, Sill andesítico (volc.)

Intrusivo. Cuerpo intrusivo de naturaleza batolítica que aflora al techo del Grupo Pucara por sobreescurrimiento. Según la posición estratigráfica se encuentra al techo del Horizonte Alfonso, cuyo contacto es una falla de bajo ángulo con relleno de panizo. Se caracteriza por su textura microgranular a equigranular, de tonalidades verdosas a blanquecinas, constituido por plagioclasa, biotita y hornblenda (Foto 7), según dataciones

radiométricas tienen 240 a 280 m.a. Sólo visible en superficie.

Foto 7
Intrusivo

Fuente: Granodiorita, tomado de Guía de Logueo S.V.

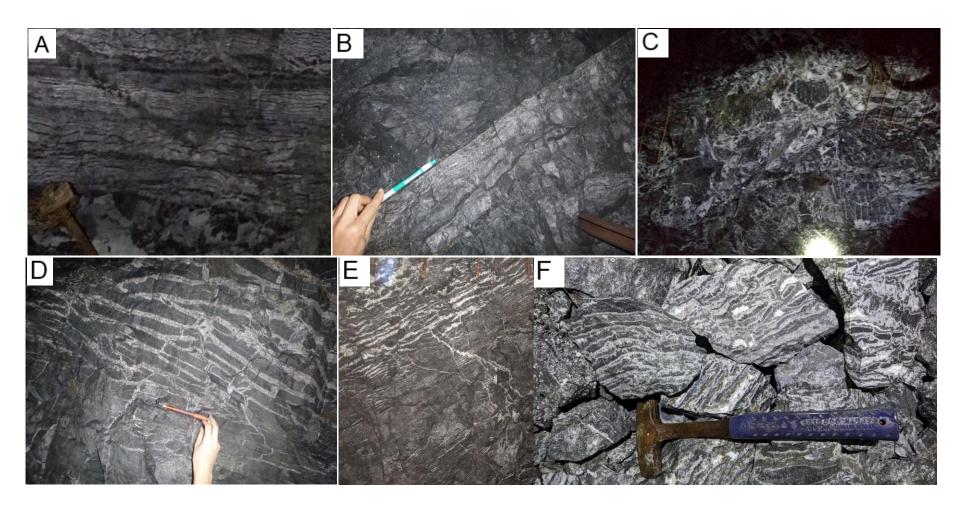
4.2.1.2.2. Tipo de textura.

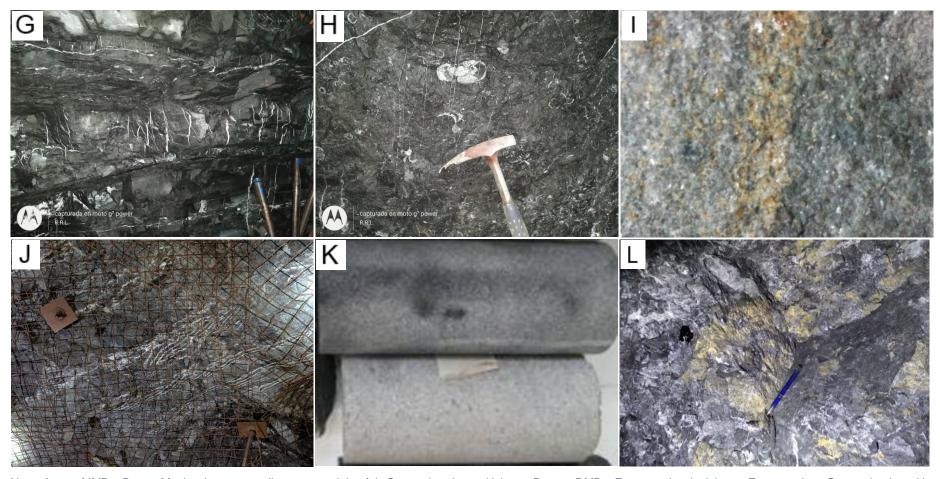
- Cebra estéril. Dolomita en secuencia rítmica de concentración de fluido WSD-GSD en forma bandeada paralela a la estratificación que determina la posición de un manto no mineralizado. Se puede identificar cebra fina, media y gruesa sin mineralización a veces con presencia de bitumen y pirita. Reacciona muy débilmente al ácido clorhídrico (Foto 8_J).
- MMBx (Mineral Matrix Breccia). Brecha dolomítica con fragmentos angulosos de dolomita en matriz de mineral dolomía, los clastos varia en granulometría de fino gris oscuro a gris claro de grano ooides. La matriz es el fluido de WSD, GSD, constituyendo el cemento de la brecha, es decir englobando fragmentos de roca. También llamada brecha dolomítica. El tamaño

de los fragmentos es variable de mm., a varios cm., a veces presentan calcita acompañando a la matriz y rara vez mineraliza, pudiendo presentar mineralización de esfalerita de III generación, algunas veces presenta bitumen en el fluido. Reacciona muy débilmente al ácido clorhídrico. Constituye en la zona baja el techo del manto III Piso, debido a su granulometría fina rara vez mineraliza (Foto 8_A).

- RMBx (Rock Matrix Breccia). Brecha dolomita con fragmentos de dolomita en una matriz de roca dolomítica molida, es considerada una brecha sedimentaria y se encuentra cerca al contacto con las calizas. La granulometría de los fragmentos varía de milímetros a decenas de milímetros granulometría. También llamada micro brecha dolomítica. En algunos casos presenta venas de calcita y nódulos de chert silicios. Reacciona muy débilmente al ácido clorhídrico (Foto 8_D).
- Crackle Breccia. Dolomita constituida por un sistema de venas y venillas de WSD- GSD entrecruzadas que ingresan a la roca aprovechando fracturas y microfallas. Se presentan en rocas dolomíticas de grano fino como de grano grueso, Por lo general las venillas son de WSD (dolomita blanca), no mineraliza y reacciona muy débilmente con el ácido clorhídrico (Foto 8_L).
- Laminar. Se presenta tanto en calizas, como en dolomías, es una distribución compuesto por

intercalaciones de material orgánico con dolomías o calizas en forma tabular, se aprecia generalmente en rocas de grano fino e indican el buzamiento de las capas, a veces presenta venillas de WSD y WCa (calcita), suele presentar capas más oscuras constituidas por laminación algaria a veces disturbada, pueden presentar nódulos de chert. Reacciona muy débilmente al ácido clorhídrico (Foto 8_G).


- Fosilífera. Se presenta generalmente en dolomías recristalizadas de grano medio, casi nunca en calizas, está compuesta por organismos de forma circular a estrellas de tamaños milimétricos los que vivieron en los tiempos de la formación de la roca y que al morir quedaron conservados dentro de la misma. Reacciona muy débilmente al ácido clorhídrico (Foto 8_H).
- Ooides. Dolomía con gramos minúsculos semejantes a huevecillos de peces, la granulometría varía de medio a grueso, en la mayoría de los casos la roca es gris clara, masiva, rara vez presenta venas de fluido.
 Es considerado como una barra favorable para la mineralización. Reacciona muy débilmente al ácido clorhídrico (Foto 8_K).
- Recristalizado o Mosaico. Textura de las rocas que se caracteriza por ser de formas rómbicas a los granos originalmente redondeados, producto del paso del fluido dolomítico. Generalmente se encuentra


- venillas de WSD y GSW. El tamaño de los granos varía de fino a grueso. Reacciona muy débilmente al ácido clorhídrico (Foto 8_I).
- Masivo. Generalmente de grano fino con escasas venillas de WSD, es compacta a veces se presenta muy fracturada. Por su granulometría es una roca poco permeable para el paso de la mineralización. En la caliza Uncush suele presentarse paquetes de estratificación gruesa con este tipo de textura. En dolomías reacciona muy ligeramente y en caliza reacciona fuertemente al ácido clorhídrico (Foto 8_B).
- Cebra Incipiente. Se presenta en dolomías recristalizadas de grano medio, compuesta por venas cortas, delgadas e irregulares de WSD y GSD, con pseudo alineamiento. A veces suele presentarse en tramos persistentes o en pequeños lentes. Se puede considerar como una etapa truncada de formación de cebra. La presencia de bitumen y pirita es muy esporádica. Reacciona muy débilmente al ácido clorhídrico (Foto 8_E).
- Porosa kárstica. Se presenta en calizas y dolomías ooides caracterizados por presentar oquedades producto de la disolución de carbonatos. En el caso de dolomía reacciona débilmente al ácido clorhídrico, en caliza tiene una reacción fuerte.
- Brecha tectónica. Se presenta en tramos con material molido a veces consolidado producto de la

recristalización por fricción, presenta una pseudo alineación de los fragmentos, los colores son generalmente claros, con presencia de óxido y calcita, son indicadores de fallas fuertes, algunos presentan una fuerte reacción al ácido clorhídrico, rara vez presentan pirita.

Foto 8

Tipos de Texturas MVT

Nota: A. tex. MMBx; B. tex. Masiva (contacto caliza negra - dolomía); C. text. brecha multiclasto; D. text. RMBx; E. text. cebra incipiente: F. text. cebra; G. text. laminar; H. text. fosilífera; I. text. mosaico; J. text. cebra estéril; K. text. ooide; L. text. CkBx. Tomada de interior mina San Vicente 2019.

4.2.1.3. Guías estructurales.

Tanto en interior mina como en superficie se han identificado 4 sistemas principales de fallamiento (Plano 1).

4.2.1.3.1. Sistema N - S.

Las fallas N-S en un contexto regional, constituyen fallas de margen de cuenca durante la sedimentación del Pucara: cambios bruscos de facies y espesor son atribuibles a ellas, las más representativas son la falla Alicia al este de la mina que controla la sedimentación entre la mina Norte y quebrada Vilcapoma y la falla Solitaria al oeste de la mina que durante la tectónica andina habría servido como zona de despegue del sobre escurrimiento del granito Tarma.

En interior mina estas estructuras son esencialmente paralelas a la estratificación (los rumbos pueden ser ligeramente variables) con buzamientos bajos al Oeste, sus desplazamientos son inversos (modelo de barajas), pero han sido reactivadas con movimientos normales de menor intensidad. Ocasionalmente, estas cortan a la estratificación, indicando rampas de corrimiento que aún no han sido bien definidas (Plano 2).

4.2.1.3.2. Sistema E - W.

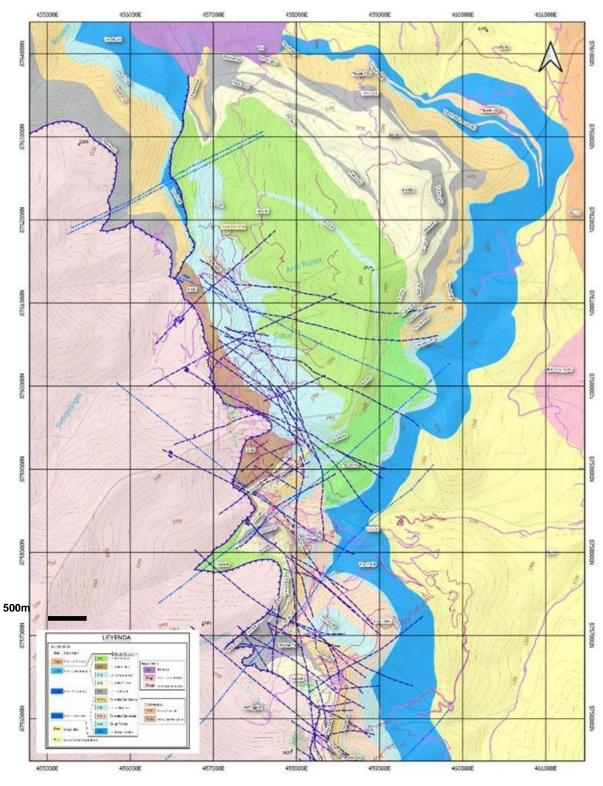
Tiene buzamiento generalmente al NW y su movimiento es dextral normal (<20°). Este sistema pertenece al lineamiento Puntayacu que es un conjunto de fallas con un ancho de más de 400 m. de alcance y al parecer ha producido grandes desplazamientos en los componentes

horizontales sobre todo al Sur de la coordenada 20,530 en el Nv. 1750 (Plano 2).

4.2.1.3.3. Sistema NE - SW.

Tiene buzamiento generalmente al NW y su movimiento es dextral normal (<20°). Este sistema pertenece al lineamiento Puntayacu que es un conjunto de fallas con un ancho de más de 400 m. de alcance y al parecer ha producido grandes desplazamientos en los componentes horizontales sobre todo al Sur de la coordenada 20,530 en el Nv. 1750 (Plano 2).

4.2.1.3.4. Sistema NW - SE.


Son también de alto buzamiento al SW; ocasionan desplazamiento sinestral-normal principalmente. Las fallas 860 y 1220 son los mejores exponentes en interior mina. Se originaron como fallas tensionales de un desgarre sinestral de las grandes fallas longitudinales (Solitaria y Alicia); esto explica el carácter tangencial de la falla 860 en las proximidades de la falla Alicia. Asimismo, durante la tectónica andina, que produjo el sobre escurrimiento del granito Tarma sobre el pucará, este sistema NW-SE se comportan como conjugada del sistema Puntayacu NE, los juegos de ambos sistemas son totalmente compatibles con el movimiento inverso de las fallas longitudinales; dando en conjunto esfuerzos compresivos E-W, que es lógico considerando el contexto tectónico regional de escamas cabalgantes de rumbo N-S (Plano 2).

4.2.1.3.5. Sobreescurrimiento de la granodiorita Tarma.

Es el rasgo estructural más notable del distrito minero, regionalmente forma parte del corredor estructural San Vicente-Oxapampa-Pozuzo que es un sistema de corrimientos de bajo ángulo (Rodríguez et al, 2010). El origen de los corrimientos se debe a una inversión tectónica de probable edad miocénica (Megard, 1984, Gil, 2002), pero el marco tectónico de los Andes indica que puede ser desde el Eoceno (Carlotto et al., 2009), el desplazamiento del sobreescurrimiento puede llegar a 2000 m (Capdevila, 1977).

El buzamiento del sobreescurrimiento, generalmente fue considerado menor a 20° W (Dávila et al., 2000), Sin embargo, el cartografiado de superficie, realizado por SIMSA, muestra que la traza del sobreescurrimiento corta tangencialmente a las curvas de nivel, lo cual refleja un buzamiento suave menor a 30° W; mientras tanto, en otros sectores, como en la quebrada Colca, la traza corta casi perpendicularmente a las curvas de nivel, lo cual refleja un buzamiento mayor a 50° W (Sec. 1). El cambio de buzamiento indica que existen flexiones de falla o rampas frontales debido a que existen estructuras antiguas como el alto estructural Mitu-Pucará de dirección N-S, definido por Dávila et al. (2000).

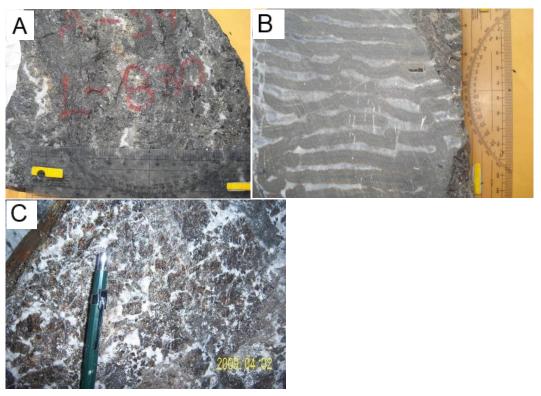
Plano 2
Sistema Estructural - San Vicente

Fuente: Geología SIMSA

4.2.1.4. Guías mineralógicas.

4.2.1.4.1. Tipos de mineralización.

La mineralización de Zinc en San Vicente se presenta en las siguientes formas o tipos.


 Tipo Cebra: Es la típica mena bandeada; en donde el sulfuro principal es la esfalerita de color marróngris-amarilla, etc., de cristalización fina no ferrífera (Blenda rubia); la galena se presenta en pequeñas cantidades, es errática compacta a finamente cristalizada con diseminaciones de pirita fina (Foto 9_B).

La estructura 'Cebra' consiste en venas paralelas de esfalerita y dolomita, de una simetría múltiple en el sentido transversal y generalmente es paralela a la secuencia sedimentaria. El ancho horizontal de los mantos mineralizados varía de 1m. a 20m.

- Tipo Brecha: Fragmentos angulosos de esfalerita masiva, esfalerita bandeada y dolomita, cementados con venas de calcita y/o dolomita; se considera que esta mineralización se ha formado a expensas de la mineralización bandeada (Foto 9_C).
- Tipo Masivo: Consiste en esfalerita de grano fino distribuida en pequeños lentes compacto con dolomita gris clara recristalizada, este tipo de mineralización está ligada a mantos de gran potencia y con alto contenido de Zinc (Foto 9_A).

Foto 9

Tipos de Mineralización MVT

Nota: A. mineralización masiva; B. mineralización en cebra; C. mineralización en brecha

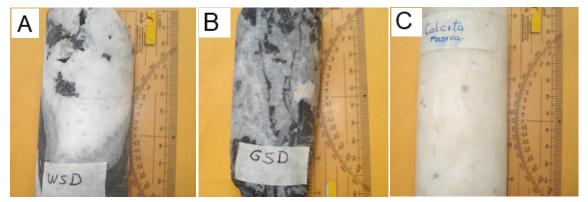
4.2.1.4.2. Controles de mineralización.

Se ha determinado los siguientes controles:

- Control Estructural: Algunas veces los mantos se encuentran más ricos a un lado de la falla, y/o diques de brecha y/o pliegue debido a la removilización de la esfalerita por acción del tectonismo (Foto 11_B).
- Control de Fluido: La GSD-WSD al igual que la pirita
 y el bitumen y los oolitos están acompañado al
 mineral en las cajas piso o techo de los mantos lo que
 ayuda o sirve de catalizador (Bt.) para la cristalización
 de esfalerita.
- Control de Facies: La roca caja que alberga los mantos de esfalerita son de facies oolítica permeable en el frente Este de los mantos está constituida por

facies dolomíticas finas impermeables lo que permitió el entrampamiento del flujo mineralizante (Foto 11_A).

4.2.1.5. Alteración


En la mina San Vicente debido a las temperaturas bajas de formación (90° a 120°C), no se tiene alteración hidrotermal.

4.2.1.5.1. Tipo de fluido de alteración.

- WSD (White Sparry Dolomite). Es la dolomita en forma mineral
 de color blanca y textura esparítica que es parte del fluido
 mineralizante. No Tiene contenido de materia orgánica, se
 encuentra asociada a GSD y calcita en algunos casos.
 Reacciona muy débilmente al ácido clorhídrico (Foto 10_A, Foto
 15_B).
- GSD (Gray Sparry Dolomite). Variante de color gris de la WSD.
 De textura esparítica contiene materia orgánica en general es la que viene acompañada de la mineralización, a veces contiene venillas finas de betumen y pirita. En ocasiones se encuentra asociada con calcita. Reacciona muy débilmente a ácido clorhídrico (Foto 15_B, Foto 15_A).
- Wca (White Calcite). Calcita blanca, de textura afanítica, rara vez se presenta en venas masivas de aproximadamente 10cm, asociada generalmente a WSD, formando pseudomorfos (concentraciones circulares en forma de ojos). También se presenta en geodas con cristales de hasta 0.5 cm. Reacciona muy fuertemente al ácido clorhídrico, indica empobrecimiento de la mineralización o bordes de mantos (Foto 10_C).

Foto 10

Tipos de Fluido de Alteración

Nota: A. fluido blanco (WSD); B. fluido gris (GSD); C. calcita (WCa)

4.2.1.5.2. Elementos Accesorios.

- Nódulos de chert. De color negro, brillante, de forma circular, de alta dureza (no se raya), se presenta en diferentes tipos de roca de grano fino a grueso, constituido por sílice coloidal. La mayor predominancia encontrada en los horizontes cercanos a las calizas negras, puede estar acompañado de pirita.
- Sílice Blanco (WSi). De color blanco, brillo graso de forma botroidal, de alta dureza (no de raya), se presenta acompañada de fluido WSD o GSD. No es muy común (Foto 17_D).
- Azufre nativo. Mineral de color amarillo claro, en raras ocasiones se presenta en grandes cantidades y muy ocasional, generalmente esta englobado en fluido gris (GSD), indicador de mineralización de sulfuros. De baja dureza y brillo graso (Foto 17_A).
- Pirita (Py). Sulfuro de hierro, mineral no económico de la mina, que es característico de los bordes de los mantos mineralizados. Raras veces se encuentra en

forma masiva, es de textura fina acicular, acompañado de bitumen y diseminado de esfalerita (Foto 17_E).

 Pseudomorfos de calcita. Se presenta bajo la forma cristalina, se forma por evaporación de una solución cristalina de cristales de minerales solubles como la evaporitas (Foto 17_F).

4.2.2. Zona control MVT - San Vicente

En este punto se describen los targets de exploración del yacimiento tipo Mississippi Valley de San Vicente antes de la implementación de las guías de exploración.

La distribución espacial de la mineralización está controlada por sistemas estructurales de rumbo N 30° - 40° W, con buzamiento alto de 75° a 85° al NW, determinando zonas de corredores albergantes de mineralización los mismos que presentan una separación de 400m (Plano 3, 4).

4.2.2.1. Dominios lito estratigráfico

4.2.2.1.1. Zona Arcopunco

- Horizontes dolomíticos uniformes, con leve deformación en la mineralización que implica una formación por esfuerzos compresivos de empuje relacionados al sobreescurrimiento.
- Empuje tectónico asociado con la mineralización en esfuerzos compresivos con la formación de una textura Cebra discordante a la estratificación.
- Las fallas de inversas de empuje contienen bitumen, estas fallas forman una capa impermeable a fluidos que contienen mineralización.

4.2.2.1.2. Zona A23 Atahualpa

- Fallas inversas de empuje con la formación de anticlinal inclinado con el flanco oeste buzando 20° y el flanco este buzando 70°, dicho anticlinal mineralizado pertenece al manto San Vicente Techo.
- Los horizontes dolomíticos se presentan uniformes con ocurrencia de mineralización en la ocurrencia de anticlinales.
- Mineralización masiva con tramos de cebra.

4.2.2.1.3. Zona Norte 1 (Alta - Baja)

- Presenta 11 mantos mineralizados a cotas superiores que representan la mayor concentración de mineralización, que a profundidad pasan a ser controles estructurales con buzamiento de 55°.
- La zona mineralizada esta entrampada en un corredor entre calizas, que fueron calizas negras dolomitizadas que a través de un conducto precipitaron en las partes superiores en barras de alta porosidad como son dolomías ooide dando formación a las estructuras cebras típicas, que a profundidad pasan a ser mineralización masiva relacionadas a conductos mineralizantes.
- Mantos mineralizados en cebra a cotas superiores y mantos de mineralización masiva a cotas inferiores con altas anomalías de galena.

4.2.2.2. Dominio estructural

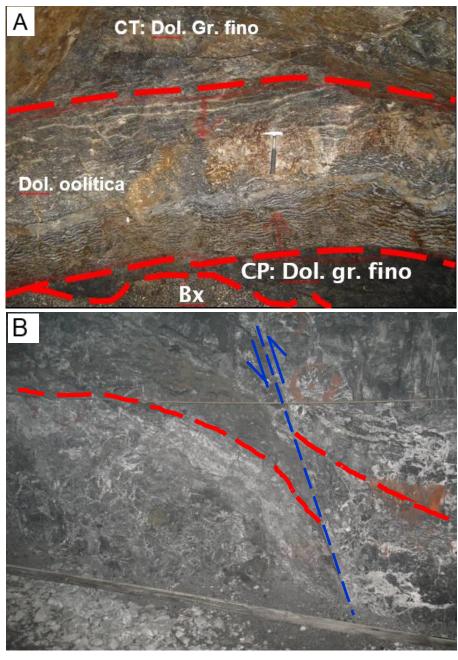
4.2.2.1.4. Zona Norte 2 (Domo - Ayala)

- Relacionada a formación de pliegues, con un característico anticlinal asimétrico con predominio de cebras mineralizadas en las cotas superiores.
- A profundidad la mineralización está relacionada a zonas de brecha con alta presencia de evaporitas, brechas con tramos de cebra, mineral coloforme, mineral masivo entrampada en estrangulamiento de las barras dolomíticas que provocaron un alto enriquecimiento alto contenido de Zn.
- Mantos mineralizados en cebra a cotas superiores, formación de anticlinal con el flanco oeste con buzamiento de 25° y el flanco este con buzamiento de 80°, a cotas inferiores mantos con mineralización en brecha con mineralización de removilización, clastos multitexturales.

4.2.2.1.5. Zona Sur (Sur Alta – Nuevo Rhamys)

 Mantos mineralizados en cebra a cotas superiores con presencia de óxidos (5 – 10%), a cotas inferiores mineralización en brecha con clastos de cebra.

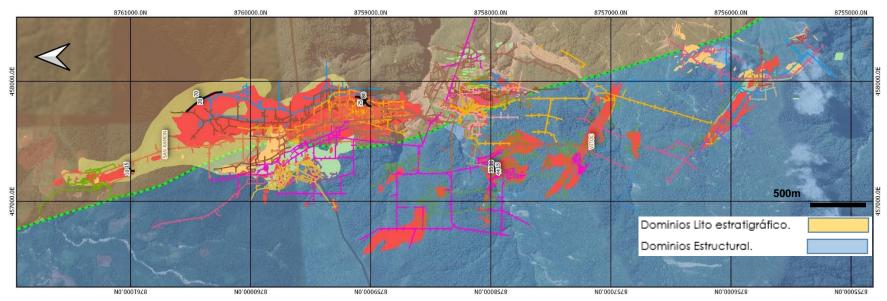
4.2.2.1.6. Zona Uncush (Rhamys – Nuevo Rhamys)


 Mantos mineralizados en cebra brechada, con tramos de brecha. Entrampamiento entre fallas NNW – SSE.

4.2.2.1.7. Zona Uncush (USA)

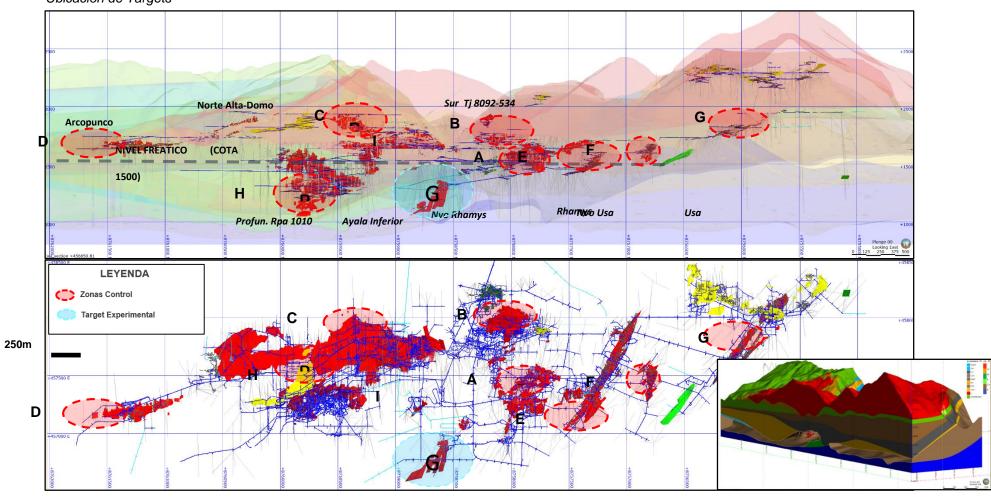
 Mantos mineralizados con dos ramales, al techo brecha, caballo de estructura cebra y al piso cebra mineralizada, manto continuo con bordes de pirita fina.

Foto 11


Dominios de Mineralización Horizonte San Vicente

Nota: A. control de mineralización litológico (facies); B. control de mineralización estructural.

Plano 3


Dominios Mineralógicos del Horizonte San Vicente

Fuente: Geología SIMSA

Plano 4

Ubicación de Targets

4.2.3. Target de exploración Ayala Inferior – target experimental

En este punto del estudio se implementa las guías de exploración para la identificación del Target de Ayala Inferior en el yacimiento tipo Mississippi Valley de San Vicente.

El presente estudio se ejecutó en el Proyecto de Ayala Inferior, desde la Galería 690N, nivel 1515, donde se ubicaron 6 estaciones de perforación, con un metraje de 16,697.00 metros de perforación diamantina durante la campaña de ejecución enero 2018 a julio 2019 en fase Inversión, realizándose en total 32 sondajes negativos de exploración, iniciando en caliza negra Uncush (Horizonte San Vicente) y finalizando en caliza porosa Basal (Horizonte San Judas), para la búsqueda de mantos mineralizados dentro de las trampas impermeables de calizas (Tab. 2).

Tabla 2

Campaña de Perforación DDH 2018 - 2019 San Vicente

Estación	N°	Cámara DDH	Máquina	Fase	Sondaje	Longitud(m)
	1	Cra 567W	LM75_B	Inversión	2N51504302	519.00
	2	Cra 567W	LM75_B	Inversión	2N51504316	502.50
1	3	Cra 567W	LM75_B	Inversión	2N51504322	501.00
	4	Cra 567W	LM75_B	Inversión	2N51504335	462.00
	5	Cra 567W	LM75_B	Inversión	2N51504343	576.00
	6	Cra 627W	LM75_B	Inversión	2N51504357	522.00
	7	Cra 627W	LM75_B	Inversión	2N51504367	526.50
0	8	Cra 627W	LM75_B	Inversión	2N51504376	556.50
2	9	Cra 627W	LM75_B	Inversión	2N51504385	538.50
	10	Cra 627W	LM75 B	Inversión	2N51504396	529.50
	11	Cra 627W	LM75_B	Inversión	2N51504406	460.50
	12	Cra 717W	LM75 B	Inversión	2N51504414	543.00
	13	Cra 717W	LM75_B	Inversión	2N51504431	615.00
3	14	Cra 717W	LM75 B	Inversión	2N51504448	535.50
	15	Cra 717W	LM75_B	Inversión	2N51504466	657.00
	16	Cra 847W	LM75 C	Inversión	2N51504592	567.00
4	17	Cra 847W	LM75_C	Inversión	2N51504601	220.00
	18	Cra 782W	LM75_C	Inversión	2N51504605	552.00
	19	Cra 782W	LM75_C	Inversión	2N51504617	570.00
	20	Cra 782W	LM75 C	Inversión	2N51504630	651.00
5	21	Cra 782W	LM75_C	Inversión	2N51504642	585.00
	22	Cra 782W	LM75 C	Inversión	2N51504648	501.00
	23	Cra 782W	LM75 C	Inversión	2N51504656	552.00
	24	Cra 782W	LM75 C	Inversión	2N51504659	480.00
	25	Cra 8909W	LM75 C	Inversión	2N51504664	565.50
	26	Cra 8909W	LM75 C	Inversión	2N51504670	657.00
	27	Cra 8909W	LM75 C	Inversión	2N51504683	517.50
	28	Cra 8909W	LM75 C	Inversión	2N51504691	450.00
6	29	Cra 8909W	LM75_C	Inversión	2N51504699	588.00
	30	Cra 8909W	LM75_C	Inversión	2N51504744	376.50
	31	Cra 8909W	LM75 C	Inversión	2N51504752	420.00
	32	Cra 8909W	LM75_C	Inversión	2N51504761	400.00
		0.0.000.7			2.10.0001	16,697.00

4.2.3.1. Descripción litológica.

Se realizó taladros de exploración con el objetivo de explorar la continuidad del Horizonte de Ayala Inferior debajo de la cota 1500 desde la Gal 690N, para lo cual se desarrolló 6 estaciones de perforación.

4.2.3.1.1 Tipo de roca

Se registra el tipo de roca englobadas en este tipo de yacimiento que van desde diversos tipo de caliza, dolomía y gradaciones, hasta volcánico y superficialmente intrusivo (Tab. 3).

4.2.3.1.2. Granulometría

Va desde granulometría de grano fino (Foto 12_A), medio (Foto 12_B), grueso (Foto 12_C), con gradaciones de fino a medio, de medio a grueso y de medio a fino, presentándose en los diferentes tipos de texturas dentro de las dolomías (Tab. 4).

4.2.3.1.3. Indice de color de roca

Es la determinación de la tonalidad de la roca, va de N1 a N5 (Tab 5), grada de color negro a blanco, se utiliza la tabla de Charter Rock, las rocas ooides generalmente presenta un N4-N5 (Foto 13_D,E) y las rocas de grano fino a medio un N2-N3 (Foto 13_B,C), las calizas laminares generalmente son N1 (Foto 13_A).

4.2.3.1.4. Cantidad de fluido

Es la cantidad de concentración del flujo mineralizante WSD (Foto 15_A) y GSD (Foto 15_B), que atravesó la roca en el momento que se formó la mineralización,

precipitando en diferentes texturas como MMBx, CkBx, Cebra, etc.

Se clasifica de acuerdo al contenido de fluido de la siguiente manera (Fig. 14):

W0: Sin WSD visible (Foto 14_A); W1: 0-10% (Foto 14_B); W2: 10-20% (Foto 14_C); W3: 20-30% (Foto 14_D); W4: 30-40% (Foto 14_E); W5:>40% (Foto 14_F).

4.2.3.1.5. Tipo de textura

Se explicó en 4.2.1.2.2 (Tab. 8)

4.2.3.1.6. Mantos por horizontes

Basados en criterios litoestratigráficos y teniendo en cuenta además la importancia económica, se han diferenciado diez unidades, de las cuales cuatro secuencias dolomíticas tienen filiación con la mineralización de Zinc (Tab 9, 10).

4.2.3.1.7. Leyes

Los colores estandarizados para el porcentaje de mineralización es: Marrón: 0-5%Zn; Verde: 5-10%Zn; Anaranjado: 10-15%Zn; Rojo: 15-30%Zn; Magenta: >30%Zn (Tab 11).

Tabla 3 *Tipo de Roca*

Vulcan	Código	Descripción	
-99	-	No Definida	
1	Cz	Caliza	
2	CzBi	Caliza Bituminosa	
3	CzDm	Caliza Dolomítica	
4	CzG	Caliza Gris	
5	CzN	Caliza Negra	
6	Dm	Dolomía	
7	DmC	Dolomía Calcárea	
8	DmBi	Dolomía Bituminosa	
9	DmR	Dolomía Recristalizada	
10	DmF	Dolomía Fosilífera	
11	DmK	Dolomía Karstica	
12	F	Falla	
13	1	Intrusivo	
14	V	Volcánico	

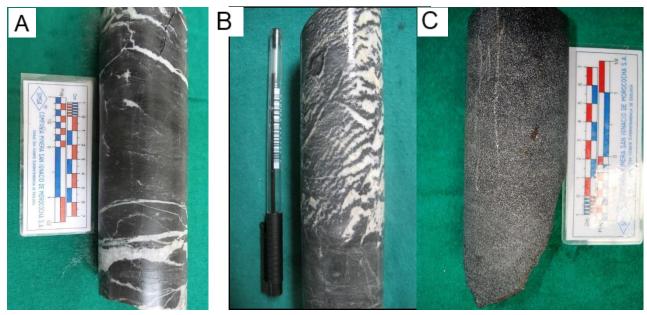

Fuente: Tabla para la digitalización de sondajes SIMSA

Tabla 4 *Granulometría*

Vulcan	Código	Descripción
-99	-	No Definida
1	F	Fino
2	M	Medio
3	G	Grueso
4	FM	Fino a Medio
5	MG	Medio a Grueso
6	MF	Medio a Fino

Foto 12

Granulometría

Nota: A. grano fino; B. grano medio; C. grano grueso. Tomada de Guía de Logueo SIMSA.

Tabla 5

Color de Roca

Vulcan	Código	Descripción
-99	N0	
1	N1	
2	N2	
3	N3	
4	N4	
5	N5	

Foto 13

Color de Roca

Nota: A. N1; B. N2; C. N3; D. N4; E. N5. Tomada de Guía de Logueo S.V.

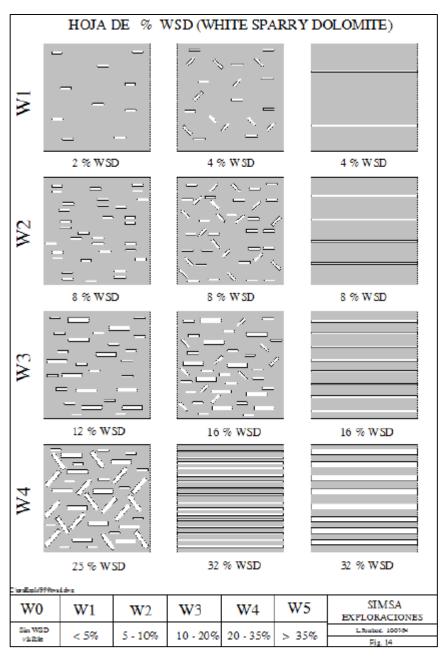
Tabla 6

Fluido

Vulcan	Código	Descripción	
1	WO	0%	
2	W1	0-5%	
3	W2	5-10%	
4	W3	10-20%	
5	W4	20-35%	
6	W5	>35%	

Foto 14

Fluido



Nota: A. W0; B. W1; C. W2; D. W3; E. W4; F. W5.

Tomada de Muestrario Geología SIMSA.

Figura 18

Cantidad de Fluido

Fuente: Guía de Logueo S.V.

Tabla 7 *Tipo de Fluido*

Vulcan	Código	Descripción
WSD	WSD	Dolomita Blanca
GSD	GSD	Dolomita Gris

Fuente: Tabla para la digitalización de sondajes SIMSA

Foto 15

Tipo de Fluido

Nota: A. GSG (Gray Sparry Dolomite); B. WSD (White Sparry Dolomite).

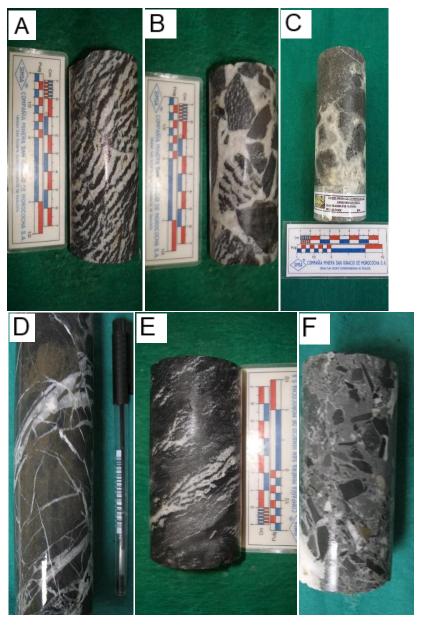

Tomada de Muestrario Geología SIMSA.

Tabla 8Tipo de Textura

Vulcan	Código	Descripción	
-99	-	No Definida	
1	0	Ooide	
2	Ms	Masiva	
3	Lm	Laminar	
4	Fr	Fracturada	
5	Ps	Porosa	
6	K	Karsticada	
7	Arc	Arcillosa	
8	Aren	Arenosa	
9	Cblcp	Cebra Incipiente	
10	Cb	Cebra	
11	CbG	Cebra Gruesa	
12	CbF	Cebra Fina	
13	Bx	Brecha	
14	Bxc	Brecha de colapso	
15	BxHy	Brecha Hidraúlica	
16	BxT	Brecha Tectónica	
17	RMBx	Rock Matrix Brecha	
18	MMBx	Mineral Matrix Brecha	
19		Cracker Brecha	

Foto 16

Tipo de Textura

Nota: A. Cebra; B. MMBx; C. BxO; D. CkBx; E. CbIncp; F. RMBx.

Tomada de Muestrario Geología SIMSA.

Tabla 9

Mantos por Horizontes

Vulcan	Código	Descripción
-99	-	No Definida
1	Alf - Alfonso III	Alfonso III
2	Alf - Alfonso II	Alfonso II
3	Alf - Alfonso I	Alfonso I
4	S.V - San Vicente Techo	San Vicente Techo
5	S.V - San Vicente Piso	San Vicente Piso
6	S.V - Jesús Techo	Jesús Techo
7	S.V - Jesús	Jesús
8	S.V - Ayala	Ayala
9	S.V - III Techo	III Techo
10	S.V - III Intermedio	III Intermedio
11	S.V - III Piso	III Piso
12	S.V - II	II
13	S.V - I	I
14	S.V - IA	IA
15	S.V - IB	IB
16	S.JSan Judas III	San Judas III
17	S.JSan Judas II	San Judas II
18	S.JSan Judas I	San Judas I

Fuente: Tabla para la digitalización de sondajes SIMSA

Tabla 10

Horizontes

Vulcan	Descripción		
1	Otros		
2	Dolomía Colca		
3	Caliza Orcopunco		
4	Dolomía Alfonso		
5	Caliza Uncush		
6	Dolomía San Vicente		
7	Caliza Neptuno		
8	Dolomía San Judas		
9	Caliza Porosa Basal		

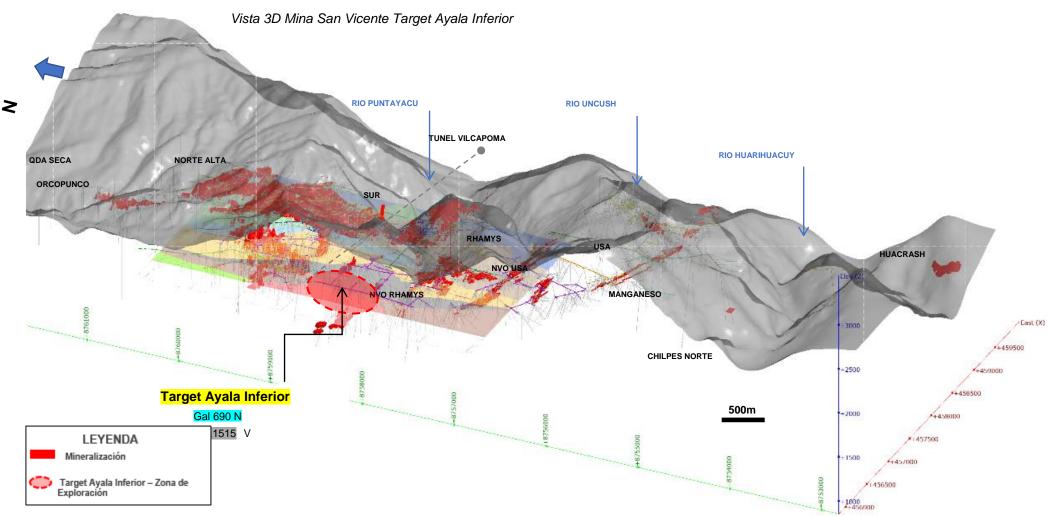
Tabla 11

Leyes

Leyes	Color
0 - 5%	
5 - 10%	
10 - 15%	
15 - 30%	
>30%	

Fuente: Tabla para la digitalización de sondajes SIMSA

Foto 17


Minerales Guía

Nota: A. azufre; B. bitumen; C. calcita; D. sílice; E. pirita; F. pseudomorfo de calcita

4.2.3.2. Exploración Ayala Inferior

Figura 19

4.2.3.2.1. Estación N°1.

Se ejecutaron 5 sondajes desde la Cra 567W, con longitudes promedio de 500m, el objetivo fue interceptar los mantos mineralizados dentro del Horizonte San Vicente constituido por los mantos IIIS, IIS, IS, IA, IB, IC dentro de la barras dolomíticas oolíticas, los sondajes iniciaron en Clz Negra Uncush, constituidos por una textura masiva iniciando los sondajes y gradando a una textura laminar algaria (estromatolítica) bituminosa, pasando a la dolomía San Vicente que contuvo una gradación de facies con abundante fluido GSD de barra favorable debido a la mayor depositación de facies permeables a poco permeables, englobados en brechas (Fig. 20).

• DDH - 2N51504302

Este taladro presentó mineralización dentro del Horizonte San Vicente llegando a interceptar los mantos IIIS, IIS, IS, IA, IB, IC, debido a que se encuentra en una zona de depositación de facies permeables con abundante fluido GSD en MMBx mineralizados y no mineralizados y al estrangulamiento de la Caliza Neptuno, llegando la barra San Vicente hasta la Clz. Basal (Sec. 3).

El Horizonte San Vicente presenta una potencia de 250 metros, con intercalaciones de CrBx en los contactos de las calizas, brecha en la totalidad del taladro y mineralización relacionada a MMBx.

La granulometría de la roca es de tipo wackstone, asociada en los contactos con la Clz Negra Uncush y la Clz Basal con un N2, gradando a una facies packtone en asociaciones con la mineralización, presentando un N3 a N4.

Los mantos interceptados presentan una mineralización entre Cebra y Brecha con abundante fluido gris W4 (Tab. 12).

La Sph Rubia es la que predomina en una mineralización masiva y en brecha, luego la Sph gris en cebra (Tab. 18).

Tabla 12 *DDH-2N51504302*

Registro Logueo		.ogueo	Horizonte	Manto	Mineralización
Assay	m	Facies	Horizonte	Wanto	Willieralizacion
12363 0.07 0.8 0.44 12364 0.02 1.57 0.29 12365 0.32 0.7 0.33 12365 0.32 0.34 12365 0.04 0.42 12365 0.04 0.42 12365 0.04 0.42 12365 0.04 0.42 12365 0.04 0.42 12365 0.04 0.42 12365 0.04 0.42 12365 0.04 0.42 12365 0.04 0.42 12365 0.04 0.44 12365 0.044 0.26 0.44 0.26 0.26 0.44 0.26 0.26 0.44 0.26 0.26 0.44 0.26 0.26 0.44 0.26 0.	285	Dm Clab Mo (Wel Ne do 40) Dm Clab Mo (Wel Ne do 40) Dm Slab Mo (Wel Ne do 40) Dm Malo Mo (Wel Ne do 40)	sv	III S	Вх
12893 D.430.2 D.44 12894 D.0.0.32 D.27 12896 D.010.04 D.29 12896 D.010.04 D.29 12896 D.020 D.20 D.44 12897 D.480.75 D.32 12896 D.0314.06 D.34 12899 D.011.09 D.30	300	Dm (266), M3 W4 M4 00 40 Dm (466), M3 W3 M4 M5 00 00 Dm (266), M3 W3 M4 50 00 Dm (266), M3 W3 M3 M5 00 Dm (266), M3 W3 W3 M3 00 00 Dm (266), M3 W3 W3 M4 00 40 Dm (266), M3 W3 W3 M4 00 40	sv	ШS	Сь
12387 0.0218.16 0.94 12388 0.010.13 0.53 12389 0.0410.05 0.86 12380 0.0617.28 0.91 12391 0.026.64 0.55 12392 0.026.68 0.57	325	Don Cobbs 4 M WO NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	sv	IS	Сь
12394 0.027.18 0.51 12395 0.01257 0.54 12396 0.02 0.83 0.63 12397 0.010.19 0.42	343 345	Dm MMB MG W3 N4 50 50 Dm Bx M W2 N4 50 50 Dm MMB MG W3 N4 60 40 Dm Bx M W2 N3 N4 60 40	sv	IA	Вх
12401 0.0794.60 1.58 12402 0.010.31 0.40 12403 0.010.23 0.52 12404 0.0114.55 0.65 12405 0.010.29 0.61 12406 0.010.22 0.38	366	Dm	sv	IB	Сь
12467 0.011.57 0.54 12468 0.010.57 0.52 12469 0.013.52 0.66 12410 0.014.59 0.57 12411 0.010.08 0.46 12412 0.010.00 0.53 12413 0.010.00 0.44 12414 0.010.01 0.56	382	Dm	sv	IC	Вх

4.2.3.2.2. Estación N°2.

Se realizaron 6 sondajes diamantinos, desde la Cra 627W – Gal 690N, con una longitud promedio de 500 metros, para explorar la continuidad de los mantos IIIS, IIS, IS, IA, IB, IC, en el Horizonte San Vicente, se toma como referencia para fines del estudio el sondaje 2N51504357 (Fig. 20).

DDH – 2N51504357

Longitud total de 522.00m., Rumbo N73°W, Dip (-)83°, inicia en Clz Negra Uncush de textura masiva en las partes superiores y laminar hacia la base con contenido de materia orgánica y venas y venillas de calcita. La barra San Vicente presenta dolomías de granulometría media a grueso, con N3-4 y W4-5. Se interceptaron los mantos IIIS, IIS, IS, IA, IB, IC (Tab. 13, Sec. 4), la presencia de mineralización se da en una zona de brecha englobando MMBX y Cb (Tab. 19). No se evidencia la presencia de la Clz Neptuno, esto debido al estrangulamiento de la barra hacia el sur. Llega hasta la Clz Basal, de color negro, con una granulometría fina, y de textura laminar.

Tabla 13DDH-2N51504357

Reg	Registro Logueo		Horizonte	Manto	Mineralización
Assay	m	Facies	Horizonte	Wanto	Willeralizacion
12861 0.03 7.1 0.44 12862 0.01 0.19 0.30 12863 0.01 0.00 0.27 12864 0.01 0.00 0.27 12866 0.01 0.00 0.25 12860 0.01 0.00 0.25 12862 0.01 0.00 0.32 12862 0.01 0.00 0.32	253 261	Dm Shades 4 MS DM 4 M4 SD 50 DD Dm Shades 5 MS DM 4 M4 SD 50 DD Dm Shades 5 MS DM 5 MS	sv	IIII S	Вх
12020 0 0 10 7 0 0 0 0 1 1 2 0 0 1 1 1 2 0 0 1 1 1 1 1	304	Om Cb MG W3 N4 40 60 Cm MMG V3 N4 10 60 Cm MMG V4 N4 10 10 Cm MMG V4 N4 W3 N4 10 10 Cm MMG V4 N4 W3 N4 10 10 Cm MMG V4 M6 W3 N4 10 50 Cm MMG V4 N4 W3 N4 50 50 Cm MMG V4 N4 W3 N4 50 50	sv	II S	Вх
12033 0.052 25 0.03 12034 0.053 16 0.06 12035 0.042 65 0.32 12039 0.048 6- 0.76 12037 2.507 66 0.84 12039 0.024 51 0.66 12039 0.024 51 0.66 12039 0.024 50 0.66	321	Dm: MMBb, MG W4 N4 60 40 Dm: MMBb, MG W3 N4 50 50 Dm: MMBb, MG W3 N4 60 40 Dm: MMBb, MG W3 N4 60 40 Dm: MMBb, MG W4 N4 60 40 Dm: MMBb, MG W4 N4 60 40 Dm: MMBb, MG W3 N4 50 50 Dm: D MMB G W3 N4 50 50 Dm: D MMB G W3 N4 60 50	sv	IS	Вх
12641 0.060.58 2.04 12642 0.0725.86 1.77 12643 0.03(1.61 0.80	350 352	Om Cb MG W4 N4 80 40 Om MMBs MG W3 N4 80 40 Om MMBs M W2 N4 0 0	sv	IA	Сь
12644 2.83 3.96 2.23 12645 0.45 0.33 1.01 12645 0.45 0.3 1.01 12648 0.46 5.64 0.76	359 361	Dm	sv	IB	Вх
12647 0.016.45 0.72 12648 0.038.26 1.68 12649 2.5683.31 1.30 12649 2.5683.31 1.30 12650 0.010.27 0.48	388 391	Dm MMB MG MG W3 N4 80 40 Dm MMB MG MG W4 N4 80 40 Dm Cb MG W3 N4 80 80	sv	IC	Cb

4.2.3.2.3. Estación N°3.

Se realizaron 4 sondajes diamantinos, desde la Cra 717W – Gal 690N, con una longitud promedio de 500 metros, para explorar la continuidad de los mantos IIIS, IIS, IS, IA, IB, IC. La exploración de Ayala Inferior comprendido en el Horizonte San Vicente, está controlado por un sistema estructural de N45°W, sistema de fallas inversas de alto ángulo, formando trampas estructurales, en zonas de acortamiento de la barra, la mayor o menor cantidad de

recursos tiene como segundo parámetro la litología. Se toma como referencia para fines del estudio el sondaje 2N51504466 (Fig. 20).

DDH – 2N51504466

Longitud total 657.00 m., Rumbo N58W, Dip (-)64, Inicia en Clz. Negra Arcopunco de granulometría fina, de textura masiva craquelada, а pasando inmediatamente a la barra Alfonso, de facies poco porosas exhibiendo una granulometría fina no favorable para el entrampamiento de mineral. Continúa la Clz Negra Uncush, mostrando una gradación de textura masiva al techo a laminar bituminoso al piso. La barra San Vicente presenta una granulometría media a gruesa, N4, W3-4, Se interceptaron los mantos IIIS, IIS, IS, IA, IB, IC (Sec. 5), mineralización en MMBX (Tab. 14, Tab. 20). No se evidencia la presencia de la Clz. Neptuno, se llega hasta la Clz. Basal.

Tabla 14 *DDH-2N51504466*

Assay	m	Logueo Facies	Horizonte	Manto	Mineralización
13278 0 041 24 0 40		Dm. MWB. MG38374 53 50			
13279 0 180 83 0.44		Dec Cb MO N/3 N4 53 50			
13280 0 010 01 0 24		Des Celle Ser Without a a			
13281 0.010.01 0.13		On 0 M N1N4 0 0			
	394	O M M154 0 0			
13282 0.129 15 0.98		One MMBH IMP MH NA 43 60			
13283 0 010 02 0 36		On: MWB4 W0 W4 NA 30 70			
13284 0 010 54 0 31		On MADE MOSTIFF NA 32 70			
13285 0.042 42 1.00		Dm 18984 WO 804 N4 43 60			
13286 0 3181 64 1 06		Dr. MM9+ MO3/03/14/ 50 50			
13267 0 011 29 0 60		On: Cb MG MG M3 NA 50 50			
13288 0 2099 13 1 38		Dec payers and any on any			
13289 0.032.8 0.79		DHI MANDA MIGHING NA 40 60			
13290 0 039 44 0 92		Om Cb MG/W3/N4 53 50			
13291 0.447.64 0.91		Day MARKE MISHING NA 22 50			
13293 0.080.80 0.02		Dec March Inches no 2010			
13294 0.010.04 0.41		Dec. Bo W 882 NA 30 70			
13295 0.045 83 0.53		Dm 1885 - NO N3 N4 40 90			
13296 0.010.02 0.60			sv	III S	Bx
		ON COP M W3 NA 301 /0			
13297 0.014 25 0.49		On MINE MONTH 30 70			
10298 0.054.55		On 1889 MORTH 10 10			
13299 0.011.41 0.41		Drs. St. F. M (M2) NM 30 70			
13300 0.010.57 0.40		=			
		on Martin Michael Na 60 50			
13301 0.169.03 0.72		Dec Seeds MC MV No. 50 50			
133030.0712.11		On 1889 MONTH 10 10			
13304 0.7320.81		Sent March Model No. 50 50			
13305 0.010.13 0.52		Dec 8x 2 M 8/2/84 30 70			
13308 0.010.07 0.47		Om O Marine 0 0			
13307 0.010.92 0.35		On MISS M 802 NA 30 70			
		Dry MARSA M (83 NA 30 70			
13309 0.014.60 0.51		Den Park W MC NA 40 FD			
13310 0.010.91 0.42		Den Bo + MO M2 NA 30 70			
13311 0.030.81 0.49		Drs. colop. M 982 NA 30 70			
133120.164.59		Dry 1869/ MS 953 NA 50 50			
13313 0.090.34 0.77		Dn. MWSV WS W3 N4 42 60			
13314 0.084 87 0.84					
13315 0.000.53 0.44	426				
13316 0 012 38 0 52		On CB MC 82 24 40 50			
13317 0.0702.70		On 1880, MO 83 NA 60 40			
13318 0.5807.72		Drs (MRS) (MD) (R3 (MR S) 40			
13319 0.298.87 0.72		On Co MS MS M3 N4 40 60			
13320 0.133.52 0.67		On Co MORS NA 40 60	sv	IIS	Сь
13321 0.007.37 0.66		Drs. Cb MS MS NA 40 60	•	0	0.5
13322 0.103 26 0.60 13323 0.048.15 0.84		One Co MS 983 NA 30 70			
13324 0.0305.24 1.12	432	Dm. Ca MO MO NO NA 40 60			
13325 0.0185.53 1.06		Dn Co MS 83 N4 45 60			
13326 0 011 93 0 32		DH Co MS 92 N4 30 70			
15594 0.010.19 0.34	440	Dev Co M9 N/3 N4 50 50			
12305 0.015.41 00.37		Dw. Co M9 M2 N4 50 50			
	442		sv	IS	Cb
18800 0.010.13 0.27		Dw 0 M M1N4 0 0	34	13	CD
12397 0 010 10 0 31		On Co MG 844 N4 50 50			
13327 0.000.02 0.16					
13329 0 000 01 0.14		On Co MO W3 NH 30 73			
133290.010.55	468	Dec CaF M W2 N# 30 70			
13330 0 0301.80 2.10		On Co MO W2 No 20 70			
13331 0.010.48 0.03		O MON2NA 40 80			
13332 0 07 5 0 2 50		Des MANSS M SWATER 40 80			
13333 0.000 11 2.00		Dry March MSWYTH 0 0			
13334 1 058 84 1 04		Drs. MAIDs - MO M7 NA 30 70			
13335 0.0023.00		Dres Seattle 1885 1973 Not 40 80			
13336 0.1582.40		On 1889 180 187 NA 50 50			
13337 1244 36 138 13338 0 6605 3-11 23		OH SMISS MONTH 50 50			
		Dev. (480 N/3 Nat 50 50	sv	IA	Bx
13330 0.06(1.1) 1.07		Des MARSY - MSSAY3.NW 50 50	- 1		
13340 0.1588.63 1.22		Dec 14654 (4654V3/44 50 50			
13341 0.040.41 0.34		Dry MMSs (MS-M/3 NA 40 80			
13342 0.030.60 0.78		Dev. 5869s , M3 N3 N4 40 80			
13343 0.9212.00 1.12		Dec 1860s 160 003 Na 40 80			
11345 0 340 27 0 000		which has			
13346 4.6685.12 1.56		On MINE MO WIS NO 50 50			
13347 2.0001.13		OC MINE WG WO NA SO SO			
13348 0.8885.40 1.26		On MARK WO MS NA 60 60			
13349 2.73 6.43 1.62		On MINE MO WI NA 50 50			
13350 2.100 1.13 1.43	405	Ore: MW06, MG W3 NA 50 50			
13351 3.51 3.90 1.55	485	On: MWSN MG W2 NA 40 60			
133830 1299.73 1.49		On MARS WO W3 NA 40 60			
		1 8 8 1			
13354 0.05 3.13 0.80		On MINE MO W3 N# 50 50			
13388 0.0617.11		On WHEN MO W3 NA 50 50	sv	IB	Bx
133860.0621.14		On WINEY MG W3 NA 50 50			D.
13357 0.0717.7 0.79		On MINE MO W3 NA 50 50			
	490	On MINE MO W3 N4 50 50			
13350 0.0027 93 1.51		On MIND MG W3 NA 50 50			
13350 0 0 10 10 10 0 22					
15560 0.010.25 0.47	507	On MINE MG W3 NA CO CO			
13350 0 0 10 10 10 0 22		On 3898, MS 9/3/94 50 50 On 3898, MS 9/3/94 50 50			
15560 0.010.25 0.47	507		sv	IC	Вх
13800.010.25 0.47 13801.014.80 0.61			sv	IC	Вх

4.2.3.2.4. Estación N°4.

Se realizaron 2 sondajes diamantinos, desde la Cra 847W – Gal 690N, con una longitud promedio de 500 metros, para explorar la continuidad de los mantos IIIS, IIS, IS, IA, IB, IC. La exploración de Ayala Inferior comprendido en el Horizonte San Vicente, está controlado por un sistema estructural de N45°W, sistema de fallas inversas de alto ángulo, formando trampas estructurales, en zonas de acortamiento de la barra, la mayor o menor cantidad de recursos tiene como segundo parámetro la litología. Se toma como referencia para fines del estudio el sondaje 2N51504592 (Fig. 20).

• DDH – 2N51504592

Longitud total 567.00 m., Rumbo N59W, Dip (-)71, Inicia en Clz Negra Arcopunco de granulometría fina, de textura masiva craquelada, а pasando inmediatamente a la barra Alfonso, de facies poco porosas exhibiendo una granulometría fina no favorable para el entrampamiento de mineral. Clz Uncush de textura masiva a laminar. No llega a interceptar mineral, presenta facies de granulometría media a gruesa con N3-4, W4-5, presenta diseminación de py englobado en MMBx (Tab. 16, Tab. 21) gradando a facies finas con laminación algaria poco porosas hasta llegar a la Clz Basal (Sec. 6).

Tabla 15 *DDH-2N51504592*

Registro Logueo			- Horizonte	Manto	Minorolización
Assay	m	Facies	Horizonte	Walto	Mineralización
		Dm Bx 0 W3 N3 95 5 Dm chicp G W3 N3 95 5 Dm CchF G W3 N3 95 5			
		Dm sbiop G W2 N3 95 5			
		Dm MMBs G W4 N3 90 10 F	sv		
		Dm MMB, M W3 N3 80 20			
		Dm MG W2 N3 100 0			
		Dm O G W2 N3 50 50			
		Dm O G W1 N3 100 0 Dm Bx M W2 N3 95 5			

4.2.3.2.5. Estación N°5.

Se realizaron 7 sondajes diamantinos, desde la Cra 782W – Gal 690N, con una longitud promedio de 500 metros, para explorar la continuidad de los mantos IIIS, IIS, IS, IA, IB, IC. La exploración de Ayala Inferior comprendido en el Horizonte San Vicente, está controlado por un sistema estructural de N45°W, sistema de fallas inversas de alto ángulo, formando trampas estructurales, en zonas de acortamiento de la barra, la mayor o menor cantidad de recursos tiene como segundo parámetro la litología. Se toma como referencia para fines del estudio el sondaje 2N51504630 (Fig. 20).

DDH – 2N51504630

Longitud total 651.00 m., Rumbo N67W, Dip (-)67, Presenta una interdigitación de Caliza Arcopunco, repitiéndose con intervalos de dolomía Alfonso de facies poco poroso con granulometría fina a media,

textura brechosa a masiva. Clz Negra Uncush de textura masiva a laminar. Barra San Vicente de granulometría media a gruesa, N3-4, W3-5. Intercepta los mantos IIIS, IIS, IS, IA (Sec. 7), mineralización en Cb, Bx y MMBx (Tab.16, Tab. 22). Llega hasta la Clz Basal.

Tabla 16DDH-2N51504630

Registro Logueo		Horizonte	Manto	Mineralización	
Assay	m	Facies	Horizonte	Wanto	Willieralizacion
14672 0.04 2.16 0.24 14673 0.1381.17 3.29 14674 0.1311.43 0.99 14675 1.011 0.03 0.87 14676 0.09 0.65 0.53 14677 1.1215.04 1.03 14678 0.04 2.72 0.34	437	Dm	sv	III S	Вх
14879 0.020.82 0.17 14880 0.0921.07 0.78 14881 0.558.43 0.58 14882 4.791.04 1.14 14883 0.024.82 0.83 14884 0.028.55 0.65	486	Dm O G M W N4 N4 90 10 Dm Cb M W4 N4 95 15 Dm Cb M W4 N4 90 10 Dm Cb M W5 N4 95 15 Dm MMS+ M W5 N4 95 15	sv	II S	Cb
1465 0.046.81 0.76 1465 0.046.81 0.76 1465 0.046.81 0.88 1468 0.046.41 1.27 1468 0.046.41 1.27 1468 0.046.45 1.27 1460 0.046.05 0.04	498	Dm CBB, M W5 N4 80 20 Dm CBB, M W4 N4 80 20 Dm MB, M W5 N3 96 5 Dm MB, M W5 N3 96 5 Dm B, M W5 N3 96 5 Dm B, M W5 N3 96 5 Dm MB, M W5 N3 96 5	sv	IS	Вх
14693 0.034.1- 0.77 14694 0.0810.0- 0.85 14696 0.040.11 0.83 14696 0.032.6- 0.78 14697 0.030.72 0.94 14698 0.010.21 0.50	501	Om Bs & O W3 N3 N3 00 10 Om Bs & M W3 N3 00 10 Om Bs & M W3 N3 00 10 Om CoBs & MG W3 N3 00 10 Om Cob G W3 N3 00 10 Om Cob G W3 N3 00 20 Om Cob G W3 N3 00 20 Om Solog G W3 N4 70 30	sv	IA	Вх

Fuente: Elaboración propia

4.2.3.2.6. Estación N°6.

Se realizaron 8 sondajes diamantinos, desde la Cra 8909W – Gal 690N, con una longitud promedio de 500 metros, para explorar la continuidad de los mantos IIIS, IIS, IS, IA, IB, IC. La exploración de Ayala Inferior comprendido en el Horizonte San Vicente, está controlado por un sistema estructural de N45°W, sistema de fallas

inversas de alto ángulo, formando trampas estructurales, en zonas de acortamiento de la barra, la mayor o menor cantidad de recursos tiene como segundo parámetro la litología. Se toma como referencia para fines del estudio el sondaje 2N51504664 (Fig. 20).

DDH - 2N51504664

Longitud total 565.50 m., Rumbo N66W, Dip (-)75, Inicia en Clz Negra Uncush de textura masiva a laminar. La barra San Vicente presenta una granulometría media, N3, W5, Se interceptaron los mantos IIIS, IIS, IS, IA, IB, IC (Sec. 8), mineralización de Sph Gris en MMBX (Tab. 17, Tab. 23). No se evidencia la presencia de la Clz Neptuno, se llega hasta la Clz. Basal.

Tabla 17 *DDH-2N51504664*

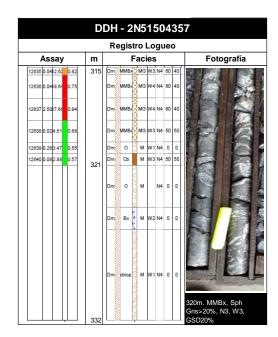

		_ogueo	Horizonte	Manto	Mineralización
Assay	m	Facies			
15079 0.010.46 0.36 15080 0.028.51 0.68	357	Om PseBx G W3 N4 50 50 Om PseBx G W3 N4 60 40			
15081 0.035.87 0.51		Om MMBs M3 W4 N4 60 40	sv	III S	Вх
15082 0.022.05 0.42		Om MMB» MG W4 N4 80 20	•	0	
15083 0.057.38 0.58 15084 0.01 1.80 0.45	360	Om MMB M3 W4 N4 80 20 Om MMB M3 W5 N4 80 20			
15085 0.038 23 0.64	367	Om Cb M W4 N4 90 10			
15088 0.0710.81 0.74		Om Cb M W4 N4 90 10			
15087 1.0423.47 1.15		Om CbBx M W4 N3 90 10	sv	IIS	Cb
15088 0.01 0.02 0.16	371	Om MO M W2 N3 90 10			
		3			
15090 0.012.15 0.24		Om O G W2 N4 50 50			
15091 0.010.04 0.10		Om O G W1 N4 0 0			
15092 0.010.01 0.22		Om MO M W2 N4 50 50			
15093 0.01 0.47 0.17	376	Om MO M W2 N4 50 50			
15094 0.01 2.76 0.34		Om MMBv M W4 N4 70 30			
15095 0.0322.20 1.29		Om Cb MG W5 N4 70 30			
15095 0.039.49 0.61		Om MMB, G W4 N4 80 40			
15097 0.0623.8		Om Cb8x G W5 N4 60 40			
15098 0.03 0.57 0.82 15099 0.09 1.00 0.53		Om MMB» G W5 N4 80 40			
15100 0.2010.44 0.83		Om MMBx G W5 N4 80 20 Om MMBx G W5 N4 60 40			
15101 0.043.87 0.55		Om MMB, G W4 N3 80 20			
15102 0.0312.50 0.79		Om MMB# G W4 N3 80 20			
15103 0.0920.50 0.70		Om PseBx G W5 N3 70 30			
15104 0.01 5.29 0.52		Om MMBx G W5 N3 60 40			
15105 0.01 0.32 0.51		Om MO FM W1 N3 0 0			
15108 0.40 9.58 0.74		Om PseBs MG W4 N3 60 40			
15107 0.0816.18 0.83		Om PseBr MG W4 N3 60 40	sv	IS	Вх
15108 0.9815.96 0.67		Om Cb M W4 N3 80 20	•		
		Om Cb8x M W4 N3 70 30			
15110 0.28 8.51 0.95		Om CbBx M W4 N3 90 10			
15111 0.0520.7		Om CbG M W4 N3 60 40			
15112 0.1420.84 1.18					
		Dm CbBx M W4 N3 70 30			
15113 0.47 2.5 0.80		Om CbBx MG W4 N3 80 20 Om MO MF W2 N3 70 30			
15115 1.122.60 1.28		Om CbBx M W4 N3 80 20			
15116 1.13 4.85 0.86		Dm MMB ₈ M W3 N3 80 20			
15117 1.84 0.10 0.76		Om MMBx: M W3 N3 80 20			
15118 0.10(1.17 0.73		Dm CbBx 4 M W4 N3 80 20			
15119 0.6617.46 1.32		Om CbBx M W4 N3 80 20			
15120 1.7217.38 1.22		Om PseBy M W4 N3 80 20			
15164 0.250.51 0.33		Dm PseBr M W4 N3 80 20			
15121 0.000.66 0.37		Om Cb M W4 N3 90 10			
15122 0.03 5.27 1.32		Dm CbBx M W4 N3 100 0			
15123 0.0418.13 1.46		Om cblcp. M W3 N3 90 10			
15126 0.000.10 0.24	405	Om CbF M W3 N3 80 20			
15127 0.000.67 0.28		Dm Bx M W3 N3 90 10			
15128 0.000.03 0.19		Dm Bx M W3 N3 90 10			
15129 0.022.38 0.32		Om MMBs M W5 N3 80 20			
15130 0.01 2.54 0.75	409	Dm Bx M W3 N3 90 10			
15131 0.021.09 0.21		Om CrBx X M W3 N3 95 5	sv	IA	Вх
15132 0.010.53 0.27		Dm oblop M W3 N3 95 5	÷.	" .	
15133 0.2800.93 1.22 15134 0.151.48 0.43		Dm			
15135 0.487.06 0.69		Om CbBx M W4 N3 95 5			
15138 0.000.67 0.37 15137 0.2011.88 0.94		Om cblcp M W2 N3 95 5 Om MMB M W4 N3 95 5			
15138 0.022.43 0.44	416	Dm Bx M W3 N3 90 10			
		Dm MMB M W5 N3 95 5			
15139 0.0285.51 1.63		Dm MMBx M W5 N3 80 20	sv	IB	Bx
15140 0.0201.50 0.76	420	Om MMBs M W5 N3 80 20			
15144 0.0381.40 2.06	420	Dm Cb M W4 N3 80 201 Dm Cb M W4 N3 40 80			
15145 1.5082.58 1.53		Om Cb M W3 N3 80 20			
15146 0.0211.81 0.61	422	Om CbF M W4 N3 70 30	sv	IC	Cb
15147 0.000.19 0.49		Om tolop M W3 N3 95 5			
		1 20 10 1 1 1			

Tabla 18 *Logueo DDH-2N51504302*

	DDH - 2N51504302							
	Registro Logueo							
Assay	m Facies	Fotografía						
12363 0.027.08 0.44 12364 0.021.57 0.20 12365 0.323.07 0.33 12366 0.010.32 0.36 7 12367 0.010.17 0.38 12369 0.048.86 0.38 12369 0.048.86 0.38 12360 0.042.17 0.39 12361 0.0721.34 0.44 12362 0.069.41 0.26 12363 0.433.024 0.44 12364 0.020.32 0.27	285	00 40 50 40 40 40 40 40 40 40 40 40 40 40 40 40						
12365 0.010.04 0.26 12366 0.050.02 0.24 12367 0.48 0.75 0.32 12368 2.03 4.65 0.34	Dm CbBx _a MG W3 N4 50 Dm CbBx _a MG W3 N3 50 Dm CbBx _a MG W4 N4 60 Dm CbBx _a MG W4 N4 60	50						
12369 0.01 1.09 0.30 12370 0.05 5.82 0.35	Dm CbBx M W3 N4 50	v escarapela con						

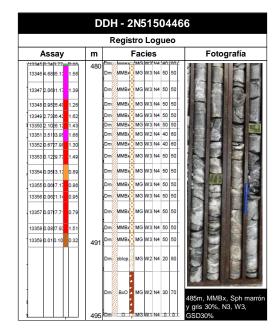

Leyes	Color
0 - 5%	
5 - 10%	
10 - 15%	
15 - 30%	
>30%	

Tabla 19Logueo DDH-2N51504357

Leyes Color 0 - 5% 5 - 50% 10 - 15% 15 - 30% >30%

Tabla 20Logueo DDH-2N51504466

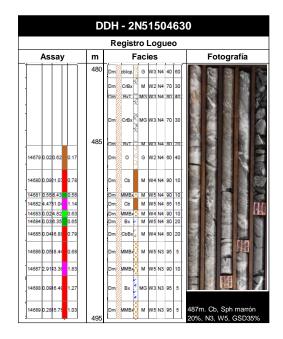

Leyes	Color
0 - 5%	
5 - 10%	
10 - 15%	
15 - 30%	
>30%	

Tabla 21Logueo DDH-2N51504592

	DDH - 2N51504592						
	Registro Logueo						
Assay	m	Facies	Fotografía				
	60	Dm O-Ba 2 MG W3 N4 90 10					
14320 0.01 0.02 0.47		Dm cblcp MG W1 N3 80 20					
14321 0.010.02 0.47		Dm CbF G W3 N3 90 10	温射 A まっき				
14322 0.02 0.03 0.38		Dm MMBx G W4 N4 80 20 Dm BxO G W3 N4 90 10					
14323 0.01 0.01 0.43		Dm MMBx G W5 N4 95 5					
14324 0.01 0.01 0.53	72.5	Dm MMBx G W5 N4 95 5					
14325 0.01 0.01 0.51		Dm MMBx G W5 N4 90 10	上海 医腹切迹				
14328 0.04 0.01 0.55	75	Dm Bx 0 0 W3 N3 95 5	387m. MMBx estérl, N3, W5, GSD 35%				

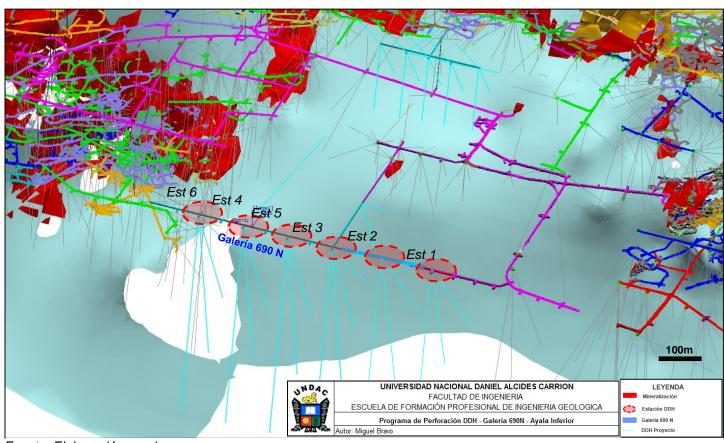
Leyes Color 0 - 5% 5 - 10% 10 - 15% 15 - 30% >30%

Tabla 22Logueo DDH-2N51504630

Leyes Color 0 - 5% 5 - 10% 10 - 15% 15 - 30% >30%

Fuente: Elaboración propia

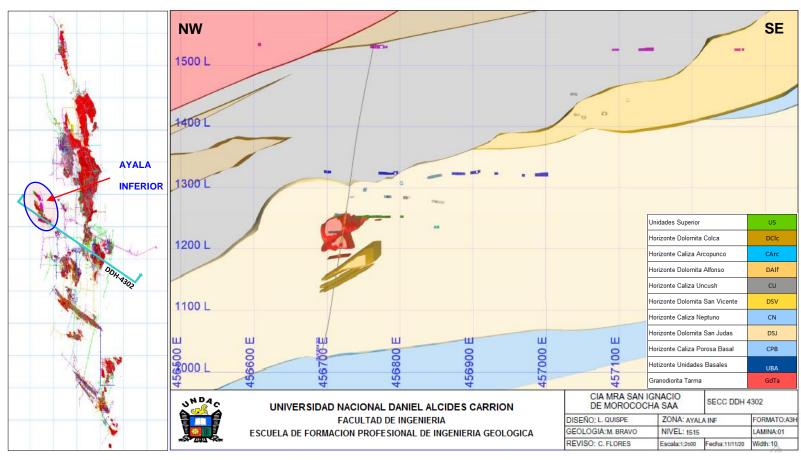
Tabla 23


Logueo DDH-2N51504664

	DDH - 2N51504664						
	Registro Logueo						
Assay	m	Facies	Fotografía				
15110 0.2618.51 0.95	390	Dm CbBx 4 M W4 N3 90	10 J				
15111 0.0520.71 1.11		Dm CbG M W4 N3 60 4	40				
15112 0.1420.84 1.18		Dm CbBx M W4 N3 70 3	80				
15113 0.4712.54 0.80		Dm CbBx MG W4 N3 80 2	20				
15114 0.64 9.44 0.75		Dm MO MF W2 N3 70	30				
15115 1.1222.60 1.28		Dm CbBx M W4 N3 80 2	20				
15116 1.13 4.85 0.86		Dm MMBx M W3 N3 80 2	20				
15117 1.8410.10 0.76		Dm MMBx M W3 N3 80 2	20				
15118 0.1011.17 0.73		Dm CbBx 4 M W4 N3 80 2	20				
15119 0.66 7.46 1.32		Dm CbBx M W4 N3 80 2	20				
15120 1.72 7.3		Dm PseBy M W4 N3 80 2	20				
15164 0.25 0.51 0.33		Dm PseBx M W4 N3 80 2	20				
15121 0.00 0.66 0.37		Dm Cb M W4 N3 90 1					
15122 0.0315.27 1.32		Dm CbBx M W4 N3 100	0 多阴影 斯尼曼				
15123 0.0418.13 1.48		Dm cblcp M W3 N3 90					
15124 0.000.10 0.27		Dm bblop M W3 N3 80 2	392m CbBx, Sph Gris20%, N3, W3,				
15125 0.05 6.0(0.93	405	Dm MMBx M W4 N3 95	5				

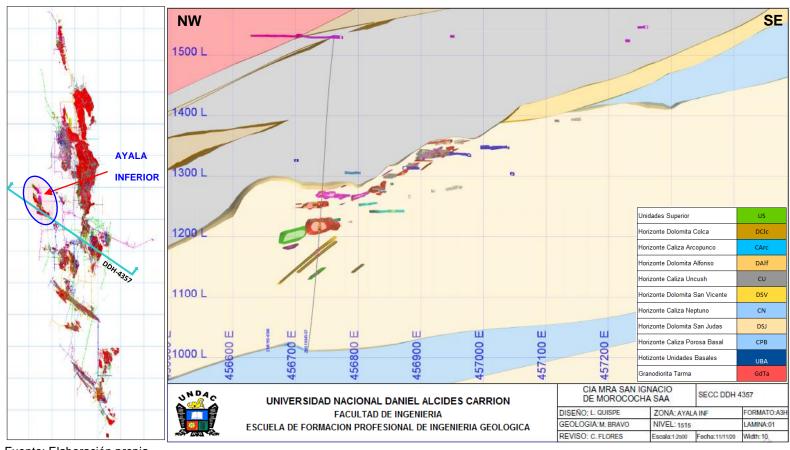
Leyes Color 0 - 5% 5 - 10% 10 - 15% 15 - 30% >30%

4.2.3.2. Secciones


Figura 20
Vista 3D Programa Perforación DDH Ayala Inferior

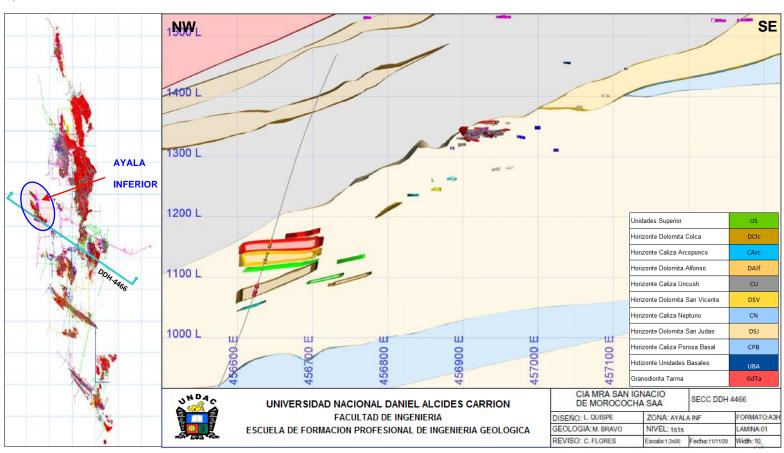
4.2.3.2.1. Sección 2N51504302

Sección 3


Eje DDH-2N51504302

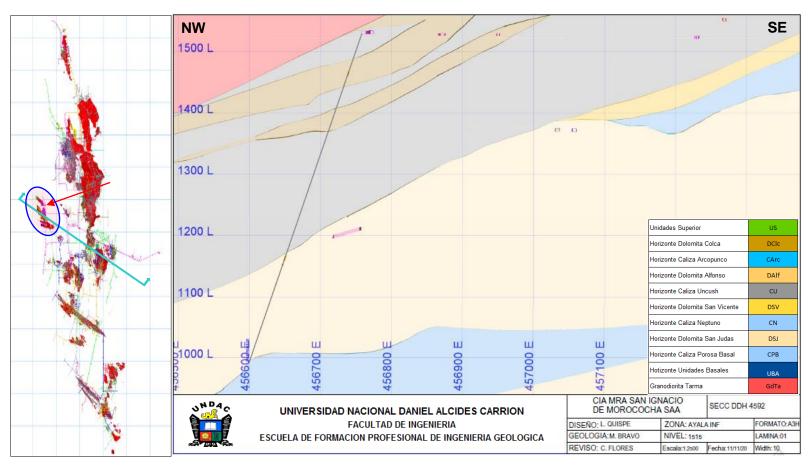
4.2.3.2.2. Sección 2N51504357

Sección 4

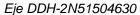

Eje DDH-2N51504357

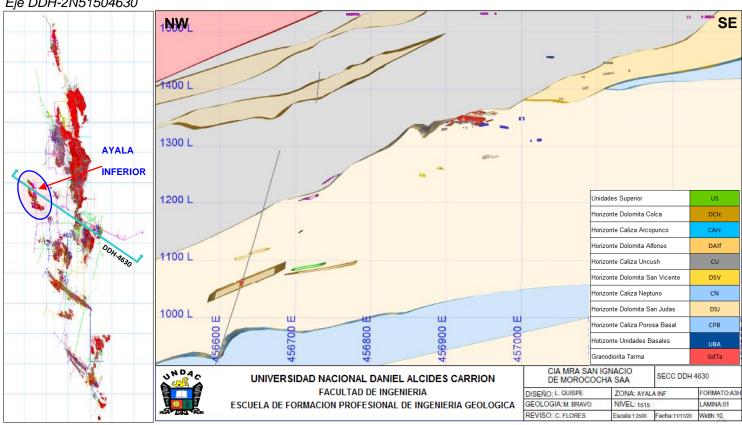
4.2.3.2.3. Sección 2N51504466

Sección 5


Eje DDH-2N51504466

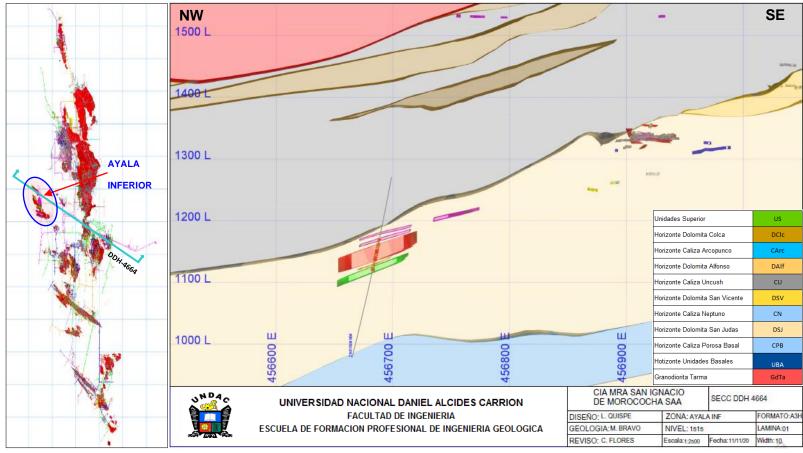
4.2.3.2.4. Sección 2N51504592


Sección 6

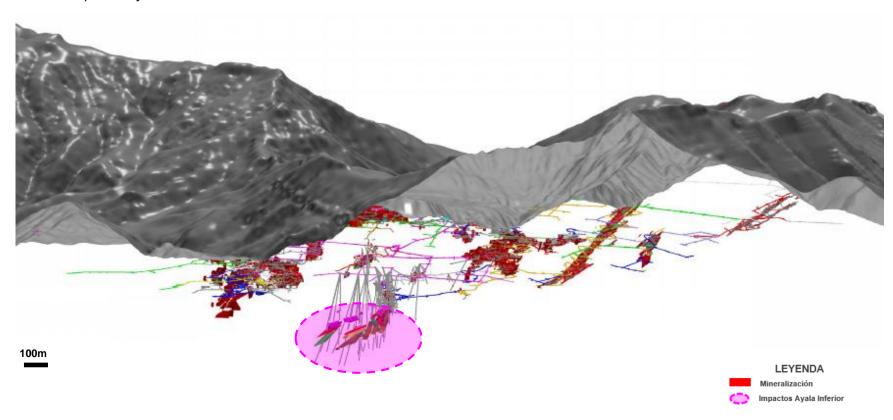

Eje DDH-2N51504592

4.2.3.2.5. Sección 2N51504630

Sección 7



4.2.3.2.6. Sección 2N51504664


Sección 8

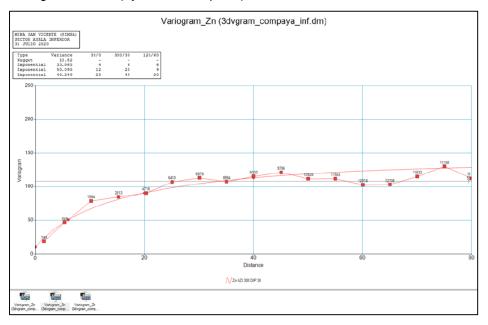
Eje DDH-2N51504664

4.2.3.3. Vista 3D impactos Ayala Inferior

Figura 21
Vista 3D Impactos Ayala Inferior

4.2.3.3. Análisis estadístico Ayala Inferior

Inicialmente se ha realizado la captura de los datos de canales tanto de sondajes y canales con los sólidos modelados del Sector de Ayala Inferior, se han realizado las compositaciones respectivas y con la data obtenida se han generado variogramas experimentales usando un software minero adecuado para este propósito, en las direcciones cada 30° en la horizontal y cada 30° en la vertical.

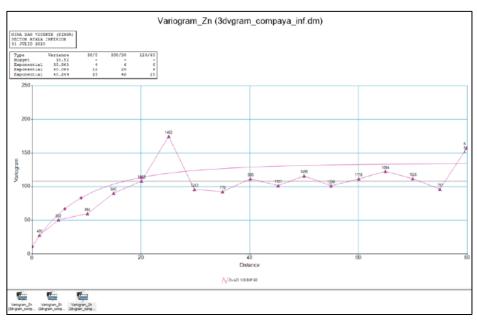

Se ha analizado cada variograma y se ha elegido el más apropiado de tal manera que tenga una correlación espacial el cual se observa en la forma de gráfico.

4.2.3.3.1. Análisis de variograma de Zn en Ayala Inferior

Con la data compositada a 0.95 m. se realiza el ajuste variográfico con un modelo netamente exponencial anidado hasta en tres estructuras, se tiene un alcance de 40 m. en la orientación azimutal 300° con un buzamiento de 30°, tal como se muestra en la siguiente imagen (Fig. 22):

Figura 22

Variograma de Zn (Eje Az 300° Dip 30°)

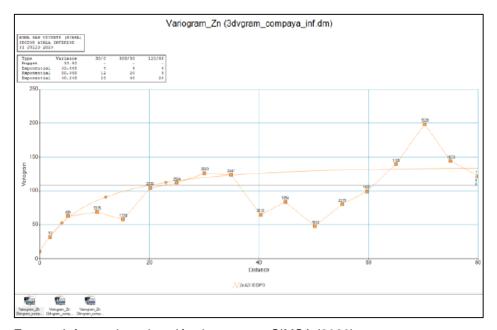


Fuente: Informe de estimación de recursos SIMSA (2020)

En el siguiente eje se tiene un alcance de 23 m. en la orientación azimutal 30° con un buzamiento de 0°, tal como se muestra en la siguiente imagen (Fig. 23):

Figura 23

Variograma de Zn (Eje Az 30° Dip 0°)

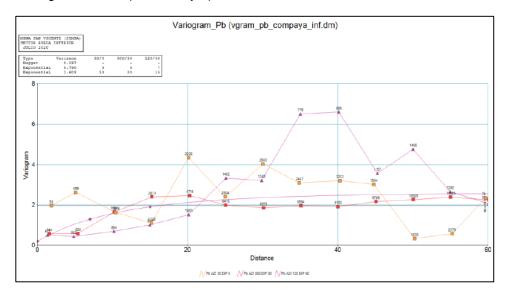


Fuente: Informe de estimación de recursos SIMSA (2020)

Para el tercer eje se tiene un alcance de 20 m. en la orientación azimutal 120° con un buzamiento de 60°, tal como se muestra en la siguiente imagen (Fig. 24):

Figura 24

Variograma de Zn (Eje Az 120° Dip 0°)

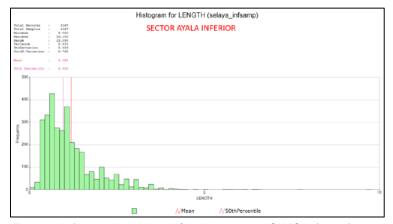


Fuente: Informe de estimación de recursos SIMSA (2020)

4.2.3.3.1. Análisis de variograma de Pb

Para el caso de los ajustes para la variable Pb, se realiza el ajuste variográfico con un modelo netamente exponencial anidado en dos estructuras, para el primer eje se tiene un alcance de 13 m. en la orientación azimutal 30° con un buzamiento de 0°, para el segundo eje se tiene un alcance de 20 m. en la orientación azimutal 300° con un buzamiento de 30° y para el tercer eje se tiene un alcance de 15 m. en la orientación azimutal 120° con un buzamiento de 60°, tal como se muestra en la siguiente imagen (Fig. 25):

Figura 25
Variograma de Pb (En los 3 ejes)

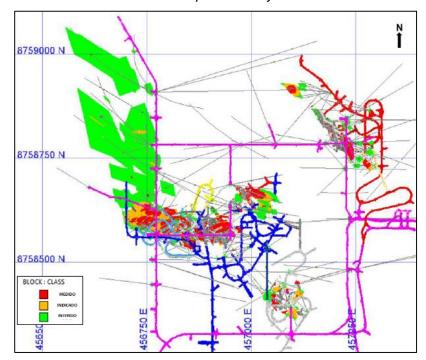


Fuente: Informe de estimación de recursos SIMSA (2020)

4.2.3.3.2. Histograma Ayala Inferior

El sustento de la longitud de composito, se basa en el estudio de los Histogramas la que se ha determinado como valor el **50th_percentile** (Corresponde al valor de la moda de toda la data para el sector de Ayala Inferior), según como se muestra en el siguiente gráfico (Fig. 26):

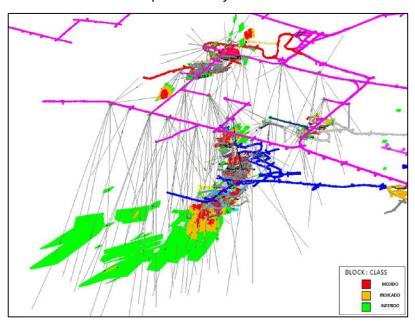
Figura 26
Histograma Ayala Inferior


Fuente: Informe de estimación de recursos SIMSA (2020)

4.2.4. Resultados del target experimental

- Exploración con predominancia de control estructural.
- Se interceptaron 6 mantos mineralizados desde la Galería 690N, los cuales son: IA, IB, IC, IS, IIS, IIIS, que pertenecen al Corredor Sur 320 en el Horizonte San Vicente del Proyecto de Ayala Inferior (Fig. 27, Fig. 28).
- Mineralización relacionada a zonas brechas con alto contenido de evaporitas, brechas con clastos multitexturales, mineral coloforme y mineral masivo.
- Mineralización de esfalerita gris, marrón y amarilla.
- Alto contenido de fluido GSD >35%
- Granulometría media a fina
- Entrampamiento de mineralización por estrangulamiento de las barras dolomíticas que provocaron un enriquecimiento con alto contenido de ley entre 15-20% Zn

Figura 27


Vista en Planta Modelo de Bloques Zona Ayala Inferior

Fuente: Informe de estimación de recursos SIMSA (2020)

Figura 28

Vista 3D Modelo de Bloques Zona Ayala Inferior

Fuente: Informe de estimación de recursos SIMSA (2020)

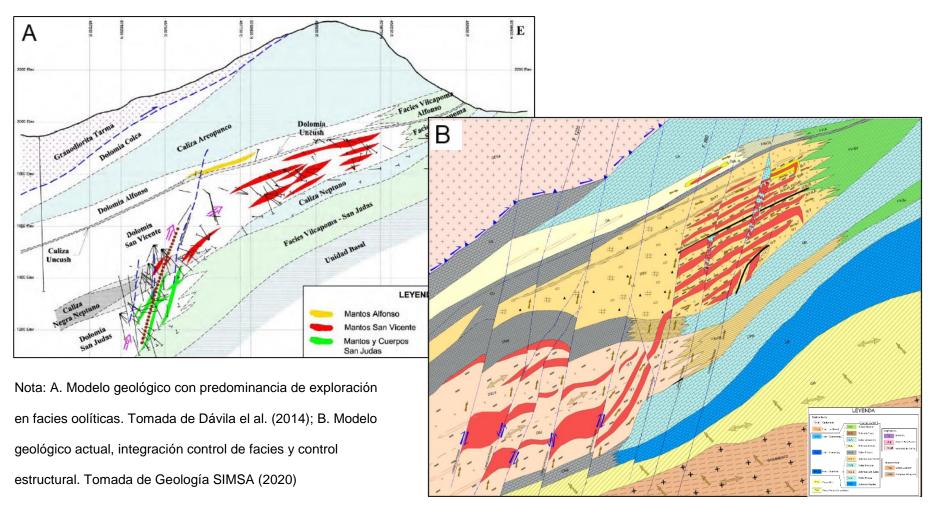
4.2.5. Modelo Geológico Mina San Vicente

Se ha identificado 2 ambientes favorables para la concentración de mineral de SZn basado en el seccionamiento y la interpretación geológica por zonas de la mina San Vicente

4.2.5.1. Ambiente de Facies (Flanco este)

- La mayor cantidad de mantos conocidos en la mina San Vicente se alojan en el flanco este del modelo conceptual caracterizados por sus barras oolíticas.
- Se forma una gran trampa de mineralización principal, controlada por la caliza negra Uncush, la secuencia dolomítica fina Vilcapoma y la caliza porosa Neptuno.
- Estas facies se caracterizan por contener una buena clasificación granulométrica con dolomías ooides de alta permeabilidad que permitió la precipitación de fluidos de Zn y Pb, cuyo cambio de facies cumplió la función de trampa para la mineralización por su paso gradual de alta porosidad en barras oolíticas a facies de escasa porosidad y permeabilidad.
- Mineralización predominantemente en cebra e intercalación de brecha de colapso en la parte superior.
- Mineralización en brecha o en bandas en la parte inferior de la barra oolítica (Sec. 9_A).

4.2.5.2. Ambiente estructural (Flanco oeste)


- Mantos alojados en el sector oeste del modelo conceptual, caracterizado por su control estructural y granulometría media a fina.
- Se identificaron mineralización relacionada a conductos de entrampamiento, calizas negras dolomitizadas favorables para el

ascenso de fluidos mineralizantes con precipitación de SZn. La mineralización se caracteriza por ser Sph gris masiva de alta ley (>15%).

 En la parte inferior se alojan mantos con control estructural de alta complejidad, mineralización con manifestaciones de deformación que se evidencian en una mineralización entrampada en brechas, cebras, tramos masivos, coloforme, con alto contenido de fluido GSD; también se presenta Sph Gris, Sph marrón y Sph amarilla (Sec. 9_B).

Sección 9

Evolución del Modelo Geológico

4.3. Prueba de Hipótesis

 Hipótesis general: La implementación de guías de exploración logrará nuevos targets en el yacimiento tipo Mississippi Valley de San Vicente en Compañía Minera SIMSA.

Se aprueba la hipótesis general por lo siguiente:

- Se determinó el target de exploración de Ayala Inferior en el Corredor Sur 320 en base a las guías litológicas y estructurales favorables de dicha zona.
- Se comprobó la existencia de 6 mantos mineralizados IA, IB, IC, IS, IIS y
 IIIS alojados en el Horizonte San Vicente por debajo de la cota 1500, en la
 Campaña de exploración Brownfield de perforación diamantina 2018 2019.

Hipótesis específicas

- a) Describir los targets de exploración del yacimiento tipo Mississippi Valley de San Vicente en Compañía Minera SIMSA, antes de la implementación de las guías de exploración.
- b) La implementación de guías de exploración logrará la identificación de nuevos targets en el yacimiento tipo Mississippi Valley de San Vicente en Compañía Minera SIMSA, en la etapa de estudio.
- c) Describir los targets de exploración del yacimiento tipo Mississippi Valley de San Vicente en Compañía Minera SIMSA, después de la implementación de las guías de exploración.

Por consiguiente:

 a) Las guías de exploración con las que cuenta Compañía minera SIMSA identifica targets de exploración en base a trampas de cambio de facies, donde la mineralización precipita en barras oolíticas de alta porosidad primaria y que grada hacia una facie de baja porosidad que se comporta como sello de la

- trampa, con una mineralización predominantemente en cebra en mantos paralelos a la estratificación y como anticlinales asimétricos.
- b) La exploración del target de Ayala Inferior manifestó un control netamente estructural, donde la permeabilidad primaria no es relevante, evidenciándose una granulometría media a fina con gran concentración de fluido GSD, mineralización variada desde cebra, brecha, masiva, coloforme por removilización de esfalerita por intervención del tectonismo que se manifiestan en fallas inversas de rumbo N30-40W, que actúan como feeders mineralizantes que albergan zonas de mineralización en cuerpos de brechas (Fig. 29).
- c) Se evidenciaron dos ambientes favorables como guías de exploración para nuevos targets en el yacimiento tipo MVT de San Vicente: 1) ambiente de facies y 2) ambiente estructural.

4.4. Discusión de Resultados

Los resultados que hemos obtenido respecto a la hipótesis general coinciden con lo que encontró Dávila, Fontboté, Febres, & Oldman, (2000) en su estudio "Exploración y Geología del Yacimiento San Vicente", se precisa "Los controles y guías de exploraciones varían de acuerdo a a estapa en el que se encuentra el prospecto. Diversas características se toman en logueo y trabajo de campo según un patron preestablecido. Entre los datos más frecuente utilizados se encuentran los siguientes: grosor de la unidad dolomítica, nivel de erosión reciente de la barra, cantidad y tipo de fracturación, proporción de la dolomía grainstone (roca carbonatada libre de finos) y de dolomía fina, abundancia de White Sparry Dolomite (WSD), Gray Sparry Dolomite (GSD), White Sparry Calcite (WSC), White Silica (WSi); abundancia de azufre nativo y pirobitumen, grado de dolomitización, evidencias de disolución, color de la roca (lo que es una indicación indirecta de la abundancia en materia orgánica diseminada). El modelo geológico de San Vicente se muestra como el cambio de facies

permeables (con ooides, "facies San Vicente") a menos permeables ("facies Vilcapoma"), constituye una trampa de hidrocarburos y azufre reducido en la que se formó la mineralización. Del punto de vista práctico, los mantos mineralizados se localizan en trampas locales dentro de áreas con un valor de isofinos cercanos a 50% en el margen E de las barras oolíticas".

- Se concuerda con Leach (2005), en su estudio "Sediment-Hosted Lead-Zinc Deposits: A Global Perspective" donde menciona que los "controles de mineral reconocidos para distritos MVT son: 1) Las fallas y fracturas; son importantes controles en la mayoria de los depósitos MVT. Las fallas generalmente no están mineralizadas, mas bien, el mineral se localiza en zonas de dilatación asociadas con fallas normales, transtensionales y de rumbo. 2) Transiciones de facies: lutitas y unidades de carbonato de tutita que actúan como acuitardos dentro de una secuencia estratigráfica proporciona un importante control de la migración de fluidos, depósitos de mineral restringidos a dolomía diagenética ubicados en la facies de transición a caliza arcillosa. Los depósitos ocurren típicamente cerca de la transición de caliza a dolomía que simplemente refleja el contraste de permeabilidad. 3) Complejos de arrecifes y barreras: el mineral ocurre dentro de roca del arrecife que se encuentra en facies carbonatadas y brechas sedimentarias que bordean el arrecife original, así tambien ocurren en brechas de colapso. Los complejos de barreras son parte de una secuencia en la que los cambios en las facies sedimentarias producen una permebilidad espectacular. 4) Topografía de basamento: Algunas depósitos están situados encima o cerca de los altos del basamento que controlan el desarrollo de sedimentos, facies, brechas, y débilmente arenisca.
- Así también este trabajo concuerda con Flores C., Dávila D. & Hyhua G.
 (2014), en su estudio "Estilo y geometría de mineralización de tipo MVT en la mina San Vicente" concluyeron "Se pone en evidencia que la mineralización MVT epigenética en San Vicente se emplazó en forma de mantos paralelos a

las capas y cuerpos cortando a las capas. El sistema MVT de San Vicente ha originado tres estilos y geometrías de mineralización que son: mantos N-S, mantos en bloques y mantos NO-SE, relacionados a los feeders que están ubicados en la intersección de fallas/ lineamientos N-S con NO-SE. En las dolomías Alfonso y San Vicente, se han emplazado los mantos de dirección N-S Y NO-SE en relación con la permeabilidad de la roca de caja en el momento de la mineralización, minetras que las dolomías San Judas se formaron cuerpos subverticales relacionados a los feeders. Los feeders se han emplazado en la dolomía San Judas en relación con la intersección de fallas y lineamientos, mientras que los mantos se emplazaron en las dolomías San Vicente y Alfonso."

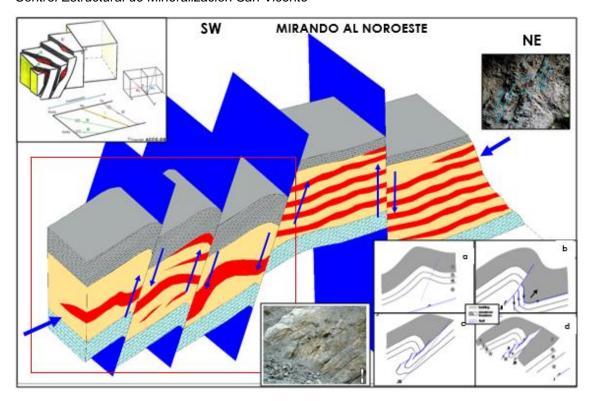
También estamos de acuerdo con Badoux V., Moritz R. & Fontboté L. (2001), en su estudio "The Mississippi Valley-type Zn-Pb deposit of San Vicente, Central Perú: an Andean syntectonic deposit" que de acuerdo al análisis estructural concluyen en: "Las rocas carbonatadas del Pucará se consideran como una secuencia sometida a cizallamiento, entre la granodiorita Tarma superpuesta y la subyaciente Grupo Mitu y granito San Ramón, el principal componente de empuje está en una dirección E-W. El depósito de Zn-Pb MVT San Vicente comprende deferentes tipos de estructuras de ganga, incluida venas de dolomita blanca, brechas y estructuras de cebra, que están parcialmente sobreimpuestos por fallas normales e inversas. Todas las estructuras muestran una geometría sistemática con respecto a la estratificación y la orientación de un empuje regional del Mioceno superior, la orientación preferencial de estructuras de ganga refleja una estructura control. Las diversas estructuras de ganga son controladas por fracturas de tensión formadas durante simple cizallamiento o por anisotropías de deformación preesxistente tal como planos de estratificación. La geometría de las estructuras de ganga y fallas es compatible con simple cizallamiento dextral de las rocas carbonatadas del Grupo Pucará por sobreescurrimiento. Notablemente las estructuras de cebra concordantes con la estratificación se interpretan como estructuras iniciadas durante el empuje y abriendo a lo largo de planos preexistentes de debilidad de la estratificación. Se concluye que el yacimiento MVT de San Vicente tiene una mineralización sintectónica tardiandino".

- Se concuerda con Dávila et al. (2000) en su estudio "Exploración y Geología del yacimiento San Vicente" encontró relación en "La paleogeografía Pre-Pucará junto con las facies del Mitu permite tener un esbozo paleoestructural de cómo fue el desarrollo de la cuenca y la posición de los altos estructurales, esto implica a graficar las áreas potenciales (acuñamiento o cambio de facies del Grupo Mitu) para la circulación de fluidos mineralizantes MVT. El alto estructural para San Vicente fue el granito San Ramón ubicado al este de la mina, que posiblemente estuvo controlado por una estructura N-S cuya traza sigue el río Tulumayo. En el área de San Vicente se encuentran dentro del Mitu materiales procedentes del granito de San Ramón indicando que éste estaba emergido durante el depósito de aquel. Otra evidencia regional de la posición del alto estructural del Granito de San Ramón es la ausencia del Mitu hacia el este de San Vicente. En síntesis, estructuralmente, el distrito minero de San Vicente es un monoclinal buzando al oeste con marcados sobreescurrimientos de bajo ángulo con vergencia hacia el oeste".
- Así mismo se concuerda con Rodríguez R. (2013), en su estudio "Estudio estructural de la mina San Vicente" que hace referencia al estilo estructural de la cuenca Triásico Jurásico. "Estudios geocronológicos y estructurales a nivel regional comparados con los estudios realizados en San Vicente, permiten interpretar el estilo estructural de la cuenca Triásico-Jurásico (grupos Mitu, Pucará y la Formación Sarayaquillo), la misma que tendra influencia en el estilo estructural durante y después de la mineralización. En la zona de San Vicente,

se ha determinado un alto estructural denominado Mitu-Puará, que ha controlado la sedimentación detrítica del Grupo Mitu y carbonatada del Grupo Pucará. El alto estructural estuvo controlado por fallas normales que se originaron durante el Triásico medio, en esta época empezó la sedimentación del Grupo Mitu (242 Ma.) y la cristalización del granito San Ramón (255-223 Ma). Luego en el Triásico superior – Jurásico infeior, la sedimentación carbonatada estuvo controlada por el alto estructural. Al oeste se depositaron facies de plataforma carbonatada en tanto que al este, sobre el alto estructural, se depositaron facies más detríticas (facies Vilcapoma). En el Jurásico superior el régimen distensivo tuvo mayor intensidad originando la exhumación de granitos Permo-Triásicos, se originaron nuevas fallas permitiendo que el graniro San Ramón llegue a la superficie y sea erosionado, lo que provocó la sedimentación de conglomerados de la Formación Sarayaquillo, compuesto por clastos de granito, volcánicos, metamórficos y calizas del Grupo Pucará."

En este sentido el estudio concuerda con Fiestas J., Berrospi R., Leach D. & Sempere (2019) en su estudio "Tectónica salina e hidrocarburos como guías de exploración de yacimientos MVT: Zn-Pb en los Andes del Perú Central" donde refieren "La tectónica salina al este de la Cordillera Oriental entre ~4°S y ~12°S está documentada, entre otras evidencias, por numerosos domos salinos aflorantes y por información sísmica (Sempere &" Cotrina, 2018), y como es propio para halocinesis, afecta solamente a los niveles sobreyacientes al nivel de sal de la Formación Pareni. El contraste entre la gran cantidad de deformaciones presentes en estratos del Pucará y las pocas deformaciones observables en el infrayacente Grupo Mitu es sintomático de tectónica salina causada por una unidad evaporítica originalmente ubicada entre ellos. Estructuras por tectónica salina, así como rocas carbonatadas e hidrocarburos reconocidos en el área, crearon condiciones adecuadas para la formación de yacimientos MVT, como se verifica en distintos yacimientos a

nivel mundial, como Jinding (China), Bou Jaber (Túnez), Reocín (España) (Leach et al., 2017; Perona, 2016). En el Perú, importantes yacimientos MVT (por ejemplo, San Vicente, Shalipayco, Bongará) presentan características estructurales sugestivas de tectónica salina: las deformaciones inusuales y complejas asociadas, y las brechas de tipo float breccia características de la mina San Vicente, fueron probablemente producidas por halocinesis. La tectónica salina presente en la faja subandina tiene continuidad en nuestra zona de estudio, en los Andes del Perú central."


4.4.1. Aporte de la investigación

- La distribución de los grupos Mitu y Pucará ubicadas espacialmente es de suma importancia ya que constituyen guías importantes de exploración MVT.
- 2. El horizonte guía dentro del Grupo Pucará lo constituyen las calizas negras de la Formación Aramachay para la exploración en San Vicente que tiene un espesor de 20 a 250m, la mayoría de la mineralización se encuentra debajo de la caliza negra.
- 3. La mineralización en San Vicente estuvo controlada por el alto estructural Mitu-Pucará que crearon las condiciones favorables para la formación de barras oolíticas con permeabilidad primaria y secundaria al este de la mina que hospedaron los mantos con concentraciones altas de SZn con característica mineralización en cebra, controlados por una gradación de facies fina poco permeable que fungió de trampa con contenido de evaporitas. El lado este de la mina sugiere una transición de facies
- El lado oeste se evidencia una mineralización con una granulometría fina mudstone, con fallas inversas de rumbo N30-40W, que fungen de controles o feeders mineralizantes, que pueden determinar corredores

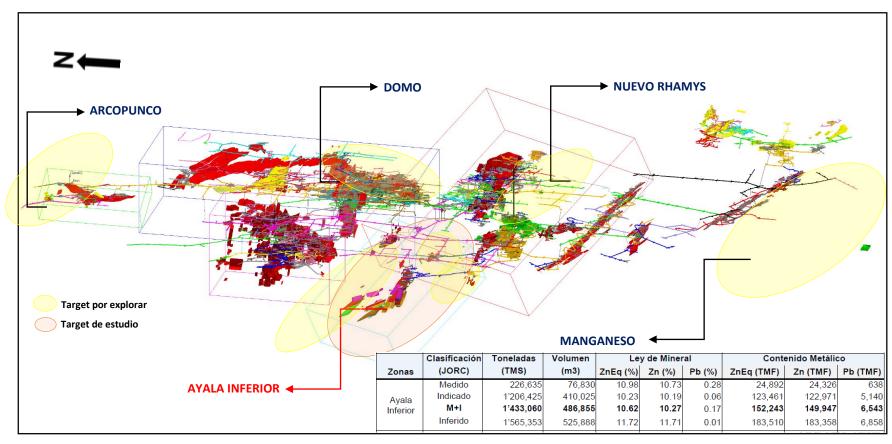
de mineralización con altas concentraciones en zonas de cuerpos de brecha, el cual sugiere un control netamente estructural (Fig. 29).

Figura 29

Control Estructural de Mineralización San Vicente

Fuente: Flores C. (2019)

CONCLUSIONES


En la investigación realizada en Compañía Miera San Ignacio de Morococha S.A. (SIMSA), se llegó a la conclusión general de que la implementación de guías de exploración incide en la identificación de nuevos targets en el yacimiento tipo Mississippi Valley de San Vicente que mostraron esencialmente dos ambientes para albergar mineralización que son controles de deposición de facies y estructural.

- 1. Las guías de exploración en el yacimiento tipo Mississippi Valley de San Vicente describen un enfoque hacia el control de transición de cambio de facies el cual incide en la formación de una trampa conformado por una roca caja que contiene los mantos con barras de dolomías oolíticas permeables, con contenido de fluido GSD entre 20-35% en una roca N3, con una mineralización en cebra, brecha y MMBx, con esfalerita gris a marrón, cuyo entrampamiento del fluido mineralizante es debido a facies dolomíticas finas impermeables que actuaron como tapón.
- 2. Los resultados de la investigación confirman que las guías de exploración utilizados en el proyecto de Ayala Inferior, dentro del Horizonte San Vicente incide en la identificación de nuevos targets en el yacimiento tipo Mississippi Valley de San Vicente ya que a diferencia del control de cambio de facies, aquí se tiene un control estructural dentro de una zona de barras dolomíticas finas que se caracterizan por tener altas concentraciones de SZn dentro de fallas inversas, con mineralización masiva, brecha multitextural, cebra, coloformos, mineral por removilización en Sph gris, marrón y amarilla acompañados por pseudomorfos de WCa y azufre, identificándose el target de Ayala Inferior en el Horizonte San Vicente, a cotas inferiores del nivel 1515, con recursos estimados de 2,998,413 TMS, 13.90m@11.19%Zn (Fig. 30).
- 3. Los resultados de esta investigación concluyen que los targets de exploración en el yacimiento tipo Mississippi Valley de San Vicente incide en guías de exploración de control de facies con porosidad primaria (barras oolíticas) y/o secundarias (fracturamiento) hacia facies dolomíticas impermeables para la formación de

trampas litoestratigráficas y control estructural cuyas fallas inversas actúan como feeders mineralizantes, que pueden determinar corredores de mineralización en zonas de brecha (falla pre-mineral); el fallamiento post-mineral afectan las concentración de mineralización en los mantos, encontrándose más ricos a un lado de la falla, dique de brecha y/o pliegues debido a la removilización de la esfalerita por acción del tectonismo.

Figura 30

Estimación de Recursos Target Ayala Inferior

Fuente: Casaverde J. (2019)

RECOMENDACIONES

Al corroborarse que la implementación de guías de exploración influye en la identificación de nuevos targets en el yacimiento tipo Mississippi de San Vicente en Compañía Minera San Ignacio de Morococha S.A. (SIMSA), se da como primera recomendación que los nuevos objetivos de exploración tengan criterios de control de cambio de facies y de control estructural.

- 1. Se recomienda identificar los dominios de mineralización y exploración del Horizonte San Vicente, ya que en base a ello se tiene un límite que divide un cambio de facies de dolomías ooides con formación de pliegues al Este y hacia el lado Oeste un dominio estructural con entrampamiento de mineralización entre fallas.
- 2. Con respecto a los targets de exploración de control estructural se recomienda continuar con la exploración de la Gal 690 N con taladros que atraviesen todo el horizonte San Vicente y lleguen hasta la caliza Basal y/o con una galería de exploración debajo de la Gal 690 N para confirmar la continuidad hacia el extremo NW de los mantos interceptados.
- 3. Por último se recomienda la exploración brownfield para targets tanto al sur y norte de la concesión San Vicente. Al Sur los targets de Manganeso con la Gal 6660 S, para explorar el Horizonte San Vicente alejándonos de las facies dolomíticas finas con mineralización de Sph de III generación. El target de Chilpes-Huacrash a través de un de un crucero desde el Nivel 1870 para explorar tanto el Horizonte San Vicente y Alfonso. Al norte el target de Arcopunco desde la Galería 1275 N, que se encuentra en facies finas de brecha y un último target de exploración Greenfield de Palmapata que cuenta con estudios de geofísica que arrojaron anomalías favorables que guardarían relación con controles estructurales favorables para la mineralización.

BIBLIOGRAFIA

- Badoux V, Moritz R, & Fontboté L. (2001). The Mississippi Valley-type Zn-Pb deposit of San Vicente, Central Peru: an Andean syntectonic deposit. *Archive ouverte UIGE*.
- Beales F.W. (1975). Precipitation mechanisms for Mississippi Valley-type ore deposits. *Economic Geology*, 70, 943-948.
- Bethke C.M., & Marshak S. (1990). Brine migrations across North America-the plate tectonics of groundwater. *Annual Review of Earth and Planetary Science*, 18, 228-315.
- Bradley D, & Leach D. (2003). Tectonic Controls of Mississippi Valley-Type Lead-Zinc Mineralization in Orogenic Forelands. *Mineralium Deposita*, v. 38, p. 652-667.
- Carlotto V. (2009). Dominios Geotectónicos y Metalogenésis del Perú. *Bol. Soc. Geol.*Perú 103, 1-89.
- Carlotto, Q. R. (2007). EVOLUCIÓN TECTÓNICA, SEDIMENTARIA Y MAGMÁTICA

 DEL PÉRMICO-TRIÁSICO-JURÁSICO (DEL MITU AL PUCARÁ:

 IMPLICANCIAS GEODINÁMICAS METALOGENÉTICAS Y PETROLÍFERAS.

 Lima: INGEMMET.
- Cathles, & Smith. (1983). Thermal constraints on the formation of Mississippi Valley-type lead-zinc deposits and their implication for episodic basin dewatering and deposit genesis. *Economic Geology*, 78, 983-1002.
- Coveney, e. a. (1987). Pressures and temperatures from aqueous fl uid inclusions in sphalerite from midcontinent. *Economic Geology*, 82, 740-751.
- Cruz, P. H. (2003). *INGEMMET, Compendio de Yacimientos Minerales del Perú-Boletín*N° 10 Serie B Geología Económica. Lima: INGEMMET.

- Daniels. (1990). Hydrothermal alteration in anthracite from eastern Pennsylvania: implication for mechanisms of anthracite formation. *Geology*, 18, 247-250.
- Dávila D, & Valdivia E. (2018). ESTILO Y FORMA DE MINERALIZACION EN EL GRUPO PUCARA MVT: ZN-PB. XIX CONGRESO PERUANO DE GEOLOGIA.
- Dávila D. et al. (2000). Exploración y geología del yacimiento San Vicente. I Congreso Internacional de Prospectores y Exploradores. Primer volumen de monografías de yacimientos minerales peruanos: historia, exploración y geología. *Inst. Ing. Minas, Lima*, 305-328.
- Dávila J. (2006). *Diccionario Geológico*. Lima: Universidad Nacional de Ingenieria, Asamblea Nacional de Rectores.
- Dávila, Fontboté, Febres, & Oldman. (2000). EXPLORACION Y GEOLOGIA DEL YACIMIENTO SAN VICENTE.
- Dewing K. (2007). Geological history, mineral occurrences and mineral potential of the sedimentary rocks of the Canadian Arctic Archipelago. *Geological Association of Canada*, 733-753.
- Dzulinski S. (1985). *Hydrothermal karst phenomena as a factor in the formation fo Mississippi Valley-type deposits*. Amsterdam: Elsevier.
- Elliot, & Aronson. (1987). Alleghanian episode of K-bentonite illitization in the southern Appalachian basin. *Geology*, 15, 735-739.
- Esteban M, & Taberner C. (2003). Hydrothermal dolomitization, mixing corrosion and deep burial porosity formation: numerical results from 1-D reactive transport models. *Institute of Earth Sciences 'Jaume Almera' (CSIC)*, 7, 99–111.
- Fiestas J., Berrospi R., Leach D., & Sempere. (2019). TECTONICA SALINA E
 HIDROCARBUROS COMO GUIAS DE EXPLORACION DE YACIMIETOS MVT:
 ZN-PB EN LOS ANDES DEL PERU CENTRAL. INSTITUTO DE INGENIEROS
 DE MINAS DEL PERU.
- Folres C, Dávila D, & Hyhua G. (2014). Estilo y geometria de mineralización de tipo MVT en la mina San Vicente. *Boletín de la Sociedad Geológica del Perú*.

- Fontboté L. (1993). Self-organization fabrics in carbonated-hosted deposits the example of diagenetic crystalization rhytmites (DCRs). Granada, España: Universidad de. Granada.
- Fontboté L, & Gorzawski H. (1990). Genesis of the Mississippi Valley-type Zn-Pb deposit of San Vicente, Central Peru: geologic and isotopic (Sr, O, C, S, Pb) evidence. *Econ. Geol.*, 85, 1402–1437.
- Garven G. (1985). The role of regional fl uid fl ow in the genesis of the Pine Point deposit, western Canada sedimentary basin. *Economic Geology*, 80,307-324.
- Garven G, & Freeze R.A. (1984). Theoretical analysis of the role of groundwater fl ow in the genesis of stratabound ore deposits: 1. Mathematical and numerical model.

 *American Journal of Science, 284, 1125-1174.
- Gil W. (2002). Evolución lateral de la deformación de un frente orogénico: ejemplo de las cuencas subandinas entre 0° y 16°S. Sociedad Geológica del Perú, Lima, Publicación Especial 4, 146 p.
- Gregg J.M., & Sibley D.F. (1984). Epigenetic dolomitization and the origin of xenotopic dolomite texture. *Journal of Sedimentary Petrology*, 54, 908-931.
- Hannigan P. (2007). Metallogeny of the Pine Point Mississippi Valley-Types zinc-lead district, Southern Northwest Territories. *Geological Association of Canada*, 609-632.
- Hearn, & Sutter. (1987). Evidence for late Paleozoic brine migration in Cambrian carbonate rocks of the central and southern Appalachians: implications for Mississippi Valley-type sulfi de mineralization. *Geochimica et Cosmochimica Acta*, 51,1323-1334.
- Hernández R. (2006). Metodología de la investigación. México: McGrawHill.
- Hernández R, Fernández C, & Baptista P. (2010). *Metodología de la Investigación 5ta Edición*. México: McGrawHill.
- Hernández, Fernández, & Baptista. (2003). *Metodología de la investigación.* México: McGrawHill.

- Jackson, & Beales. (1967). An aspect of sedimentary basin evolution the concentration of Mississippi Valley-type ores during late stages of diagenesis. *Canadian Petroleum Geologists Bulletin*, 14,383-433.
- Jebrak M. (1992). Les textures intra-fi lonnienes, marqueurs des conditions hydrauliques et tectoniques. *Chronique de la Recherche Minière*, 506, 25-35.
- Kendall. (1960). Ore deposits and sedimentary features, Jefferson City mine, Tennessee. *Economic Geology*, v. 55, 985-1003.
- Kisvarsanyi G. (1983). International Conference on Mississippi Valley-type Lead-Zinc Dposits, Proceedings Volume. *University of Missouri-Rolla*, 603p.
- Kobe H. W. (1995). Evaporitas y volcánicos, Grupo Pucará, Perú central: componentes volcánicos, evaporíticos y sedimentos metalíferos en la parte occidental de la cuenca del Grupo Pucará, Perú central. Soc. Geol. Perú, Vol. Jubilar Alberto Benavides, 179–191.
- Kyle JR. (1981). Geology of the Pine Point lead-zinc district, in Wolf, K. H., ed.,

 Handbook of Strata-Bound and Stratiform Ore Deposits. New York: Elsevier

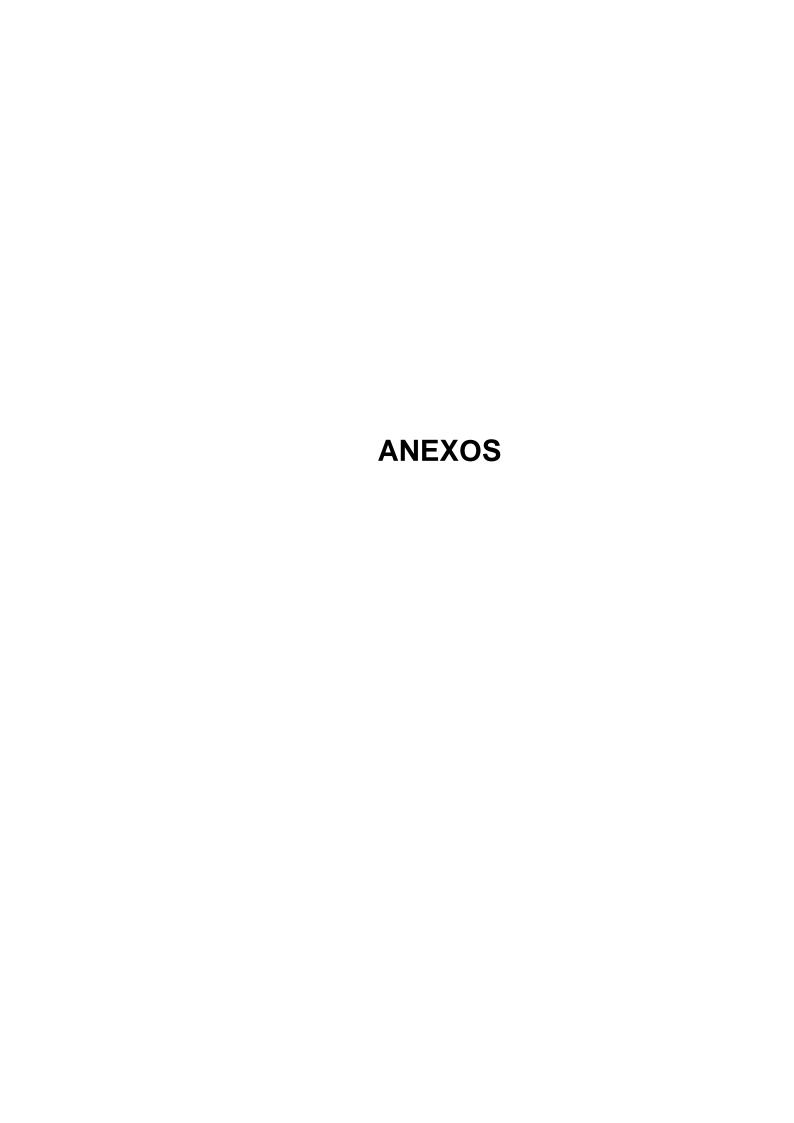
 Publishing Company.
- Land. (1985). The origin of massive dolomite. J. Geol. Educ, 33, 112–125.
- Leach. (2005). Sediment-Hosted Lead-Zinc Deposits: A Global Perspective. *U.S. Geological Survey*, 561-607.
- Leach D. (1993). MISSISSIPPI VALLEY-TYPE PB-ZN DEPOSITS.
- Leach D, & Sangster D.F. (1993). Mississippi Valley-type lead-zinc deposits. *Geological Association of Canada Special Paper 40*, 289-314.
- Leach et al. (2001). Mississippi Valley-type lead–zinc deposits through geological time: implications from recent age-dating research. *US Geological Survey, Mineralium Deposita*, v. 36, p. 711-740.
- Leach, D. (1979). Temperature and salinity of the fl uids responsible for minor occurrences of sphalerite in the Ozark region of Missouri. *Economic Geology*, 74, 931-937.

- Leach, D. (2005). Sediment-Hosted Lead-Zinc Deposits: A Global Perspective. *U.S. Geological Survey*, 561-607.
- Leach, Taylor, Fey, Diehl, & Saltus. (2010). A deposit model for Mississippi Valley-type lead-zinc ores. *U.S. Geological Survey*.
- Loughman D.L., & Hallam A. (1982). A facies analysis of the Pucará group (Norian to Toarcian carbonates, organic-rich shale and phosphate) of central and northern Peru. Sed. Geol., 32, 161-194.
- Machel H.G. (1987). Saddle dolomite as a by-product of chemical compaction and thermochemical sulfate reduction. *Geology*, 15, 936-940.
- Machel H.G. (2016). Concepts and models of dolomitization: a critical reappraisal. Geological Society, London, Special Publications, 2004, 1-57.
- Mazzullo, Reid, & Gregg. (1987). Dolomitization of Holocene supratidal deposits, Ambergis Cay, Belize. *Geol. Soc. Am. Bull.*, 98, 224–231.
- McKinstry HE. (1970). Geología de Minas. Barcelona: Omega.
- Mégard F. (1984). The Andean orogenic period and its major structures in central and northern Peru. *J. Geol. Soc. London*, 141, 892-900.
- Muñoz C. et al. (2000). Vulcanismo asociado a los carbonatos del Grupo Pucará (Triásico superior-Liásico) en el área de Shalipayco, Junín-Perú central. Soc. Geol. Perú, X Congreso Peruano de Geología, p. 42.
- Nelson et al. (2002). Canadian Cordilleran Mississippi Valley-type deposits: A case for Devonian-Mississippian back-arc hydrothermal origin. *Economic Geology*, v. 97, p. 1013-1036.
- Noble. (1963). Formation of ore deposits by waters of compaction. *Economic Geology*, 58, 1145–1156.
- Ohle. (1959). Some considerations in determining the origin of ore deposits of the Mississippi Valley-type. Part 1. *Economic Geology*, p. 769-789.
- Ohle F.L. (1985). Breccias in Mississippi Valley-type deposits. *Economic Geology, v. 75*, p. 161-172.

- Oyarzún J, & Oyarzun R. (2014). *Léxico de Geología Económica*. Madrid: Ediciones GEMM.
- Oyarzun R. (2011). Introducción a la Geología de Minas, Exploración&Evaluación.

 Madrid: Ediciones GEMM.
- Oyarzun. (2011). Introducción a la Geología de Minas Exploración&Evaluación. Madrid: Ediciones GEMM.
- Paradis et al. (1999). A new look at the Robb Lake carbonate-hosted lead-zinc deposit, northeastern British Columbia. *Geological Survey of Canada, Current Research* 1999-A, p. 61-70.
- Paradis S. (2007). MISSISSIPPI VALLEY-TYPE LEAD-ZINC DEPOSITS. *Mineral Deposits Division, Special Publication No. 5*, 185.
- Radke B.M., & Mathis R.L. (1980). On the formation and occurence of saddle dolomite. *Journal of Sedimentary Petrology*, 1149-1168.
- Randell R.N., & Anderson G.M. (1996). Geology of the Polaris Zn-Pb deposit and surrounding area, Canadian Arctic Archipelago, in Sangster, D.F., ed., Carbonate-hosted lead-zinc deposits. *Society of Economic Geologists*, 307-319.
- Randell, & Anderson. (1990). The Geology of the Polaris Carbonate-Hosted Zn-Pb Deposit, Canadian Arctic Archipelago. *Geological Survey of Canada, Current Research Paper 90-1D*, 7.
- Reid. (2001). Stratigraphy and mineralization of the Bongara MVT zinc-lead district, northern Peru. *M.Sc. thesis, University of Toronto*, 179 p.
- Rhodes et al. (1984). Pine Point orebodies and their relationship to the stratigraphy, structure, dolomitization, and karstification of the Middle Devonian barrier complex. *Economic Geology, v. 79*, p. 991-1055.
- Robles I. (2018). GEOLOGIA Y MINERALIZACION DEL DEPOSITO MISSISSIPY

 VALLEY TYPE DE ZN-PB: PROYECTO CAÑON FLORIDA NORTE DEL PERU.

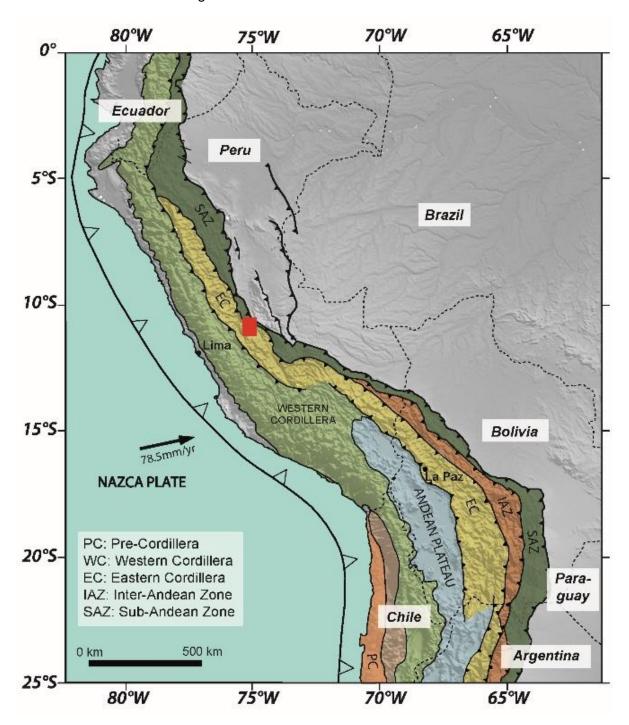

 ESCUELA DE POSGRADO UNIVERSIDAD UNIVERSIDAD NACIONAL DE HUANCAVELICA.

- Rodgers J. (1954). The distribution of marine carbonate sediments. *Journal of Sedimentary Research*, 137-138.
- Rodríguez R. (2013). Estudio estructural de la mina San Vicente. San Ramón.
- Rosas S, & Fontboté L. (1995). Evolución sedimentológica del Grupo Pucará (Triásico superior-Jurásico inferior) en un perfi I SW-NE en el centro del Perú. *Soc. Geol. Perú. Vol. Jubilar Alberto Benavides*, 279-309.
- Rosas S. et al. (1997). Vulcanismo de tipo intraplaca en los carbonatos del Grupo Pucará (Triásico superior-Jurásico inferior, Perú central) y su relación con el vulcanismo del Grupo Mitu (Pérmico uperior-Triásico). Soc. Geol. Perú, IX Congreso Peruano de Geología, 393-396.
- Rosas S. et al. (2007). Tectonic evolution and paleogeography of the Mesozoic Pucará basin, central Peru. *J. South Am. Earth Sci*, 24, 1-24.
- Rosas, & Rosas S. (1994). Facies, diagenetic evolution, and sequence analysis along a SW-NE profi le in the southern Pucara basin (Upper Triassic-Lower southern Pucara basin (Upper Triassic-Lower Jurassic), central Peru. *Doct. Thesis Ruprecht-Karls*, 80, 347 p.
- Sangster. (1988). *Breccia-hosted lead-zinc deposits in carbonate rocks*. New York: Springer-Verlag.
- Sangster D. (1995). Mississippi Valley-Type lead-zinc. *Geological Survey of Canada*, p. 253-261.
- Sass-Gustkiewicz et al. (1982). The emplacement of zinc-lead sulphide ores in the upper Silesian ore district: A contribution to understanding Mississippi Valley-type deposits. *Economic Geology, v. 77*, 392-412.
- Sass-Gustkiewicz M. (1982). The emplacement of zinc-lead sulphide ores in the upper Silesian ore district: A contribution to understanding Mississippi Valley-type deposits. *Economic Geology*, 392-412.

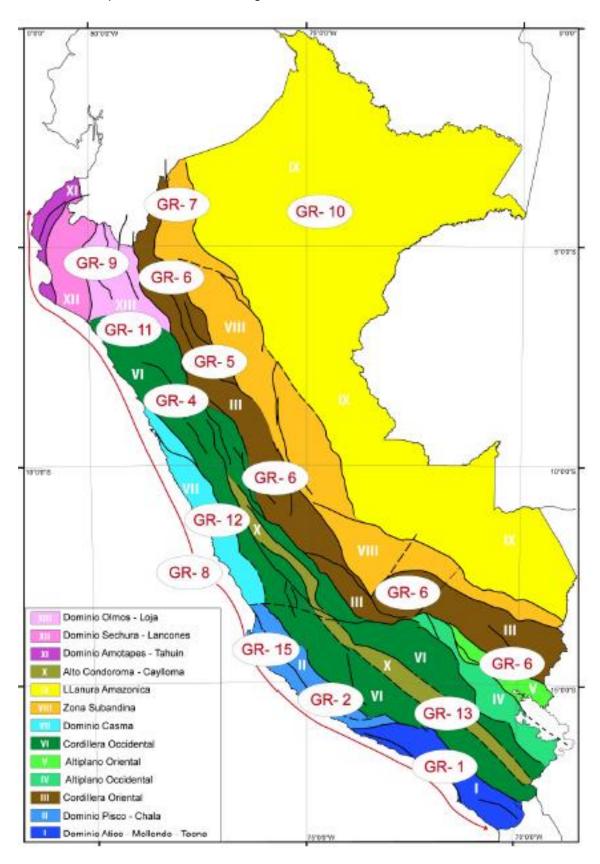
- Sass-Gustkiewicz M, & Dzulynski S. (1982). The emplacement of zinc-lead sulphide ores in the upper Silesian ore district: A contribution to understanding Mississippi Valley-type deposits. *Economic Geology, v. 77*, p. 392-412.
- Sharp. (1978). Energy and momentum tranport model of the Ouachita basin and its possible impact on formation of economic mineral deposits. *Economic Geology*, 73, 1057-1068.
- Sibson R.H. (1990). Faulting and fluid flow. En: B.E. Nesbitt (Ed) Short course on fluids in tectonically active regimes of the continental crust: Mineralogical Association of Canada.
- Spalletti L.A., & Schwarz E. (2010). Evolución del margen activo de Gondwana occidental y su impacto en el registro sedimentario mesozoico de la Cuenca Neuquina, República Argentina. Centro de Investigaciones Geológicas.

 Unversidad de la Plata- CONICET.
- Spangenberg, & Fontboté. (1995). Rare-earth element patterns in the host and gangue carbonates of the San Vicente zinc lead deposit, Peru. *Archive ouverte UNIGE*.
- Tornos F. (1997). Asociaciones minerales en procesos de alteración , relleno hidrotermal sobre roca silicicoalumínicas. Barcelona: Edicions de la Universitat de Barcelona, 249-272.
- Tritlla J. (2006). Depósitos de Pb-Zn-Cu-Ba-F-Sr epigenéticos estratoligados en series sedimentarias en relación con salmueras de cuenca: depósitos de tipo "Mississippi Valley" (MVT) y similares en México. BOLETÍN DE LA SOCIEDAD GEOLÓGICA MEXICANA REVISIÓN DE ALGUNAS TIPOLOGÍAS DE DEPÓSITOS MINERALES DE MÉXICO TOMO LVIII, 103-139.
- Tuanama N. (2016). Controles geológicos del manto Intermedio y su relación con la génesis del yacimiento MVT en Shalipayco, Junín, Perú. Lima.
- Tumialán P. (2003). Compendio de Yacimientos Minerales del Perú, Boletín N°10, Serie B Geología Económica-INGEMMET. Lima: INGEMMET.

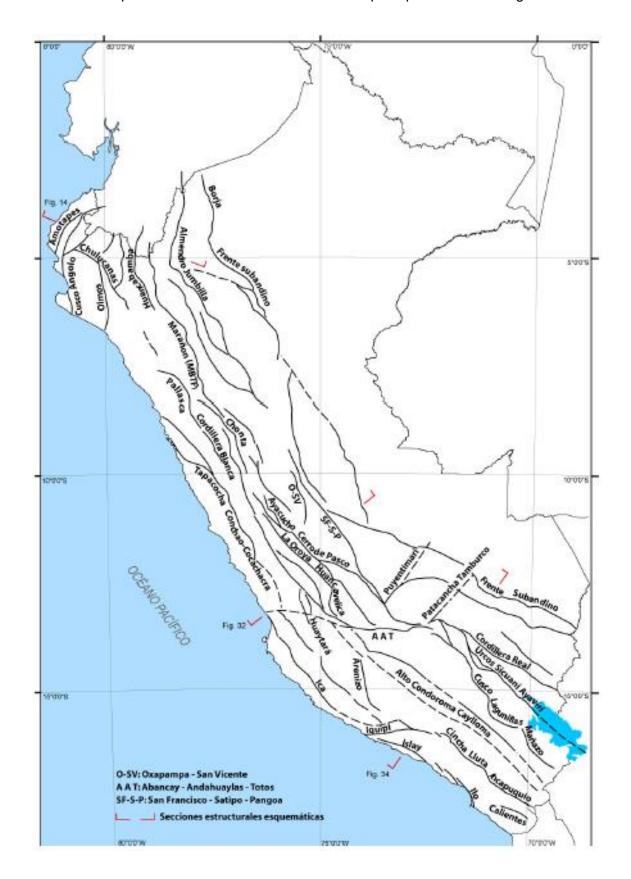
- Veiga de Cabo, D. I. (2008). Modelos de estudios de investigación aplicada: conceptos y criterios para el diseño. *Med Segur Trab 2008; Vol LIV Nº 210*, 81-88.
- Warren J. (2000). Dolomite: occurrence, evolution and economically important associations. *Earth-Science Reviews 52*, 1-81.

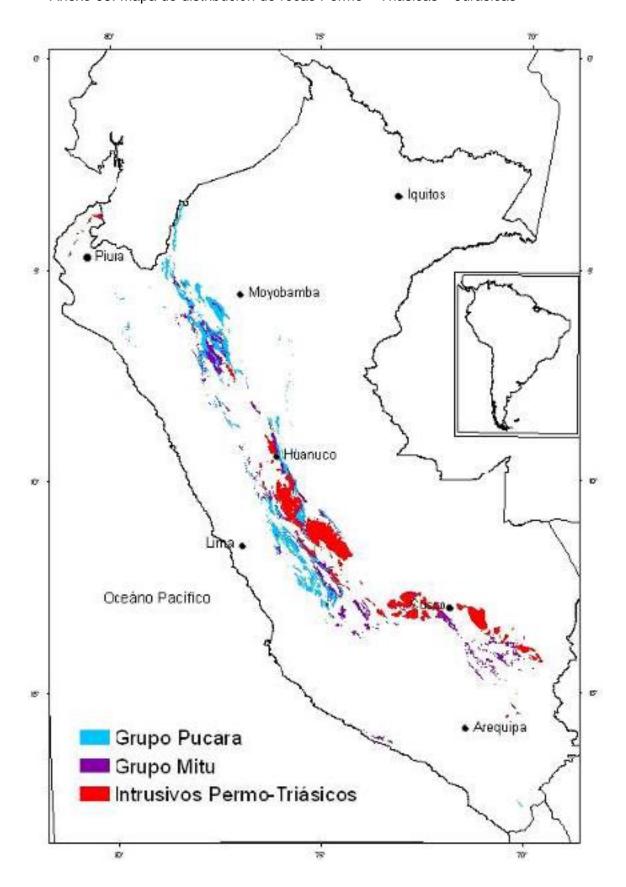

Anexo 01: Matriz de Consistencia

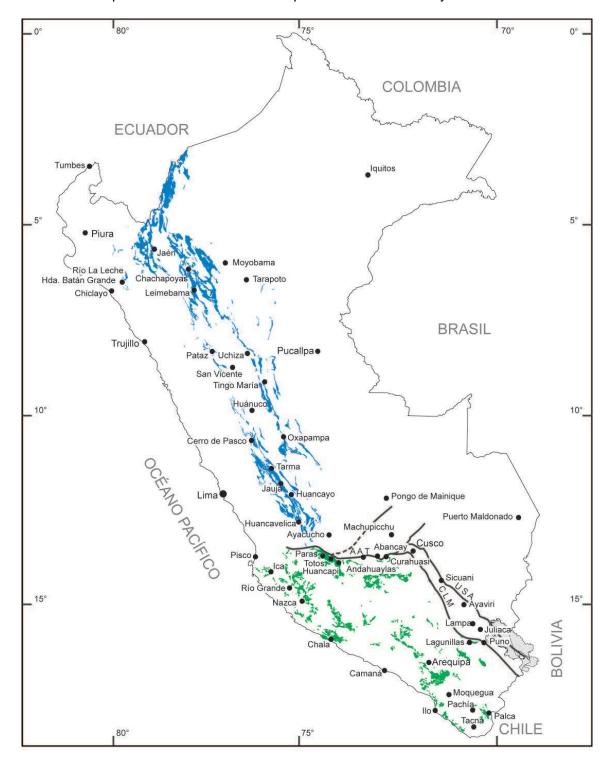
TITULO: "GUIAS DE EXPLORACION PARA LA IDENTIFICACION DE TARGETS EN EL YACIMIENTO TIPO MISSISSIPPI VALLEY DE SAN VICENTE – COMPAÑÍA MINERA SAN IGNACIO DE MOROCOCHA S.A."

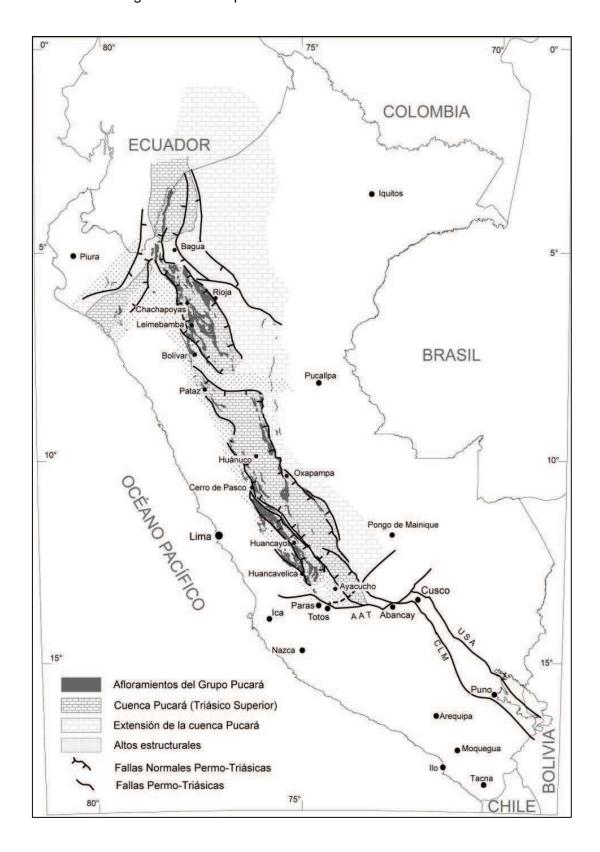

AÑO: 2020

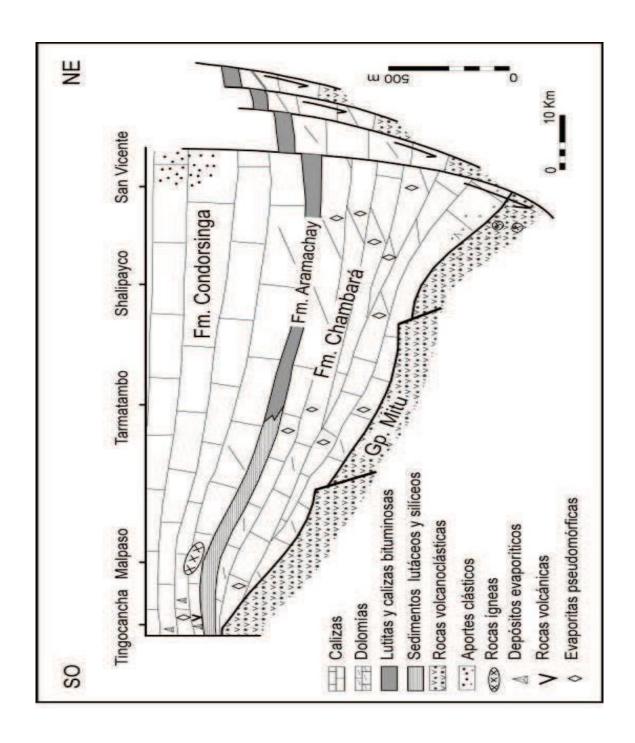
Problema	Objetivo	Hipótesis	Variable	Investigación
Problema General	Objetivo General	Hipótesis General	Variable dependiente	Tipo de investigación
¿La implementación de guías de exploración logrará nuevos targets en el yacimiento tipo Mississippi Valley de San Vicente en Cía. Minera SIMSA?	Implementar guías de exploración para identificar nuevos targets en el yacimiento tipo Mississippi Valley de San Vicente en Cía. Minera SIMSA.	La implementación de guías de exploración logrará nuevos targets en el yacimiento tipo Mississippi Valley de San Vicente en Cía. Minera SIMSA.	Targets	- Aplicativo
Problemas Específicos	Objetivos Específicos	Hipótesis Específicas	Variable independiente	Método de investigación
¿Cómo se presentan los targets de exploración del yacimiento tipo Mississippi Valley de San Vicente en Cía. Minera SIMSA antes de la implementación de las guías de exploración?	Describir los targets de exploración del yacimiento tipo Mississippi Valley de San Vicente en Cía. Minera SIMSA antes de la implementación de las guías de exploración.	Describir los targets de exploración del yacimiento tipo Mississippi Valley de San Vicente en Cía. Minera SIMSA antes de la implementación de las guías de exploración.	Guías de exploración	 Observacional Descriptivo Aplicativo Exploratorio
2) ¿La implementación de las guías de exploración logrará la identificación de nuevos targets en el yacimiento tipo Mississippi Valley de San Vicente en Cía. Minera SIMSA en la etapa de estudio?	Implementar las guías de exploración para identificar nuevos targets en el yacimiento tipo Mississippi Valley de San Vicente en Cía. Minera SIMSA en la etapa de estudio.	La implementación de guías de exploración logrará la identificación de nuevos targets en el yacimiento tipo Mississippi Valley de San Vicente en Cía. Minera SIMSA, en la etapa de estudio.		Diseño de investigación - Cuantitativo - Experimental - Prospectivo - Transversal
3) ¿Cómo se presentan los targets de exploración del yacimiento tipo Mississippi Valley de San Vicente en Cía., Minera SIMSA después de la implementación de las guías de exploración?	Describir los targets de exploración del yacimiento tipo Mississippi Valley de San Vicente en Cía., Minera SIMSA después de la implementación de las guías de exploración.	3) Describir los targets de exploración del yacimiento tipo Mississippi Valley San Vicente en Cía., Minera SIMSA después de la implementación de las guías de exploración.		Población - Yacimiento tipo MVT San Vicente. Muestra - Campaña exploración DDH 2018-2019 Ayala Inf. SIMSA (16,697 metros)
				Técnicas Recolección de información Secciones transversales, y longitudinales Logueo de sondajes Estudio petrográfico Revistas científicas Instrumentos Perforación diamantina Logueo de sondajes Muestreo de cores Muestreo de canales Interpretación litológica Interpretación estructural Modelamiento 3D

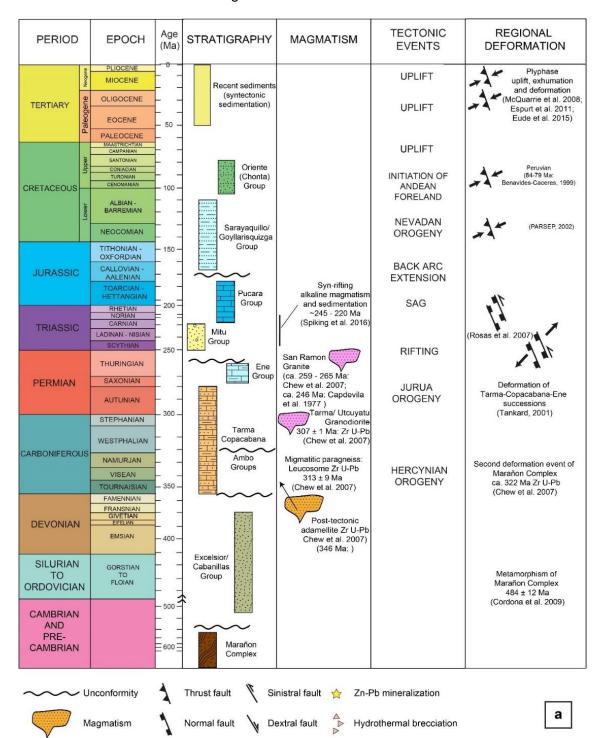

Anexo 02: Entorno Geológico Tectónico del Perú

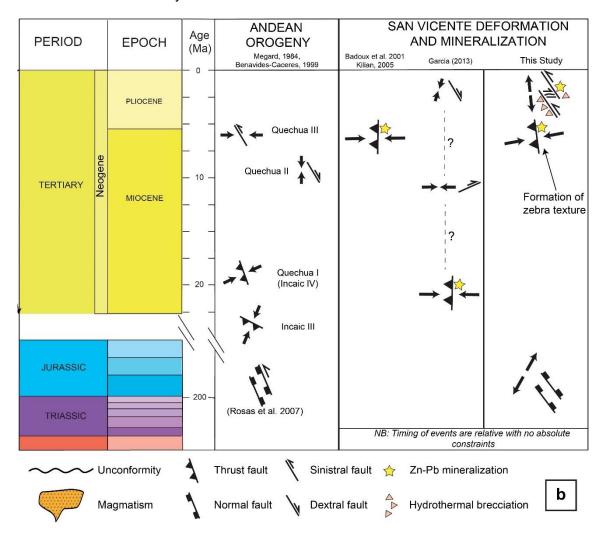

Anexo 03: Mapa de Dominios Geológicos o Geotectónicos del Perú


Anexo 04: Mapa Estructural del Perú mostrando las principales fallas cartografiadas.


Anexo 05: Mapa de distribución de rocas Permo – Triásicas – Jurásicas


Anexo 06: Mapa de afloramientos del Grupo Pucará en el Norte y Centro del Perú


Anexo 07: Mapa de ubicación de la cuenca Pucará para el Triásico superior en el contexto de las grandes fallas que controlaron su evolución.


Anexo 08: Modelo de cuenca tipo semigraben para el Grupo Pucará (Rosas, 1994)

Anexo 09: Entorno Tectónico Regional

Anexo 10: Deformación y Mineralización Andina

Instrumentos de Recolección de Datos

Anexo 11: DDH_Ayala Inferior_Collar

son	este	norte	cota	nivel	avance	maquin	logueo	subzon
2N51504270	456762.094	8758447	1526.79	1515	462		MBRAVO	
2N51504280	456759.188	8758448	1526.92	1515	466.5		E VILLAFUERT	Έ
2N51504289	456762.781	8758448	1526.53	1515	513		RRIVERA	
2N51504302	456760.875	8758569	1527.83	1515	519		RRIVERA	
2N51504316	456763.938	8758567	1527.6	1515	502.5		RRIVERA	
2N51504322	456760.469	8758568	1527.55	1515	501		RRIVERA	
2N51504335	456760.875	8758568	1527.54	1515	462		RRIVERA	
2N51504343	456763.938	8758566	1527.48	1515	576		RRIVERA	
2N51504357	456760.75	8758630	1527.91	1515	522		RRIVERA	
2N51504367	456764.156	8758629	1527.9	1515	526.5		RRIVERA	
2N51504376	456761.594	8758631	1527.8	1515	556.5		RRIVERA	
2N51504385	456762.75	8758631	1528.06	1515	538.5		RRIVERA	
2N51504396	456759.688	8758630	1528.12	1515	529.5		RRIVERA	
2N51504406	456763.094	8758629	1528.13	1515	460.5		RRIVERA	
2N51504414	456759.531	8758726	1528.7	1515	543		RRIVERA	
2N51504431	456759.094	8758726	1528.39	1515	615		RRIVERA	
2N51504448	456762.125	8758724	1528.79	1515	535.5		RRIVERA	
2N51504466	456758.906	8758726	1528.63	1515	657		RRIVERA	
2N51504592	456758.344	8758849	1529.49	1515	567		E VILLAFUERT	Έ
2N51504601	456758.063	8758849	1529.593	1515	220		P LLAMOCA	
2N51504604	456764.594	8758723	1528.467	1515	300		E VILLAFUERT	Έ
2N51504605	456759	8758782	1528.875	1515	552		E VILLAFUERT	Έ
2N51504611	456764.344	8758723	1528.177	1515	280.5		E VILLAFUERT	Έ
2N51504617	456759.063	8758781	1528.991	1515	570		P LLAMOCA	
2N51504630	456758.844	8758782	1529.031	1515	651		E.VILLAFUERT	E/P.LLAMOCA
2N51504642	456758.875	8758782	1529.002	1515	585		E VILLAFUERT	Έ
2N51504648	456759.188	8758782	1528.95	1515	501		E VILLAFUERT	Έ
2N51504656	456759.875	8758780	1528.934	1515	552		E VILLAFUERT	Έ
2N51504659	456760.656	8758783	1528.909	1515	480		P LLAMOCA	
2N51504664	456759.063	8758910	1529.778	1515	565.5		E VILLAFUERT	Έ
2N51504670	456758.875	8758911	1529.877	1515	657		E VILLAFUERT	Έ
2N51504691	456762.875	8758909	1529.946	1515	469.5		E VILLAFUERT	Έ
2N51504699	456759.938	8758912	1529.962	1515	588		E VILLAFUERT	Έ
2N51504717	456761.406	8758509	1526.989	1515	351			
2N51504724	456762.219	8758505	1527.363	1515	280			
2N51504726	456763.031	8758504	1527.537	1515	280		GUSTAVO SUL	LCA
2N51504735	456761.875	8758507	1527.196	1515	340		P LLAMOCA	

Anexo 12: DDH_Ayala Inferior_Geology

- DDH-2N51504302
- DDH-2N51504357
- DDH-2N51504466
- DDH-2N51504592
- DDH-2N51504630
- DDH-2N51504664

son	from	to	le	eng	roca	textur	grano	n	W	gsd	wsd	
2N51504302		0	48		CzN	Ms	F	N2			0	0
2N51504302		48	48.05		Falla						0	0
2N51504302	48.	05	48.9		CzN	CrBx	F	N2	W1		0	0
2N51504302	4	3.9	48.95		Falla						0	0
2N51504302	48.	95	49.35		CzN	CrBx	F	N2	W1		0	0
2N51504302	49.	35	49.6		V	Aftc					0	0
2N51504302	4	9.6	49.65		Falla						0	0
2N51504302	49.	65	54.5		CzN	Ms	F	N2			0	0
2N51504302	5	4.5	56.4		CzN	CrBx	F	N2			0	0
2N51504302	5	5.4	56.45		Falla						0	0
2N51504302	56.	45	57.1		CzN	BxT	F	N2	W1		0	0
2N51504302	5	7.1	57.15		Falla						0	0
2N51504302	57.	15	59		CzN	CrBx	F	N2			0	0
2N51504302		59	87		CzN	Ms	F	N2			0	0
2N51504302		87	148.5		CzN	Ms	F	N2			0	0
2N51504302	14	3.5	167.9		CzN	Ms	F	N2			0	0
2N51504302	16	7.9 1	67.95		Falla						0	0
2N51504302	167.	95	174		CzN	Lm	F	N1			0	0
2N51504302	1	74	184.8		CzN	Lm	F	N1			0	0
2N51504302	184	1.8 1	84.85		Falla						0	0
2N51504302			187.2		CzN	Lm	F				0	0
2N51504302			87.25		Falla						0	0
2N51504302			189		CzN	Lm	F	N1			0	0
2N51504302			89.05		Falla						0	0
2N51504302			189.5		CzN	Lm	F	N1			0	0
2N51504302			89.55		Falla						0	0
2N51504302	189.		89.85		CzN	Lm	F	N1			0	0
2N51504302			202.5		CzN	Lm	F	N1			0	0
2N51504302			02.55		Falla						0	0
2N51504302			217.2		CzN	Lm	F	N1			0	0
2N51504302			17.25		Falla						0	0
2N51504302	217.	25	221.6		CzN	Lm	F	N1			0	0

221.6	221.65	Falla					0	0
221.65	226.5	CzN	Lm	F	N1		0	0
226.5	228.5	CzN	Lm	F	N1		0	0
228.5	228.55	Falla					0	0
228.55	229.8	Dm	Bx	FM	N2	W4	20	80
229.8	229.85	Falla					0	0
229.85	231.4	Dm	CrBx	M	N3	W2	40	60
231.4	232.2	Dm	MMBx	MG	N3	W3	40	60
232.2	237	Dm	CrBx	M	N3	W2	30	70
237	244.8	Dm	CrBx	M	N3	W1	0	0
244.8	244.85	Falla					0	0
244.85	248	Dm	CrBx	M	N3	W1	0	0
248	251	Dm	0	M	N3		0	0
251	254	Dm	CrBx	MF	N3		0	0
254	258.9	Dm	Bx	MF	N3	W3	40	60
258.9	261.4	Dm	CrBx	MF	N3		0	0
261.4	262.7	Dm	Bx	MF	N3	W4	60	40
262.7	263.9	Dm	CrBx	M	N3		0	0
263.9	265	DmR	Bx	M	N3	W3	40	60
265	270.85	DmR	CrBx	M	N3	W1	0	0
270.85	271.35	Dm	MMBx	M	N3	W5	70	30
271.35	272.6	Dm	CbBx	MG	N4	W4	70	30
272.6	273.35	Dm	BxO	MG	N4	W3	60	40
273.35	273.85	Dm	CbBx	MG	N4	W5	80	20
273.85	274.15	Dm	CbBx	MG	N4	W5	80	20
274.15	274.5	Dm	MMBx	G	N4	W5	80	20
274.5	275.35	Dm	MMBx	M	N4	W5	70	30
275.35	276	Dm	0	MG	N4	W1	0	0
276	276.25	Dm	Ms	MG	N4	W1	0	0
276.25	277.3	Dm	Cb	MG	N4	W3	50	50
277.3	278.3	Dm	CbBx	MG	N4	W4	60	40
278.3	279.4	Dm	MMBx	MG	N4	W3	60	40
279.4	280.5	Dm	MMBx	MG	N4	W2	50	50
	221.65	221.65 226.5 226.5 228.5 228.5 228.55 228.55 229.8 229.8 229.85 229.85 231.4 231.4 232.2 237 244.8 244.8 244.85 244.8 244.85 248 251 251 254 254 258.9 258.9 261.4 261.4 262.7 263.9 265 265 270.85 270.85 271.35 271.35 272.6 273.35 273.35 273.35 273.85 273.85 274.15 274.5 275.35 275.35 276.25 276.25 276.25 276.25 277.3 278.3 279.4	221.65 226.5 CzN 226.5 228.5 CzN 228.5 228.55 Falla 228.55 229.8 Dm 229.8 229.85 Falla 229.85 231.4 Dm 231.4 232.2 Dm 232.2 237 Dm 237 244.8 Dm 244.8 244.85 Falla 244.85 248 Dm 244.8 251 Dm 251 254 Dm 251 254 Dm 254 258.9 Dm 258.9 261.4 Dm 261.4 262.7 Dm 262.7 263.9 Dm 263.9 265 DmR 265 270.85 DmR 270.85 271.35 Dm 271.35 272.6 Dm 273.35 273.85 Dm 273.85 274.15 Dm <td>221.65 226.5 CzN Lm 226.5 228.5 CzN Lm 228.5 228.55 Falla 228.55 229.8 Dm Bx 229.8 229.85 Falla 229.85 231.4 Dm CrBx 229.85 231.4 Dm CrBx 231.4 232.2 Dm MMBx 231.4 232.2 Dm MMBx 232.2 237 Dm CrBx 237 244.8 Dm CrBx 244.8 Dm CrBx 244.8 244.85 Falla 244.85 248 Dm CrBx 248 251 Dm O 251 254 Dm CrBx 254 258.9 Dm Bx 258.9 261.4 Dm CrBx 261.4 262.7 Dm Bx 262.7 263.9 Dm CrBx</td> <td>221.65 226.5 CzN Lm F 226.5 228.5 CzN Lm F 228.5 228.55 Falla FM 229.8 229.85 Falla FM 229.85 231.4 Dm CrBx M 231.4 232.2 Dm MMBx MG 231.4 232.2 Dm CrBx M 231.4 232.2 Dm CrBx M 232.2 237 Dm CrBx M 237 244.8 Dm CrBx M 244.85 Falla CrBx M 244.85 Falla CrBx M 244.85 Palla CrBx M 244.85 Palla Dm CrBx M 244.85 Palla Dm CrBx M 244.85 Palla Dm CrBx M 251 254 Dm CrBx MF <!--</td--><td>221.65 226.5 CzN Lm F N1 226.5 228.5 CzN Lm F N1 228.5 228.55 Falla FM N2 229.8 229.85 Falla FM N2 229.8 229.85 Falla Falla PM CrBx M N3 231.4 232.2 Dm MMBx MG N3 N3 231.4 232.2 Dm MMBx MG N3 232.2 237 Dm CrBx M N3 232.2 237 Dm CrBx M N3 232.2 237 Dm CrBx M N3 244.8 244.85 Falla CrBx M N3 244.85 Palla CrBx M N3 244.85 Palla Palla 244.85 Palla <t< td=""><td>221.65 226.5 CzN Lm F N1 226.5 228.55 Falla </td><td> 221.65</td></t<></td></td>	221.65 226.5 CzN Lm 226.5 228.5 CzN Lm 228.5 228.55 Falla 228.55 229.8 Dm Bx 229.8 229.85 Falla 229.85 231.4 Dm CrBx 229.85 231.4 Dm CrBx 231.4 232.2 Dm MMBx 231.4 232.2 Dm MMBx 232.2 237 Dm CrBx 237 244.8 Dm CrBx 244.8 Dm CrBx 244.8 244.85 Falla 244.85 248 Dm CrBx 248 251 Dm O 251 254 Dm CrBx 254 258.9 Dm Bx 258.9 261.4 Dm CrBx 261.4 262.7 Dm Bx 262.7 263.9 Dm CrBx	221.65 226.5 CzN Lm F 226.5 228.5 CzN Lm F 228.5 228.55 Falla FM 229.8 229.85 Falla FM 229.85 231.4 Dm CrBx M 231.4 232.2 Dm MMBx MG 231.4 232.2 Dm CrBx M 231.4 232.2 Dm CrBx M 232.2 237 Dm CrBx M 237 244.8 Dm CrBx M 244.85 Falla CrBx M 244.85 Falla CrBx M 244.85 Palla CrBx M 244.85 Palla Dm CrBx M 244.85 Palla Dm CrBx M 244.85 Palla Dm CrBx M 251 254 Dm CrBx MF </td <td>221.65 226.5 CzN Lm F N1 226.5 228.5 CzN Lm F N1 228.5 228.55 Falla FM N2 229.8 229.85 Falla FM N2 229.8 229.85 Falla Falla PM CrBx M N3 231.4 232.2 Dm MMBx MG N3 N3 231.4 232.2 Dm MMBx MG N3 232.2 237 Dm CrBx M N3 232.2 237 Dm CrBx M N3 232.2 237 Dm CrBx M N3 244.8 244.85 Falla CrBx M N3 244.85 Palla CrBx M N3 244.85 Palla Palla 244.85 Palla <t< td=""><td>221.65 226.5 CzN Lm F N1 226.5 228.55 Falla </td><td> 221.65</td></t<></td>	221.65 226.5 CzN Lm F N1 226.5 228.5 CzN Lm F N1 228.5 228.55 Falla FM N2 229.8 229.85 Falla FM N2 229.8 229.85 Falla Falla PM CrBx M N3 231.4 232.2 Dm MMBx MG N3 N3 231.4 232.2 Dm MMBx MG N3 232.2 237 Dm CrBx M N3 232.2 237 Dm CrBx M N3 232.2 237 Dm CrBx M N3 244.8 244.85 Falla CrBx M N3 244.85 Palla CrBx M N3 244.85 Palla Palla 244.85 Palla Palla <t< td=""><td>221.65 226.5 CzN Lm F N1 226.5 228.55 Falla </td><td> 221.65</td></t<>	221.65 226.5 CzN Lm F N1 226.5 228.55 Falla	221.65

2N51504302	280.5	281.2	Dm	0	M	N4	W1	0	0
2N51504302	281.2	282.6	Dm	CbBx	MG	N4	W3	60	40
2N51504302	282.6	282.65	Falla					0	0
2N51504302	282.65	283.5	Dm	MMBx	MG	N4	W4	60	40
2N51504302	283.5	285	Dm	Bx	M	N4	W2	40	60
2N51504302	285	285.9	Dm	CbBx	MG	N4	W4	60	40
2N51504302	285.9	286.5	Dm	CbBx	MG	N4	W3	40	60
2N51504302	286.5	287.6	Dm	MMBx	MG	N4	W3	60	40
2N51504302	287.6	288	Dm	MMBx	MG	N4	W4	50	50
2N51504302	288	289.3	Dm	MMBx	MG	N4	W4	60	40
2N51504302	289.3	290.2	Dm	CbBx	MG	N4	W3	50	50
2N51504302	290.2	291	Dm	MMBx	MG	N4	W4	60	40
2N51504302	291	291.6	Dm	MMBx	MG	N4	W4	60	40
2N51504302	291.6	292.5	Dm	MMBx	MG	N4	W4	60	40
2N51504302	292.5	293	Dm	MMBx	MG	N4	W3	60	40
2N51504302	293	294	Dm	CbBx	MG	N4	W4	60	40
2N51504302	294	294.9	Dm	MMBx	MG	N4	W3	50	50
2N51504302	294.9	295.9	Dm	CbBx	MG	N4	W3	50	50
2N51504302	295.9	297	Dm	CbBx	MG	N3	W3	50	50
2N51504302	297	298	Dm	CbBx	MG	N4	W4	60	40
2N51504302	298	298.5	Dm	CbBx	MG	N4	W3	60	40
2N51504302	298.5	299.7	Dm	CbBx	M	N4	W3	50	50
2N51504302	299.7	301.1	Dm	CbBx	MG	N4	W3	60	40
2N51504302	301.1	301.5	Dm	0	M	N4	W0	0	0
2N51504302	301.5	303	Dm	Bx	M	N4	W2	40	60
2N51504302	303	304.1	Dm	Bx	MF	N4	W1	0	0
2N51504302	304.1	310.5	Dm	CrBx	FM	N3	W1	0	0
2N51504302	310.5	311.2	Dm	Bx	M			30	70
2N51504302	311.2	311.25	Falla					0	0
2N51504302	311.25	311.6	Dm	MMBx	MG	N4	W3	50	50
2N51504302	311.6	313	Dm	MMBx	MG	N4	W2	50	50
2N51504302	313	314.1	Dm	MMBx	MG	N4	W3	50	50
2N51504302	314.1	315.4	Dm	MMBx	MG	N4	W3	60	40

2N51504302	315.4	315.45	Falla					0	0
2N51504302	315.45	316.3	Dm	MMBx	MG	N4	W2	50	50
2N51504302	316.3	316.9	Dm	MMBx	MG	N4	W4	30	70
2N51504302	316.9	317.6	Dm	MMBx	MG	N4	W3	50	50
2N51504302	317.6	318.6	Dm	MMBx	MG	N4	W3	50	50
2N51504302	318.6	319.3	Dm	Bx	M	N4	W2	40	60
2N51504302	319.3	320.3	Dm	MMBx	MG	N4	W4	60	40
2N51504302	320.3	321	Dm	MMBx	MG	N5	W4	70	30
2N51504302	321	322.3	Dm	MMBx	MG	N4	W4	60	40
2N51504302	322.3	323.4	Dm	Ms	MF	N3	W1	0	0
2N51504302	323.4	324.8	Dm	CbBx	MG	N4	W4	60	40
2N51504302	324.8	325.9	Dm	CbBx	MG	N4	W3	60	40
2N51504302	325.9	326.2	Dm	Bx	M	N4	W1	0	0
2N51504302	326.2	327.7	Dm	Cb	MG	N4	W3	60	40
2N51504302	327.7	328.5	Dm	Cb	MG	N4	W3	50	50
2N51504302	328.5	329.5	Dm	CbBx	MG	N4	W3	50	50
2N51504302	329.5	330.5	Dm	MMBx	MG	N4	W3	60	40
2N51504302	330.5	331.2	Dm	Bx	M	N4	W1	0	0
2N51504302	331.2	334.5	Dm	0	M	N4	W1	0	0
2N51504302	334.5	338.2	Dm	Bx	M	N4	W1	0	0
2N51504302	338.2	340.3	Dm	Bx	M	N4	W2	30	70
2N51504302	340.3	341.5	Dm	0	M	N4	W1	0	0
2N51504302	341.5	343.4	Dm	BxO	MG	N4	W1	0	0
2N51504302	343.4	343.9	Dm	MMBx	MG	N4	W3	50	50
2N51504302	343.9	344.2	Dm	Bx	M	N4	W2	50	50
2N51504302	344.2	344.7	Dm	MMBx	MG	N4	W3	60	40
2N51504302	344.7	345.9	Dm	Bx	MF	N3	W2	40	60
2N51504302	345.9	347	Dm	CbBx	MG	N4	W3	40	60
2N51504302	347	347.6	Dm	Bx	MF	N4	W1	0	0
2N51504302	347.6	348.5	Dm	CbBx	MG	N4	W3	40	60
2N51504302	348.5	349.9	Dm	Cb	M	N4	W2	30	70
2N51504302	349.9	353.7	Dm	0	M	N4	W0	0	0
2N51504302	353.7	356.5	Dm	Cb	M	N4	W2	30	70

2N51504302	356.5	360.6	Dm	Cb	MG	N4	W3	40	60
2N51504302	360.6	364	Dm	Cb	MG	N4	W1	0	0
2N51504302	364	366	Dm	CrBx	M	N4	W1	0	0
2N51504302	366	366.05	Falla					0	0
2N51504302	366.05	366.7	Dm	Cb	MG	N4	W3	60	40
2N51504302	366.7	368.6	Dm	Bx	MG	N4	W2	30	70
2N51504302	368.6	370.2	Dm	Cb	MG	N4	W2	30	70
2N51504302	370.2	371.4	Dm	Cb	MG	N4	W3	60	40
2N51504302	371.4	372.6	Dm	Cb	MG	N4	W3	60	40
2N51504302	372.6	373.1	Dm	Cb	M	N4	W3	50	50
2N51504302	373.1	374.5	Dm	Cb	M	N4	W1	0	0
2N51504302	374.5	375.6	Dm	Cb	MG	N4	W3	50	50
2N51504302	375.6	378.9	Dm	Cb	MG	N4	W1	0	0
2N51504302	378.9	382	Dm	Cb	MG	N4	W2	40	60
2N51504302	382	382.8	Dm	Cb	MG	N4	W3	60	40
2N51504302	382.8	384	Dm	MMBx	MG	N4	W4	60	40
2N51504302	384	384.5	Dm	MMBx	MG	N4	W3	50	50
2N51504302	384.5	385.5	Dm	MMBx	MG	N4	W4	60	40
2N51504302	385.5	386.7	Dm	Bx	M	N4	W2	40	60
2N51504302	386.7	387.8	Dm	MMBx	MG	N4	W4	50	50
2N51504302	387.8	389	Dm	Cb	MG	N4	W3	50	50
2N51504302	389	390	Dm	MMBx	MG	N4	W4	50	50
2N51504302	390	390.7	Dm	Bx	M	N4	W2	40	60
2N51504302	390.7	392.2	Dm	MMBx	MG	N4	W3	50	50
2N51504302	392.2	393.2	Dm	CbBx	MG	N4	W4	50	50
2N51504302	393.2	394.2	Dm	Cb	M	N4	W1	0	0
2N51504302	394.2	396.5	Dm	Bx	M	N4	W2	30	70
2N51504302	396.5	397.2	Dm	Cb	M	N4	W1	0	0
2N51504302	397.2	400.4	Dm	Cb	MF	N3	W3	60	40
2N51504302	400.4	407.5	Dm	Cb	M	N4	W2	30	70
2N51504302	407.5	409	Dm	Bx	M	N4	W2	30	70
2N51504302	409	414.7	Dm	О	MF	N4	W1	0	0
2N51504302	414.7	416.5	Dm	Bx	FM	N4	W1	0	0

2N51504302	416.5	424.1	Dm	Bx	M	N4	W2	30	70
2N51504302	424.1	425.7	Dm	0	MF	N4	W0	0	0
2N51504302	425.7	429.5	Dm	Bx	M	N4	W2	30	70
2N51504302	429.5	434.5	Dm	0	MF	N4	W0	0	0
2N51504302	434.5	436.4	Dm	Bx	M	N4	W1	0	0
2N51504302	436.4	442.9	Dm	Bx	MF	N4	W2	30	70
2N51504302	442.9	447.9	Dm	Bx	MG	N4	W2	0	0
2N51504302	447.9	456.3	Dm	Bx	MG	N4	W2	30	70
2N51504302	456.3	460.5	Dm	Bx	MG	N4	W2	0	0
2N51504302	460.5	467.8	Dm	Bx	FM	N4	W2	30	70
2N51504302	467.8	467.85	Falla					0	0
2N51504302	467.85	479.5	Dm	Bx	MG	N4	W2	0	0
2N51504302	479.5	492	Dm	Bx	MF	N4	W2	0	0
2N51504302	492	498.5	Dm	Bx	F	N2	W2	0	0
2N51504302	498.5	509.2	Dm	Bx	FM	N3	W2	0	0
2N51504302	509.2	514.8	Dm	Bx	F	N2	W1	0	0
2N51504302	514.8	516.9	CzDm	Ms	F	N2	W0	0	0
2N51504302	516.9	519	CzN	Ms	F	N2	W0	0	0

son	from	to	leng roca	textur	grand	n n	w	gsd	wsd
2N51504357	' (6.7	CzN	Ms	F	N2		(0
2N51504357	6.7	13.1	CzN	Ms	F	N2		(0
2N51504357	13.1	18.9	CzN	Ms	F	N2		() 0
2N51504357	18.9	19.6	DmC	Bx	F	N4	W1	(0
2N51504357	19.6	21.9	Dm	Bx	MG	N4	W2	30	70
2N51504357	21.9	37.5	CzN	Ms	F	N4	W1	(0
2N51504357	37.5	38.1	CzN	Lm	F	N2		() 0
2N51504357	38.1	59.5	CzN	Ms	F	N2	W1	() 0
2N51504357	59.5	90.8	CzN	Ms	F	N2		() 0
2N51504357	7 90.8	108.5	CzN	Ms	F	N2		() 0
2N51504357	108.5	145.7	CzN	Ms	F	N2	W1	() 0
2N51504357	145.7	164.8	CzN	Ms	F	N2	W1	(0
2N51504357	164.8	172	CzN	Ms	F	N2	W2	20	80
2N51504357	172	187.8	CzN	Lm	F	N1		() 0
2N51504357	187.8	194.7	CzN	Lm	F	N2	W1	(0
2N51504357	194.7	195	CzN	BxT	F	N2	W1	() 0
2N51504357	195	223.5	CzN	Lm	F	N1		() 0
2N51504357	223.5	223.9	CzN	BxT	F	N2	W1	() 0
2N51504357	223.9	231.6	CzN	Lm	F	N2	W1	() 0
2N51504357	231.6	233.1	CzN	Lm	F	N2	W1	() 0
2N51504357	233.1	234.8	CzN	Lm	F	N2		() 0
2N51504357	234.8	237.1	CzN	Lm	F	N2	W1	(0
2N51504357	237.1	244.2	CzN	Lm	F	N2		() 0
2N51504357	244.2	244.7	Dm	Bx	MG	N4	W2	30	70
2N51504357	244.7	245.7	Dm	Cb	MG	N4	W3	50	50
2N51504357	245.7	247.3	Dm	Cb	MG	N4	W3	30	70
2N51504357	247.3	249.5	Dm	cblcp.	M	N4	W2	30	70
2N51504357	249.5		Dm	0	M	N4		(0
2N51504357	250.8	252.7	Dm	Bx	MG	N4	W2	30	70
2N51504357	252.7	253.3	Dm	MMB	k MG	N4	W4	50	50
2N51504357	253.3	254.1	Dm	MMB	k M	N4	W3	40	60
2N51504357	254.1	255	Dm	MMB	k MG	N4	W4	50	50

2N51504357	255	255.8	Dm	Bx	MG	N4	W3	40	60
2N51504357	255.8	257	Dm	Bx	M	N4	W1	0	0
2N51504357	257	258	Dm	Bx	MG	N4	W2	30	70
2N51504357	258	259	Dm	Cb	MG	N4	W3	50	50
2N51504357	259	259.7	Dm	cblcp.	М	N4	W2	30	70
2N51504357	259.7	260.9	Dm	Cb .	MG	N4	W3	50	50
2N51504357	260.9	261.8	Dm	0	M	N4		0	0
2N51504357	261.8	263.1	Dm	Bx	M	N4	W2	30	70
2N51504357	263.1	264	Dm	CrBx	M	N4		0	0
2N51504357	264	265.4	Dm	Bx	MF	N4	W2	30	70
2N51504357	265.4	268.1	Dm	Bx	M	N4	W3	40	60
2N51504357	268.1	269.1	Dm	CrBx	MF	N4	W1	0	0
2N51504357	269.1	270	Dm	Bx	FM	N3	W1	0	0
2N51504357	270	272.8	Dm	Bx	MF	N4	W2	40	60
2N51504357	272.8	278	Dm	Bx	FM	N4	W2	40	60
2N51504357	278	278.9	Dm	Cb	MG	N4	W3	40	60
2N51504357	278.9	280.8	Dm	Bx	FM	N3	W2	30	70
2N51504357	280.8	283.9	Dm	Bx	FM	N3	W1	0	0
2N51504357	283.9	287.4	Dm	Bx	FM	N4	W2	30	70
2N51504357	287.4	290.5	Dm	CrBx	MF	N4	W1	0	0
2N51504357	290.5	293.3	Dm	cblcp.	M	N4	W2	40	60
2N51504357	293.3	295.3	Dm	Bx	MF	N4	W1	0	0
2N51504357	295.3	299.5	Dm	0	FM	N3	W1	0	0
2N51504357	299.5	300.8	Dm	Bx	F	N2	W2	20	80
2N51504357	300.8	302.5	Dm	cblcp.	M	N4	W2	30	70
2N51504357	302.5	303.9	Dm	Cb	MG	N4	W3	40	60
2N51504357	303.9	304.4	Dm	MMBx	MG	N4	W4	60	40
2N51504357	304.4	305.4	Dm	MMBx	MG	N4	W3	50	50
2N51504357	305.4	307.3	Dm	Bx	MF	N4	W1	0	0
2N51504357	307.3	308.2	Dm	Cb	MG	N4	W3	30	70
2N51504357	308.2	309.4	Dm	MMBx	MG	N4	W4	60	40
2N51504357	309.4	310.8	Dm	MMBx	MG	N4	W4	60	40
2N51504357	310.8	311.7	Dm	MMBx	MG	N4	W3	50	50

2N51504357	311.7	312.3	Dm	MMBx	MG	N4	W3	50	50
2N51504357	312.3	313.2	Dm	MMBx	MG	N4	W4	60	40
2N51504357	313.2	314.2	Dm	MMBx	MG	N4	W3	50	50
2N51504357	314.2	315.5	Dm	MMBx	MG	N4	W3	60	40
2N51504357	315.5	316.9	Dm	MMBx	MG	N4	W4	60	40
2N51504357	316.9	318.2	Dm	MMBx	MG	N4	W4	60	40
2N51504357	318.2	319.5	Dm	MMBx	MG	N4	W3	50	50
2N51504357	319.5	320.2	Dm	0	M	N4	W1	0	0
2N51504357	320.2	320.9	Dm	Cb	M	N4	W3	50	50
2N51504357	320.9	323.4	Dm	0	M	N4		0	0
2N51504357	323.4	324.7	Dm	Bx	M	N4	W2	0	0
2N51504357	324.7	332.6	Dm	cblcp.	M	N4	W1	0	0
2N51504357	332.6	335.2	Dm	Bx	FM	N4	W2	20	80
2N51504357	335.2	335.9	Dm	Cb	MF	N4	W3	30	70
2N51504357	335.9	337.7	Dm	CrBx	FM	N4	W1	0	0
2N51504357	337.7	339.8	Dm	Bx	MF	N4	W2	30	70
2N51504357	339.8	342.2	Dm	Bx	MF	N4	W1	0	0
2N51504357	342.2	345	Dm	0	M	N4	W1	0	0
2N51504357	345	346.1	Dm	Cb	MG	N4	W3	30	70
2N51504357	346.1	346.9	Dm	cblcp.	M	N4	W1	0	0
2N51504357	346.9	348	Dm	Cb	MG	N4	W3	30	70
2N51504357	348	349	Dm	BxO	M	N4	W1	0	0
2N51504357	349	349.8	Dm	0	M	N4		0	0
2N51504357	349.8	350.9	Dm	Cb	MG	N4	W4	60	40
2N51504357	350.9	351.8	Dm	MMBx	MG	N4	W3	60	40
2N51504357	351.8	352.2	Dm	MMBx	M	N4	W2	0	0
2N51504357	352.2	355.1	Dm	0	M	N4		0	0
2N51504357	355.1	357.8	Dm	Bx	MF	N4	W1	0	0
2N51504357	357.8	358.9	Dm	0	M	N4		0	0
2N51504357	358.9	359.4	Dm	MMBx	MG	N4	W3	60	40
2N51504357	359.4	360.2	Dm	MMBx	MG	N4	W3	60	40
2N51504357	360.2	361.1	Dm	Cb	MG	N4	W3	60	40
2N51504357	361.1	363.7	Dm	cblcp.	MG	N4	W2	40	60

2N51504357	363.7	365.5	Dm	Cb	MG	N4	W3	40	60	
2N51504357	365.5	367.6	Dm	cblcp.	MG	N4	W2	40	60	
2N51504357	367.6	369.8	Dm	Bx	M	N4	W2	30	70	
2N51504357	369.8	373.8	Dm	cblcp.	MG	N4	W2	0	0	
2N51504357	373.8	375	Dm	0	MF	N3	W1	0	0	
2N51504357	375	376.3	Dm	Bx	M	N4	W2	40	60	
2N51504357	376.3	379	Dm	Bx	FM	N4	W2	40	60	
2N51504357	379	384.5	Dm	cblcp.	M	N4	W2	30	70	
2N51504357	384.5	386.5	Dm	Bx	MF	N4	W2	30	70	
2N51504357	386.5	387	Dm	Cb	MG	N4	W3	50	50	
2N51504357	387	388.3	Dm	Bx	MF	N4	W2	30	70	
2N51504357	388.3	388.7	Dm	MMBx	MG	N4	W3	60	40	
2N51504357	388.7	389.7	Dm	MMBx	MG	N4	W4	60	40	
2N51504357	389.7	390.9	Dm	Cb	MG	N4	W3	60	40	
2N51504357	390.9	391.3	Dm	Cb	MG	N4	W3	40	60	
2N51504357	391.3	398.5	Dm	cblcp.	M	N4	W2	30	70	
2N51504357	398.5	400.5	Dm	Cb	MG	N4	W4	60	40	
2N51504357	400.5	403.8	Dm	cblcp.	M	N4	W1	0	0	
2N51504357	403.8	406.7	Dm	0	M	N4		0	0	
2N51504357	406.7	411.1	Dm	Bx	M	N4	W1	0	0	
2N51504357	411.1	413.1	Dm	Bx	FM	N4	W1	0	0	
2N51504357	413.1	414.7	Dm	Cb	M	N4	W3	60	40	
2N51504357	414.7	418.1	Dm	Cb	M	N4	W4	60	40	
2N51504357	418.1	420.7	Dm	cblcp.	MG	N4	W1	0	0	
2N51504357	420.7	422.8	Dm	Ms	FM	N3	W1	0	0	
2N51504357	422.8	425.4	Dm	Bx	MF	N4	W2	30	70	
2N51504357	425.4	429.8	Dm	cblcp.	MF	N4	W1	0	0	
2N51504357	429.8	433.9	Dm	0	MF	N4		0	0	
2N51504357	433.9	437.5	Dm	Bx	M	N4	W1	0	0	
2N51504357	437.5	439.4	Dm	0	MF	N4		0	0	
2N51504357	439.4	445.2	Dm	Bx	M	N4	W2	40	60	
2N51504357	445.2	445.6	Dm	Bx	FM	N4	W1	0	0	
2N51504357	445.6	449.2	Dm	cblcp.	FM	N3	W1	0	0	

2N51504357	449.2	456.5	Dm	Bx	MF	N4	W2	30	70
2N51504357	456.5	460.5	Dm	BxO	MG	N4	W3	30	70
2N51504357	460.5	465	Dm	Bx	FM	N3	W2	30	70
2N51504357	465	472.4	Dm	Bx	MG	N4	W3	30	70
2N51504357	472.4	475.9	Dm	Bx	MF	N3	W2	30	70
2N51504357	475.9	479.8	Dm	Bx	MF	N3	W2	30	70
2N51504357	479.8	498.2	Dm	Bx	FM	N3	W2	20	80
2N51504357	498.2	511	Dm	Bx	F	N2	W2	20	80
2N51504357	511	517.2	Dm	Bx	F	N2	W1	0	0
2N51504357	517.2	522	CzN	Lm	F	N2		0	0

son	from	t	0	leng roca	textur	grano	n n	w	gsd	,	wsd
2N51504466	5	0	4.6	CzN	Ms	F	N2	W1		0	0
2N51504466	5	4.6	6.1	CzN	CrBx	F	N2	W2		0	0
2N51504466	5	6.1	8.6	CzN	CrBx	F	N2	W2		0	0
2N51504466	5	8.6	9.6	CzN	CrBx	F	N2	W1		0	0
2N51504466	5	9.6	12.55	Dm0	CrBx	F	N2	W2		0	0
2N51504466	5	12.55	12.85	Dm0	BxT	F	N4	W3		60	40
2N51504466	5	12.85	16.5	Dm0	CrBx	F	N2	W2		20	80
2N51504466	5	16.5	17.1	Dm	Bx	F	N3	W4		60	40
2N51504466	5	17.1	18.8	Dm	CrBx	F	N2	W2		20	80
2N51504466	5	18.8	20.6	Dm	BxT	F	N4	W3		20	80
2N51504466	5	20.6	21.9	Dm	CrBx	F	N3	W2		20	80
2N51504466	5	21.9	22.2	Dm	BxT	F	N4	W3		30	70
2N51504466	5	22.2	24	Dm	CrBx	FM	N3	W2		50	50
2N51504466	5	24	25.7	Dm	CrBx	F	N2	W2		30	70
2N51504466	5	25.7	30.3	Dm	CrBx	FM	N3	W2		40	60
2N51504466	5	30.3	36	Dm		M	N3	W3		70	30
2N51504466	5	36	40.7	Dm	Bx	MF	N3	W3		80	20
2N51504466	5	40.7	44.2	Dm	McBx	F	N2	W3		70	30
2N51504466	5	44.2	53.4	CzN	Ms	F	N2	W1		0	0
2N51504466	5	53.4	55.2	CzN	Ms	F	N2			0	0
2N51504466	5	55.2	57.8	CzN	Ms	F	N2	W1		0	0
2N51504466	5	57.8	62.5	CzN	Ms	F	N2	W1		0	0
2N51504466	5	62.5	63.8	CzN	CrBx	F	N2	W1		0	0
2N51504466	5	63.8	70.3	CzN	Ms	F	N2	W1		0	0
2N51504466	5	70.3	76.7	CzN	Ms	F	N2	W1		0	0
2N51504466	5	76.7	81	CzN	Ms	F	N2	W2		0	100
2N51504466	5	81	88.6	CzN	Ms	F	N2	W2		0	100
2N51504466	5	88.6	90	CzN	CrBx	F	N2	W2		0	100
2N51504466	5	90	96	CzN	Ms	F	N2	W1		0	0
2N51504466	5	96	102.6	CzN	Ms	F	N2	W1		0	0
2N51504466	5	102.6	113.25	CzN	Ms	F	N2	W1		0	0
2N51504466	5	113.25	130.5	CzN	Ms	F	N2	W1		0	0

2N51504466	130.5	137.7	CzN	Ms	F	N2	W1	0	0
2N51504466	137.7	143.7	Dm	cblcp.	M	N4	W1	0	0
2N51504466	143.7	145.2	Dm	Cb	MG	N4	W3	30	70
2N51504466	145.2	147.8	Dm	cblcp.	M	N4	W2	30	70
2N51504466	147.8	150	Dm	Cb	MG	N4	W3	30	70
2N51504466	150	152.5	Dm	0	MF	N4		0	0
2N51504466	152.5	155	Dm	Bx	MG	N4	W2	30	70
2N51504466	155	158.3	Dm	О	MF	N4	W1	0	0
2N51504466	158.3	163.5	Dm	Bx	MG	N4	W2	40	60
2N51504466	163.5	167.6	Dm	cblcp.	M	N4	W1	0	0
2N51504466	167.6	171.5	CzN	Ms	F	N2	W1	0	0
2N51504466	171.5	176.5	CzN	Ms	F	N2	W1	0	0
2N51504466	176.5	181.7	CzN	Ms	F	N2	W1	0	0
2N51504466	181.7	198.8	CzN	Ms	F	N2	W1	0	0
2N51504466	198.8	202.5	CzN	Ms	F	N2		0	0
2N51504466	202.5	223.5	CzN	Ms	F	N2	W1	0	0
2N51504466	223.5	231.3	CzN	Ms	F	N2	W1	0	0
2N51504466	231.3	237	CzN	Ms	F	N2	W1	0	0
2N51504466	237	257.2	CzN	Ms	F	N4	W2	30	70
2N51504466	257.2	271.5	CzN	Lm	F	N1		0	0
2N51504466	271.5	282	CzN	Lm	F	N1		0	0
2N51504466	282	286.5	CzN	Lm	F	N1	W1	0	0
2N51504466	286.5	287.5	CzN	BxT	F	N2		0	0
2N51504466	287.5	304.3	CzN	Lm	F	N2	W1	0	0
2N51504466	304.3	305.1	CzN	BxT	F	N2		0	0
2N51504466	305.1	306.5	CzN	Lm	F	N2	W1	0	0
2N51504466	306.5	326.8	CzN	Lm	F	N2	W1	0	0
2N51504466	326.8	327.6	CzN	Lm	F	N2	W1	0	0
2N51504466	327.6	343.6	CzN	Lm	F	N2	W1	0	0
2N51504466	343.6	345.6	CzN	Lm	F	N2	W1	0	0
2N51504466	345.6	346.7	CzN	Ms	F	N2		0	0
2N51504466	346.7	347.4	Dm	CrBx	F	N2	W2	20	80
2N51504466	347.4	349.1	Dm	Bx	MF	N4	W2	30	70

2N51504466	349.1	351.1	Dm	MMBx	M	N4	W3	40	60
2N51504466	351.1	352.6	Dm	Bx	MF	N4	W2	30	70
2N51504466	352.6	353.4	Dm	BxT	MF	N3	W2	30	70
2N51504466	353.4	356.3	Dm	Bx	MF	N4	W2	30	70
2N51504466	356.3	361.6	Dm	Bx	MG	N4	W3	40	60
2N51504466	361.6	361.9	Dm	BxT	MF	N4	W1	0	0
2N51504466	361.9	363	Dm	MMBx	MG	N4	W3	40	60
2N51504466	363	368.4	Dm	BxO	M	N4	W2	30	70
2N51504466	368.4	369.7	Dm	Cb	MG	N4	W3	30	70
2N51504466	369.7	372	Dm	Bx	MF	N4	W2	30	70
2N51504466	372	372.3	Dm	BxT	FM	N4	W1	0	0
2N51504466	372.3	373.8	Dm	CrBx	MF	N4	W1	0	0
2N51504466	373.8	374.8	Dm	MMBx	M	N4	W3	40	60
2N51504466	374.8	380.1	Dm	0	MF	N4	W1	0	0
2N51504466	380.1	381.7	Dm	CrBx	FM	N3	W1	0	0
2N51504466	381.7	382.4	Dm	MMBx	MG	N4	W3	40	60
2N51504466	382.4	382.9	Dm	0	M	N4	W1	0	0
2N51504466	382.9	384	Dm	Cb	MG	N4	W3	40	60
2N51504466	384	385	Dm	Bx	MF	N4	W1	0	0
2N51504466	385	387	Dm	CrBx	FM	N3	W1	0	0
2N51504466	387	388.7	Dm	CrBx	MF	N3	W1	0	0
2N51504466	388.7	389.3	Dm	0	M	N4		0	0
2N51504466	389.3	389.7	Dm	MMBx	MG	N4	W4	50	50
2N51504466	389.7	390.7	Dm	MMBx	MG	N4	W3	50	50
2N51504466	390.7	391.6	Dm	Cb	MG	N4	W3	50	50
2N51504466	391.6	392.7	Dm	CrBx	MF	N4	W1	0	0
2N51504466	392.7	393.9	Dm	0	M	N4	W1	0	0
2N51504466	393.9	394.9	Dm	MMBx	MG	N4	W4	40	60
2N51504466	394.9	395.8	Dm	MMBx	MG	N4	W4	30	70
2N51504466	395.8	396.8	Dm	MMBx	MG	N4	W4	30	70
2N51504466	396.8	397.9	Dm	MMBx	MG	N4	W4	40	60
2N51504466	397.9	399.4	Dm	MMBx	MG	N4	W3	50	50
2N51504466	399.4	399.9	Dm	Cb	MG	N4	W3	50	50

2N51504466	399.9	400.9	Dm	MMBx	MG	N4	W3	50	50
2N51504466	400.9	402.1	Dm	MMBx	MG	N4	W3	40	60
2N51504466	402.1	402.9	Dm	Cb	MG	N4	W3	50	50
2N51504466	402.9	403.9	Dm	MMBx	MG	N4	W3	50	50
2N51504466	403.9	405	Dm	MMBx	MG	N4	W3	50	50
2N51504466	405	405.8	Dm	MMBx	MG	N4	W3	30	70
2N51504466	405.8	406.6	Dm	Bx	M	N4	W2	30	70
2N51504466	406.6	407.3	Dm	MMBx	MG	N4	W3	40	60
2N51504466	407.3	408.6	Dm	CbF	M	N4	W3	30	70
2N51504466	408.6	409.7	Dm	MMBx	MG	N4	W3	30	70
2N51504466	409.7	410.8	Dm	MMBx	MG	N4	W3	30	70
2N51504466	410.8	411.5	Dm	Bx	M	N4	W2	30	70
2N51504466	411.5	412.5	Dm	MMBx	MG	N4	W3	50	50
2N51504466	412.5	413.3	Dm	MMBx	MG	N4	W3	50	50
2N51504466	413.3	413.7	Dm	MMBx	MG	N4	W3	30	70
2N51504466	413.7	414.8	Dm	MMBx	MG	N4	W3	50	50
2N51504466	414.8	415.6	Dm	MMBx	MG	N4	W3	50	50
2N51504466	415.6	416.5	Dm	Bx	M	N4	W2	30	70
2N51504466	416.5	417.2	Dm	0	M	N4	W1	0	0
2N51504466	417.2	418.5	Dm	MMBx	M	N4	W2	30	70
2N51504466	418.5	419.7	Dm	MMBx	M	N4	W3	30	70
2N51504466	419.7	420.7	Dm	Bx	M	N4	W2	40	60
2N51504466	420.7	421.3	Dm	Bx	MG	N4	W2	30	70
2N51504466	421.3	422	Dm	cblcp.	M	N4	W2	30	70
2N51504466	422	423.1	Dm	MMBx	MG	N4	W3	50	50
2N51504466	423.1	423.7	Dm	MMBx	MG	N4	W3	40	60
2N51504466	423.7	425	Dm	MMBx	MG	N4	W3	40	60
2N51504466	425	425.5	Dm	Bx	M	N4	W1	0	0
2N51504466	425.5	426	Dm	Cb	MG	N4	W3	40	60
2N51504466	426	426.8	Dm	MMBx	MG	N4	W3	60	40
2N51504466	426.8	427.7	Dm	MMBx	MG	N4	W3	60	40
2N51504466	427.7	428.2	Dm	Cb	MG	N4	W3	40	60
2N51504466	428.2	428.9	Dm	Cb	MG	N4	W3	40	60

2N51504466	428.9	429.7	Dm	Cb	MG	N4	W3	40	60
2N51504466	429.7	430.4	Dm	Cb	MG	N4	W3	30	70
2N51504466	430.4	431	Dm	Cb	MG	N4	W3	40	60
2N51504466	431	431.5	Dm	Cb	MG	N4	W3	40	60
2N51504466	431.5	432.2	Dm	Cb	MG	N4	W3	40	60
2N51504466	432.2	433.2	Dm	Cb	MG	N4	W2	30	70
2N51504466	433.2	434.6	Dm	Bx	M	N4	W2	30	70
2N51504466	434.6	437.7	Dm	CrBx	MG	N4	W1	0	0
2N51504466	437.7	439.7	Dm	cblcp.	MG	N4	W2	30	70
2N51504466	439.7	440.6	Dm	Cb	MG	N4	W3	50	50
2N51504466	440.6	441.9	Dm	Cb	MG	N4	W3	50	50
2N51504466	441.9	443	Dm	0	M	N4	W1	0	0
2N51504466	443	444.1	Dm	Cb	MG	N4	W4	50	50
2N51504466	444.1	445.1	Dm	Bx	M	N4	W2	30	70
2N51504466	445.1	446.7	Dm	CrBx	MF	N4	W2	30	70
2N51504466	446.7	448	Dm	Cb	M	N4	W3	50	50
2N51504466	448	449	Dm	CrBx	M	N4	W1	0	0
2N51504466	449	449.4	Dm	MMBx	MG	N4	W3	50	50
2N51504466	449.4	450	Falla	BxT	F	N4		0	0
2N51504466	450	455	Dm	CrBx	MF	N4	W1	0	0
2N51504466	455	458.5	Dm	CrBx	MF	N4	W1	0	0
2N51504466	458.5	460.9	Dm	0	MG	N4	W1	0	0
2N51504466	460.9	462.5	Dm	CrBx	MF	N4	W1	0	0
2N51504466	462.5	464.1	Dm	0	MG	N4		0	0
2N51504466	464.1	465.4	Dm	0	MG	N4	W1	0	0
2N51504466	465.4	466.5	Dm	Cb	MG	N4	W3	30	70
2N51504466	466.5	467.2	Dm	CbF	M	N4	W3	30	70
2N51504466	467.2	467.9	Dm	Cb	MG	N4	W3	30	70
2N51504466	467.9	468.8	Dm	Cb	MG	N4	W3	40	60
2N51504466	468.8	469.6	Dm	MMBx	M	N4	W4	40	60
2N51504466	469.6	470.1	Dm	MMBx	MG	N4	W3	40	60
2N51504466	470.1	470.8	Dm	MMBx	MG	N4	W1	0	0
2N51504466	470.8	471.3	Dm	MMBx	MG	N4	W2	30	70

2N51504466	471.3	472.2	Dm	MMBx	MG	N4	W3	40	60
2N51504466	472.2	473.2	Dm	MMBx	MG	N4	W3	50	50
2N51504466	473.2	473.5	Dm	MMBx	MG	N4	W3	50	50
2N51504466	473.5	474.5	Dm	MMBx	MG	N4	W3	50	50
2N51504466	474.5	475.1	Dm	MMBx	MG	N4	W3	50	50
2N51504466	475.1	476.1	Dm	MMBx	MG	N4	W3	50	50
2N51504466	476.1	477	Dm	MMBx	MG	N4	W3	40	60
2N51504466	477	477.8	Dm	MMBx	MG	N4	W3	40	60
2N51504466	477.8	478.7	Dm	MMBx	MG	N4	W3	40	60
2N51504466	478.7	479.7	Dm	MMBx	MG	N4	W3	50	50
2N51504466	479.7	480.2	Dm	MMBx	MG	N4	W3	40	60
2N51504466	480.2	481.2	Dm	MMBx	MG	N4	W3	50	50
2N51504466	481.2	482.2	Dm	MMBx	MG	N4	W3	50	50
2N51504466	482.2	482.9	Dm	MMBx	MG	N4	W3	50	50
2N51504466	482.9	483.6	Dm	MMBx	MG	N4	W3	50	50
2N51504466	483.6	484	Dm	MMBx	MG	N4	W3	50	50
2N51504466	484	484.7	Dm	MMBx	MG	N4	W2	40	60
2N51504466	484.7	485.2	Dm	MMBx	MG	N4	W3	40	60
2N51504466	485.2	486.1	Dm	MMBx	MG	N4	W3	50	50
2N51504466	486.1	487	Dm	MMBx	MG	N4	W3	50	50
2N51504466	487	487.7	Dm	MMBx	MG	N4	W3	50	50
2N51504466	487.7	488.3	Dm	MMBx	MG	N4	W3	50	50
2N51504466	488.3	489.6	Dm	MMBx	MG	N4	W3	50	50
2N51504466	489.6	490.2	Dm	MMBx	MG	N4	W3	50	50
2N51504466	490.2	491	Dm	MMBx	MG	N4	W3	50	50
2N51504466	491	492.5	Dm	cblcp.	MG	N4	W2	20	80
2N51504466	492.5	495	Dm	BxO	MG	N4	W2	30	70
2N51504466	495	497.5	Dm	0	MG	N4	W1	0	0
2N51504466	497.5	498.5	Dm	Bx	M	N4	W2	20	80
2N51504466	498.5	499.6	Dm	0	MG	N4	W1	0	0
2N51504466	499.6	502.4	Dm	Bx	MG	N4	W2	0	0
2N51504466	502.4	506.3	Dm	cblcp.	MG	N4	W2	40	60
2N51504466	506.3	507	Dm	MMBx	MG	N4	W3	50	50

2N51504466	507	507.9	Dm	MMBx	MG	N4	W3	50	50
2N51504466	507.9	509.2	Dm	MMBx	MG	N4	W4	60	40
2N51504466	509.2	510.2	Dm	Cb	MG	N4	W2	30	70
2N51504466	510.2	513.1	Dm	0	MG	N4	W1	0	0
2N51504466	513.1	517.2	Dm	0	MF	N4	W1	0	0
2N51504466	517.2	518.3	Dm	Bx	MF	N4	W2	30	70
2N51504466	518.3	519.9	Dm	0	M	N4		0	0
2N51504466	519.9	521.3	Dm	Bx	M	N4	W2	30	70
2N51504466	521.3	522	Dm	MMBx	MG	N4	W3	30	70
2N51504466	522	522.5	Dm	0	M	N4		0	0
2N51504466	522.5	523	Dm	MMBx	MG	N4	W3	40	60
2N51504466	523	524	Dm	0	MG	N4		0	0
2N51504466	524	525.3	Dm	Bx	M	N4	W2	30	70
2N51504466	525.3	527.4	Dm	0	MF	N4	W1	0	0
2N51504466	527.4	528.5	Dm	MMBx	MG	N4	W3	30	70
2N51504466	528.5	531	Dm	Bx	MF	N4	W2	30	70
2N51504466	531	536.1	Dm	0	MF	N4	W1	0	0
2N51504466	536.1	537.9	Dm	Bx	M	N4	W2	30	70
2N51504466	537.9	541.5	Dm	Bx	MF	N4	W1	0	0
2N51504466	541.5	545.2	Dm	Bx	M	N4	W2	30	70
2N51504466	545.2	549	Dm	Bx	M	N4	W2	30	70
2N51504466	549	556.4	Dm	0	MF	N4	W1	0	0
2N51504466	556.4	559.4	Dm	Bx	M	N4	W2	30	70
2N51504466	559.4	560.9	Dm	0	MF	N4	W1	0	0
2N51504466	560.9	563.2	Dm	0	MF	N4	W2	30	70
2N51504466	563.2	570	Dm	cblcp.	M	N4	W2	30	70
2N51504466	570	573	Dm	MMBx	MG	N4	W4	40	60
2N51504466	573	573.5	Dm	BxT	MF	N4	W2	40	60
2N51504466	573.5	578.6	Dm	Bx	M	N4	W2	30	70
2N51504466	578.6	579.5	Dm	CrBx	MF	N3	W1	0	0
2N51504466	579.5	580.8	Dm	BxO	MG	N4	W2	30	70
2N51504466	580.8	587.5	Dm	Bx	MG	N4	W3	30	70
2N51504466	587.5	590.2	Dm	0	M	N4	W1	0	0

2N51504466	590.2	602.8	Dm	Bx	MG	N4	W3	30	70	
2N51504466	602.8	615	Dm	Bx	MF	N4	W2	30	70	
2N51504466	615	617.7	Dm	Bx	MF	N4	W2	30	70	
2N51504466	617.7	618	Dm	BxT	F	N2	W1	0	0	
2N51504466	618	622.6	Dm	Bx	MF	N3	W2	30	70	
2N51504466	622.6	626.4	Dm	Bx	F	N2	W2	20	80	
2N51504466	626.4	628.5	Dm	Bx	F	N2	W1	0	0	
2N51504466	628.5	635.9	Dm	RMBx	MF	N3	W3	30	70	
2N51504466	635.9	642.2	Dm	RMBx	F	N2	W1	0	0	
2N51504466	642.2	646.5	Dm	Bx	F	N2	W2	20	80	
2N51504466	646.5	647	CzN	BxT	F	N2	W1	0	0	
2N51504466	647	657	CzN	Lm	F	N2		0	0	

son	from	to	leng	roca	textur	grano	n	w	gsd	wsd	
2N51504592		0	2.1	CzN	Ms	F	N2	W1		0	0
2N51504592		2.1	5.3	CzN	McBx	F	N2	W2		0	0
2N51504592		5.3	10.75	CzN	Ms	F	N2	W2		0	0
2N51504592		10.75	11.75	CzN	Ms	F	N2	W2		0	0
2N51504592		11.75	20.5	CzN	Ms	F	N2	W2		0	0
2N51504592		20.5	22.5	CzN	Ms	F	N2	W2		0	0
2N51504592		22.5	33.9	CzN	Ms	F	N2	W2		0	0
2N51504592		33.9	39.2	CzN	Ms	F	N2	W2		0	0
2N51504592		39.2	42.9	CzN	Ms	F	N2	W1		0	0
2N51504592		42.9	43.7	CzN	CrBx	F	N2	W2		0	0
2N51504592		43.7	44.2	DmC	CrBx	M	N3	W2		20	80
2N51504592		44.2	44.55	Dm	BxT	M	N4	W3		30	70
2N51504592		44.55	46.5	Dm	CrBx	M	N3	W2		40	60
2N51504592		46.5	48.8	Dm		MG	N4	W3		70	30
2N51504592		48.8	50.1	Dm	CrBx	MF	N3	W2		40	60
2N51504592		50.1	50.4	Dm	BxT	MF	N4	W3		80	20
2N51504592		50.4	57.9	Dm	CrBx	M	N4	W2		60	40
2N51504592		57.9	62.2	Dm	CrBx	M	N4	W3		70	30
2N51504592		62.2	62.8	Dm	BxT	M	N4	W1		0	0
2N51504592		62.8	65.3	Dm	CrBx	MG	N4	W2		60	40
2N51504592		65.3	66.6	Dm	0	M	N4	W2		80	20
2N51504592		66.6	68.05	Dm	CrBx	M	N4	W3		90	10
2N51504592		68.05	68.25	Dm	BxT	F	N4	W4		20	80
2N51504592		68.25	69	Dm	CrBx	M	N4	W3		60	40
2N51504592		69	69.9	Dm	CrBx	M	N4	W3		70	30
2N51504592		69.9	70.6	Dm	CrBx	M	N3	W2		50	50
2N51504592		70.6	71.1	Dm	CrBx	M	N3	W2		60	40
2N51504592		71.1	71.9	Dm	CrBx	M	N3	W3		70	30
2N51504592		71.9	72.5	Dm	CrBx	M	N4	W3		80	20
2N51504592		72.5	73.8	Dm	CrBx	MF	N4	W4		80	20
2N51504592		73.8	74.1	Dm	BxT	MF	N3	W4		20	80
2N51504592		74.1	75.4	DmC	BxT	F	N4	W4		10	90

2N51504592	75.4	77.3	Dm	CrBx	MF	N3	W2	60	40
2N51504592	77.3	78.6	Dm	CrBx	M	N4	W2	30	70
2N51504592	78.6	79.4	Dm	BxT	MF	N3	W3	40	60
2N51504592	79.4	80.6	Dm		MG	N4	W3	70	30
2N51504592	80.6	81.2	Dm	CrBx	M	N4	W2	90	10
2N51504592	81.2	83.3	Dm	CrBx	MF	N4	W3	60	40
2N51504592	83.3	83.7	Dm	CrBx	MF	N3	W2	40	60
2N51504592	83.7	85.9	Dm	CrBx	MF	N4	W2	30	70
2N51504592	85.9	88.1	Dm		M	N4	W3	80	20
2N51504592	88.1	89	Dm	0	M	N4	W3	60	40
2N51504592	89	91.5	Dm	CrBx	M	N4	W2	70	30
2N51504592	91.5	92.7	Dm	CrBx	M	N4	W2	70	30
2N51504592	92.7	94.25	CzN	Ms	F	N2	W1	0	0
2N51504592	94.25	95	DmC	Bx	M	N4	W3	40	60
2N51504592	95	95.5	CzN	Ms	F	N2	W1	0	0
2N51504592	95.5	100.2	CzN	Ms	F	N2	W1	0	0
2N51504592	100.2	105.5	CzN	Ms	F	N2	W1	0	0
2N51504592	105.5	114.5	CzN	Ms	F	N2	W1	0	0
2N51504592	114.5	122.6	CzN	Ms	F	N2	W1	0	0
2N51504592	122.6	128	CzN	Ms	F	N2	W1	0	0
2N51504592	128	129.95	Dm		MF	N4	W3	40	60
2N51504592	129.95	133.75	Dm	BxHy	FM	N2	W2	30	70
2N51504592	133.75	145.9	Dm	Bx	MF	N2	W3	20	80
2N51504592	145.9	148.2	Dm	Ms	MF	N3	W1	40	60
2N51504592	148.2	149.1	Dm		M	N4	W4	70	30
2N51504592	149.1	154.1	Dm	Ms	MF	N3	W2	40	60
2N51504592	154.1	158.4	Dm		MF	N3	W3	40	60
2N51504592	158.4	161	Dm	Ms	F	N3	W1	0	0
2N51504592	161	162.2	Dm	Bx	M	N3	W2	50	50
2N51504592	162.2	162.55	Dm	BxT	MF	N3	W2	60	40
2N51504592	162.55	164.6	Dm	Bx	M	N3	W3	30	70
2N51504592	164.6	167.5	Dm	BxHy	F	N2	W2	40	60
2N51504592	167.5	168.7	Dm	CrBx	MF	N3	W2	60	40

2N51504592	168.7	172.5	CzN	Ms	F	N2	W1	0	0
2N51504592	172.5	176.7	CzN	Ms	F	N2	W1	0	0
2N51504592	176.7	182.4	CzN	Ms	F	N2	W1	0	0
2N51504592	182.4	188.5	CzN	Ms	F	N2	W1	0	0
2N51504592	188.5	190.8	CzN	Ms	F	N2	W1	0	0
2N51504592	190.8	191.5	CzN	CrBx	F	N2	W3	0	0
2N51504592	191.5	198	CzN	Ms	F	N2	W1	0	0
2N51504592	198	199.8	CzN	CrBx	F	N2	W3	0	0
2N51504592	199.8	202.6	CzN	Ms	F	N2	W1	0	0
2N51504592	202.6	208.5	CzN	Ms	F	N2	W1	0	0
2N51504592	208.5	211.6	CzN	Ms	F	N2	W3	0	0
2N51504592	211.6	220.8	CzN	Ms	F	N2	W1	0	0
2N51504592	220.8	226	CzN	CrBx	F	N2		0	0
2N51504592	226	234	CzN	Ms	F	N2	W1	0	0
2N51504592	234	235.3	CzN	Ms	F	N2	W2	0	0
2N51504592	235.3	240.7	CzN	CrBx	F	N2	W3	0	0
2N51504592	240.7	248.7	CzN	Lm	F	N1	W1	0	0
2N51504592	248.7	252.4	CzN	Lm	F	N1	W1	0	0
2N51504592	252.4	260	CzN	Lm	F	N1		0	0
2N51504592	260	270.3	CzN	Lm	F	N1		0	0
2N51504592	270.3	279.7	CzN	Lm	F	N1	W1	0	0
2N51504592	279.7	287.8	CzN	Lm	F	N1	W1	0	0
2N51504592	287.8	288	Falla	-	F	N1		0	0
2N51504592	288	295.8	CzN	Lm	F	N1	W1	0	0
2N51504592	295.8	306.2	CzN	Lm	F	N1	W1	0	0
2N51504592	306.2	309.9	CzN	Lm	F	N1	W1	0	0
2N51504592	309.9	311.6	CzN	Lm	F	N1	W1	0	0
2N51504592	311.6	320.7	CzN	Lm	F	N1	W1	0	0
2N51504592	320.7	324.8	CzN	Lm	F	N1	W3	0	0
2N51504592	324.8	340.5	CzN	Lm	F	N1		0	0
2N51504592	340.5	341.2	CzN	Lm	F	N1	W1	0	0
2N51504592	341.2	342.8	CzN	Lm	F	N1	W1	0	0
2N51504592	342.8	354	CzN	Lm	F	N1	W1	0	0

2N51504592	354	361.5	CzN	Lm	F	N1	W1	0	0
2N51504592	361.5	364.5	CzN	Lm	F	N1		0	0
2N51504592	364.5	366.4	CzN	Lm	F	N1	W1	0	0
2N51504592	366.4	372.8	CzN	Lm	F	N1		0	0
2N51504592	372.8	374.35	CzN	Lm	F	N1	W1	0	0
2N51504592	374.35	377.2	CzN	Lm	F	N1		0	0
2N51504592	377.2	378.9	Dm	CrBx	MG	N4	W3	90	10
2N51504592	378.9	383.3	Dm	0	MG	N3	W1	90	10
2N51504592	383.3	383.8	Dm	cblcp.	MG	N3	W1	80	20
2N51504592	383.8	384.4	Dm	CbF	G	N3	W3	90	10
2N51504592	384.4	385	Dm	MMBx	G	N4	W4	80	20
2N51504592	385	385.5	Dm	BxO	G	N4	W3	90	10
2N51504592	385.5	387	Dm	MMBx	G	N4	W5	95	5
2N51504592	387	388.3	Dm	MMBx	G	N4	W5	95	5
2N51504592	388.3	389.25	Dm	MMBx	G	N4	W5	90	10
2N51504592	389.25	390.6	Dm	Bx	-	N3	W3	95	5
2N51504592	390.6	391.4	Dm	cblcp.	G	N3	W3	95	5
2N51504592	391.4	392.3	Dm	CbF	G	N3	W3	95	5
2N51504592	392.3	397.5	Dm	cblcp.	G	N3	W2	95	5
2N51504592	397.5	398.6	Dm	MMBx	G	N3	W4	90	10
2N51504592	398.6	400	Dm	MMBx	G	N3	W4	90	10
2N51504592	400	400.85	Dm	MMBx	M	N3	W3	80	20
2N51504592	400.85	401.9	Dm		MG	N3	W2	100	0
2N51504592	401.9	402.25	Dm	MMBx	G	N3	W4	100	0
2N51504592	402.25	403.6	Dm	0	G	N3	W2	50	50
2N51504592	403.6	404.33	Dm	0	G	N3	W1	100	0
2N51504592	404.33	405	Dm	Bx	M	N3	W2	95	5
2N51504592	405	406.2	Dm	Bx	M	N3	W2	95	5
2N51504592	406.2	407.4	Dm	Bx	M	N3	W2	95	5
2N51504592	407.4	408.6	Dm	Bx	M	N3	W2	100	0
2N51504592	408.6	410.6	Dm		MG	N3	W3	90	10
2N51504592	410.6	411.5	Dm	Ms	M	N3	W1	80	20
2N51504592	411.5	412.2	Dm	Ms	MF	N3	W1	50	50

2N51504592	412.2	413.1	Dm	0	MG	N3	W2	100	0
2N51504592	413.1	414.6	Dm	0	MG	N3	W1	50	50
2N51504592	414.6	415.4	Dm	CrBx	M	N3	W2	95	5
2N51504592	415.4	416.4	Dm	Ms	M	N3	W1	0	100
2N51504592	416.4	417.3	Dm	Bx	M	N3	W2	100	0
2N51504592	417.3	418.45	Dm	0	MG	N3	W3	80	20
2N51504592	418.45	420.6	Dm	Bx	M	N3	W3	40	60
2N51504592	420.6	423.6	Dm	Bx	MG	N3	W3	90	10
2N51504592	423.6	424.6	Dm	Ms	M	N3	W1	20	80
2N51504592	424.6	426.8	Dm	Bx	MG	N3	W3	70	30
2N51504592	426.8	428	Dm	Ms	M	N3		0	0
2N51504592	428	428.4	Dm		MG	N3	W2	40	60
2N51504592	428.4	428.7	Dm	Bx	G	N4	W4	90	10
2N51504592	428.7	429.3	Dm		MG	N3	W2	80	20
2N51504592	429.3	429.8	Dm	MMBx	G	N4	W5	80	20
2N51504592	429.8	431.5	Dm	Bx	MG	N3	W2	90	10
2N51504592	431.5	432	Dm	Bx	MG	N3	W3	80	20
2N51504592	432	435.5	Dm	0	MG	N3	W1	10	90
2N51504592	435.5	438	Dm	Ms	M	N3	W1	0	100
2N51504592	438	440	Dm	CrBx	MG	N3	W2	0	100
2N51504592	440	440.9	Dm		G	N3	W3	20	80
2N51504592	440.9	443.5	Dm	Bx	M	N3	W3	30	70
2N51504592	443.5	445.3	Dm	Bx	MG	N3	W2	70	30
2N51504592	445.3	446.9	Dm	Lm	MF	N3	W2	95	5
2N51504592	446.9	447.5	Dm	MMBx	MF	N3	W4	20	80
2N51504592	447.5	448.5	Dm	CrBx	M	N3	W3	100	0
2N51504592	448.5	451.1	Falla	BxT	M	N3	W1	100	0
2N51504592	451.1	451.7	Dm	BxO	G	N3	W2	0	100
2N51504592	451.7	452.6	Dm	Bx	MG	N3	W2	95	5
2N51504592	452.6	453.5	Dm	CbBx	G	N3	W4	90	10
2N51504592	453.5	454.5	Dm	cblcp.	MG	N3	W1	5	95
2N51504592	454.5	456.1	Dm	Ms	MF	N3		0	0
2N51504592	456.1	457.1	Dm	Ms	M	N3	W2	5	95

2N51504592	457.1	460.15	Dm	Ms	M	N3	W1	0	0
2N51504592	460.15	461.75	Dm	Bx	M	N3	W2	20	80
2N51504592	461.75	462.85	Dm	cblcp.	M	N3	W2	70	30
2N51504592	462.85	466.9	Dm	Ms	MF	N3	W2	90	10
2N51504592	466.9	471.1	Dm	Ms	MG	N3	W1	0	0
2N51504592	471.1	471.7	Dm	Lm	MF	N3		0	0
2N51504592	471.7	472.5	Dm	Lm	MG	N4	W1	95	5
2N51504592	472.5	475.6	Dm	Lm	MF	N3	W2	90	10
2N51504592	475.6	477.6	Dm	Lm	MF	N3	W3	70	30
2N51504592	477.6	480.7	Dm	MMBx	MF	N3	W5	90	10
2N51504592	480.7	483	Dm	CbBx	MF	N3	W4	60	40
2N51504592	483	486.6	Dm	Lm	MF	N3	W2	70	30
2N51504592	486.6	487.8	Dm	Lm	MF	N3	W1	0	100
2N51504592	487.8	492	Dm	Lm	MF	N3	W1	0	100
2N51504592	492	494.2	Dm		M	N3	W2	60	40
2N51504592	494.2	496.7	Dm	Bx	M	N3	W2	80	20
2N51504592	496.7	497.7	Dm	MMBx	MG	N3	W4	100	0
2N51504592	497.7	498.8	Dm	CbBx	MG	N3	W2	40	60
2N51504592	498.8	501.65	Dm	Bx	M	N3	W3	60	40
2N51504592	501.65	506.9	Dm	Bx	M	N3	W3	70	30
2N51504592	506.9	510.45	Dm	Bx	M	N3	W4	90	10
2N51504592	510.45	510.9	Dm	MMBx	MG	N3	W5	95	5
2N51504592	510.9	513	Dm	Bx	M	N3	W3	70	30
2N51504592	513	514.5	Dm		MF	N3	W2	80	20
2N51504592	514.5	516.1	Dm	Bx	MF	N3	W3	80	20
2N51504592	516.1	519.1	Dm		MF	N3	W2	60	40
2N51504592	519.1	520.3	Dm	Bx	M	N3	W3	60	40
2N51504592	520.3	520.8	Dm	Lm	MF	N3	W2	80	20
2N51504592	520.8	521.4	Dm	Bx	MF	N3	W3	90	10
2N51504592	521.4	527.1	Dm	Bx	M	N3	W3	70	30
2N51504592	527.1	527.9	Dm	Bx	M	N3	W3	70	30
2N51504592	527.9	529.2	Dm	Bx	MF	N3	W2	70	30
2N51504592	529.2	530.1	Dm	BxHy	MF	N2	W2	70	30

2N51504592	530.1	534	Dm	Bx	MF	N3	W3	80	20	
2N51504592	534	534.7	Dm	Bx	MF	N3	W3	30	70	
2N51504592	534.7	535.25	Dm	Bx	MF	N3	W3	70	30	
2N51504592	535.25	537.2	Dm	Bx	MF	N3	W3	40	60	
2N51504592	537.2	538.7	Dm	Bx	MF	N3	W3	70	30	
2N51504592	538.7	540.7	Dm	Bx	M	N3	W2	60	40	
2N51504592	540.7	542.25	Dm	RMBx	M	N3	W2	40	60	
2N51504592	542.25	545.8	Dm	BxHy	MF	N2	W3	70	30	
2N51504592	545.8	546.6	Dm	Bx	MF	N2	W4	60	40	
2N51504592	546.6	550.7	Dm	Bx	M	N3	W3	70	30	
2N51504592	550.7	552.75	Dm	Bx	M	N3	W4	70	30	
2N51504592	552.75	557.4	Dm	Bx	M	N2	W2	70	30	
2N51504592	557.4	558	Dm	Bx	MF	N2	W3	90	10	
2N51504592	558	559.2	Dm	Bx	MF	N2	W2	70	30	
2N51504592	559.2	560.2	Dm	Bx	FM	N2	W2	90	10	
2N51504592	560.2	561.8	Dm	BxHy	F	N2	W3	80	20	
2N51504592	561.8	562.4	Dm	Ms	F	N2	W1	100	0	
2N51504592	562.4	563.5	Cz	Ms	F	N1		0	0	
2N51504592	563.5	566.35	Cz	Lm	F	N1	W1	0	0	
2N51504592	566.35	566.55	Cz	Ms	F	N1	W1	0	0	

son	from	to		leng	roca	textur	grano	n	W	gsd	wsd	
2N51504630)	0	1	.6	Cz	Ms	F	N2	W1		0	0
2N51504630	1	16.5	118.	4	Cz	Ms	F	N2	W1		0	0
2N51504630	1	18.4	127.	2	Cz	Ms	F	N2	W1		0	0
2N51504630	1	27.2	134.	1	Cz	Ms	F	N2	W1		0	0
2N51504630	1	34.1	136.	9	Cz	Ms	F	N2			0	0
2N51504630	1	36.9	139.	2	Dm	Cb	F	N3	W3		30	70
2N51504630	1	39.2	141.	9	Dm	cblcp.	F	N4	W3		20	80
2N51504630	14	41.9	143.	2	Dm	CrBx	F	N4	W2		40	60
2N51504630	14	43.2	143.	7	Dm	BxT	F	N4	W3		40	60
2N51504630	14	43.7	145.	1	Dm	cblcp.	F	N4	W2		30	70
2N51504630	14	45.1	14	9	Dm	cblcp.	M	N4	W3		20	80
2N51504630		149	150.		Dm	CrBx	M	N4	W2		40	60
2N51504630		50.8	153.2		Dm	Bx	М	N4	W3		60	40
2N51504630		3.25	153.4		Dm	BxT	F	N4	W3		70	30
2N51504630		3.45	154.		Dm	CrBx	FM	N4	W3		60	40
2N51504630		54.3	157.		Dm	Bx	M	N4	W3		20	80
2N51504630		57.9	161.		Dm	cblcp.	М	N4	W3		30	70
2N51504630		51.1	16		Dm	BxO	G	N4	W4		20	80
2N51504630		162	166.		Dm	cblcp.	M	N4	W3		40	60
2N51504630		66.3	167.		Dm	CrBx	MF	N4	W2		20	80
2N51504630		67.6	169.		Dm	Bx	MF	N4	W2		20	80
2N51504630		69.2	172.		Dm	Bx	F	N4	W2		20	80
2N51504630		72.5	175.		Dm	PseBx	F	N4	W3		10	90
2N51504630		75.5	179.		Dm	BxHy	F	N4	W3		20	80
2N51504630		79.5	180.		Dm	Lm	FM	N3	W3		10	90
2N51504630		80.8	182.		Dm	cblcp.	MF	N2	W2		40	60
2N51504630		82.5	190.		Dm	Ms	F	N4	W2		0	0
2N51504630		90.3	200.		CzN	CrBx	F	N2	W1		0	0
2N51504630	_	00.3	211.		CzN	Ms	F	N2	W1		0	0
2N51504630	_	11.7	217.		CzN	Ms	F	N2	W2		0	0
2N51504630		17.7	219.		CzN	CrBx	F	N2	W3		0	0
2N51504630		19.5	231.		CzN	Ms	F	N2	W2		0	0
2N51504630		31.4	23		CzN	Ms	F	N2	W2		0	0
2N51504630)	237	24	U	CzN	Ms	F				0	0

2N51504630	240	247	CzN	Ms	F	N2	W2	0	0
2N51504630	247	252	CzN	Ms	F	N2	W1	0	0
2N51504630	252	256.9	CzN	CrBx	F	N2	W1	0	0
2N51504630	256.9	261.2	CzN	Ms	F	N2	W2	0	0
2N51504630	261.2	262	CzN	CrBx	F	N2	W2	0	0
2N51504630	262	263.2	CzN	CrBx	F	N2	W3	0	0
2N51504630	263.2	264.5	CzN	CrBx	F	N2	W3	0	0
2N51504630	264.5	265.2	CzN	Lm	F	N1	W1	0	0
2N51504630	265.2	272.7	CzN	Lm	F	N1		0	0
2N51504630	272.7	278.4	CzN	Lm	F	N1	W1	0	0
2N51504630	278.4	284.3	CzN	Lm	F	N1	W1	0	0
2N51504630	284.3	290.8	CzN	Lm	F	N1	W1	0	0
2N51504630	290.8	291.5	CzN	Lm	F	N1	W1	0	0
2N51504630	291.5	295.6	CzN	Lm	F	N1	W1	0	0
2N51504630	295.6	302.5	CzN	Lm	F	N1	W1	0	0
2N51504630	302.5	303.5	CzN	Ms	F	N1	W1	0	0
2N51504630	303.5	304.2	CzN	Lm	F	N1	W2	0	0
2N51504630	304.2	304.9	CzN	BxT	F	N1	W2	0	0
2N51504630	304.9	309.4	CzN	Lm	F	N1	W1	0	0
2N51504630	309.4	313.4	CzN	Lm	F	N1	W1	0	0
2N51504630	313.4	314.3	CzN	CrBx	F	N1	W3	0	0
2N51504630	314.3	315.6	CzN	Lm	F	N1	W1	0	0
2N51504630	315.6	316.4	CzN	CrBx	F	N1	W2	0	0
2N51504630	316.4	317.65	CzN	Lm	F	N1	W2	0	0
2N51504630	317.65	318.4	CzN	BxT	F	N1		0	0
2N51504630	318.4	321.9	CzN	Lm	F	N1	W1	0	0
2N51504630	321.9	330.5	CzN	Lm	F	N1	W1	0	0
2N51504630	330.5	331.2	CzN	Lm	F	N1	W2	0	0
2N51504630	331.2	334.05	CzN	Lm	F	N1	W2	0	0
2N51504630	334.05	339	CzN	Lm	F	N1	W1	0	0
2N51504630	339	344	CzN	Lm	F	N1		0	0
2N51504630	344	344.6	CzN	Lm	F	N1	W2	0	0
2N51504630	344.6	345.3	CzN	BxT	F	N1	W1	0	0

2N51504630	345.3	353	CzN	Lm	F	N1	W1	0	0
2N51504630	353	353.4	CzN	CrBx	F	N1	W2	0	0
2N51504630	353.4	359.8	CzN	Lm	F	N1	W2	0	0
2N51504630	359.8	361.7	CzN	Lm	F	N1	W2	0	0
2N51504630	361.7	362.7	Dm	Bx	F	N2	W3	70	30
2N51504630	362.7	363.7	Dm	MMBx	M	N3	W4	60	40
2N51504630	363.7	366.4	Dm	Bx	MF	N3	W3	80	20
2N51504630	366.4	370.2	Dm	BxHy	F	N2	W3	70	30
2N51504630	370.2	372.15	Dm	CrBx	F	N2	W3	80	20
2N51504630	372.15	373	Dm	BxT	F	N2	W2	80	20
2N51504630	373	375.25	Dm	Bx	F	N2	W3	90	10
2N51504630	375.25	375.8	Dm	CrBx	F	N3	W2	70	30
2N51504630	375.8	376.7	Dm	cblcp.	F	N2	W3	60	40
2N51504630	376.7	377.2	Dm	Ms	F	N2	W1	0	0
2N51504630	377.2	378	Dm	CbBx	F	N2	W3	80	20
2N51504630	378	378.8	Dm	Bx	F	N2	W3	60	40
2N51504630	378.8	379	Dm	BxT	F	N4	W3	70	30
2N51504630	379	381	Dm	CrBx	F	N3	W2	80	20
2N51504630	381	383.4	Dm	CrBx	F	N3	W3	40	60
2N51504630	383.4	385.7	Dm	CbBx	F	N3	W3	50	50
2N51504630	385.7	386.3	Dm	MMBx	FM	N3	W5	20	80
2N51504630	386.3	391.3	Dm	CrBx	F	N2	W2	20	80
2N51504630	391.3	394.2	Dm	CrBx	F	N2	W1	0	0
2N51504630	394.2	395.6	Dm	Bx	F	N2	W2	60	40
2N51504630	395.6	396.2	Dm	BxT	F	N3	W2	80	20
2N51504630	396.2	397.1	Dm	CrBx	M	N3	W2	60	40
2N51504630	397.1	399.6	Dm	Bx	M	N4	W4	80	20
2N51504630	399.6	402.4	Dm	BxO	M	N4	W2	70	30
2N51504630	402.4	403.8	Dm	cblcp.	M	N4	W2	80	20
2N51504630	403.8	404.2	Dm	MMBx	M	N4	W5	90	10
2N51504630	404.2	404.5	Dm	CrBx	M	N4	W2	60	40
2N51504630	404.5	405.5	Dm	Cb	M	N3	W3	70	30
2N51504630	405.5	407.1	Dm	CrBx	M	N4	W2	80	20

2N51504630	407.1	408	Dm	cblcp.	M	N3	W2	60	40
2N51504630	408	409.3	Dm	CrBx	M	N3	W2	70	30
2N51504630	459.9	464.4	Dm	CrBx	M	N4	W2	60	40
2N51504630	464.4	466.2	Dm	CrBx	M	N3	W1	0	0
2N51504630	466.2	468.5	Dm	cblcp.	M	N4	W2	70	30
2N51504630	468.5	470.3	Dm	CbBx	MF	N3	W2	80	20
2N51504630	470.3	472.1	Dm	Cb	G	N4	W3	90	10
2N51504630	472.1	473.3	Dm	CbBx	MG	N4	W3	70	30
2N51504630	473.3	474.3	Dm	MMBx	MG	N4	W5	80	20
2N51504630	474.3	475.2	Dm	Cb	G	N4	W4	90	10
2N51504630	475.2	478.2	Dm	Ms	FM	N3	W2	20	80
2N51504630	478.2	480.9	Dm	cblcp.	G	N4	W3	40	60
2N51504630	480.9	481.9	Dm	CrBx	M	N4	W2	70	30
2N51504630	481.9	482.1	Dm	BxT	MG	N4	W3	60	40
2N51504630	482.1	484.7	Dm	CrBx	MG	N4	W3	70	30
2N51504630	484.7	484.9	Dm	BxT	M	N4	W3	80	20
2N51504630	484.9	486.3	Dm	0	G	N4	W2	60	40
2N51504630	486.3	487.65	Dm	Cb	M	N4	W4	90	10
2N51504630	487.65	488	Dm	MMBx	M	N4	W5	90	10
2N51504630	488	488.7	Dm	Cb	M	N4	W5	85	15
2N51504630	488.7	489.15	Dm	MMBx	M	N4	W4	90	10
2N51504630	489.15	489.65	Dm	Bx	M	N4	W5	80	20
2N51504630	489.65	490.6	Dm	CbBx	M	N4	W4	80	20
2N51504630	490.6	491.8	Dm	MMBx	M	N3	W5	95	5
2N51504630	491.8	492.6	Dm	MMBx	M	N3	W5	90	10
2N51504630	492.6	494.1	Dm	Bx	MG	N3	W3	95	5
2N51504630	494.1	495.2	Dm	MMBx	M	N3	W5	95	5
2N51504630	495.2	495.8	Dm	MMBx	G	N3	W5	95	5
2N51504630	495.8	496.7	Dm	BxO	G	N3	W3	95	5
2N51504630	496.7	498	Dm	MMBx	G	N3	W5	95	5
2N51504630	498	498.5	Dm	Bx	G	N3	W3	90	10
2N51504630	498.5	499.2	Dm	Bx	M	N3	W3	95	5
2N51504630	499.2	500.1	Dm	Bx	MG	N3	W3	80	20
2N51504630	500.1	501.3	Dm	CbBx	MG	N3	W4	90	10
2N51504630	501.3	501.8	Dm	Cb	G	N3	W4	80	20

2N51504630	501.8	502.8	Dm	cblcp.	G	N4	W3	70	30	
2N51504630	502.8	504.7	Dm	cblcp.	G	N3	W2	90	10	
2N51504630	504.7	505.9	Dm	Bx	M	N3	W3	90	10	
2N51504630	505.9	507.3	Dm	cblcp.	G	N3	W2	95	5	
2N51504630	507.3	510.5	Dm	MMBx	G	N3	W4	70	30	
2N51504630	510.5	512.9	Dm	Bx	MF	N3	W3	90	10	
2N51504630	512.9	513.5	Dm	Bx	M	N3	W2	80	20	
2N51504630	513.5	516.1	Dm	Bx	G	N3	W3	90	10	
2N51504630	516.1	517.9	Dm	CbBx	G	N3	W4	80	20	
2N51504630	517.9	520.9	Dm	MMBx	G	N3	W5	95	5	
2N51504630	520.9	522.1	Dm	Cb	G	N3	W4	80	20	
2N51504630	522.1	523.3	Dm	cblcp.	MG	N3	W2	90	10	
2N51504630	523.3	526.45	Dm	Bx	MG	N3	W2	95	5	
2N51504630	526.45	530.6	Dm	Bx	MG	N3	W3	70	30	
2N51504630	530.6	531	Dm	BxT	M	N3	W2	95	5	
2N51504630	531	531.35	Dm	Bx	MG	N3	W3	80	20	
2N51504630	531.35	531.8	Dm	Bx	M	N3	W3	90	10	
2N51504630	531.8	532.4	Dm	BxT	M	N3	W2	80	20	
2N51504630	532.4	532.95	Dm	Bx	MF	N2	W2	30	70	
2N51504630	532.95	534.7	Dm	Bx	MF	N3	W3	40	60	
2N51504630	534.7	536.3	Dm	0	MG	N3	W1	0	0	
2N51504630	536.3	536.75	Dm	CbBx	MG	N3	W3	80	20	
2N51504630	536.75	538.4	Dm	Bx	MG	N4	W3	60	40	
2N51504630	538.4	539.5	Dm	PseBx	MF	N3	W2	40	60	
2N51504630	539.5	541.6	Dm	Bx	M	N3	W2	80	20	
2N51504630	541.6	547.25	Dm	Bx	M	N3	W3	95	5	
2N51504630	547.25	552	Dm	cblcp.	MG	N3	W3	30	70	
2N51504630	552	554.7	Dm	Bx	MG	N3	W4	80	20	
2N51504630	554.7	556.05	Dm	PseBx	M	N3	W2	95	5	
2N51504630	556.05	556.95	Dm	MMBx	M	N2	W4	95	5	
2N51504630	556.95	560.45	Dm	cblcp.	M	N3	W3	95	5	
2N51504630	560.45	568.8	Dm	PseBx	M	N3	W2	0	0	
2N51504630	568.8	570.8	Dm	Cb	M	N3	W4	95	5	

2N51504630	570.8	571.4	Dm	cblcp.	M	N3	W3	90	10
2N51504630	571.4	573	Dm	cblcp.	MG	N4	W2	95	5
2N51504630	573	575.5	Dm	cblcp.	MG	N3	W2	90	10
2N51504630	575.5	578	Dm	Bx	M	N3	W3	40	60
2N51504630	578	578.7	Dm	MMBx	M	N3	W4	30	70
2N51504630	578.7	579.9	Dm	Bx	M	N3	W3	40	60
2N51504630	579.9	582.1	Dm	cblcp.	MF	N3	W3	60	40
2N51504630	582.1	587	Dm	Bx	M	N3	W4	80	20
2N51504630	587	589.4	Dm	Bx	MG	N3	W4	90	10
2N51504630	589.4	597.1	Dm	Bx	M	N3	W3	70	30
2N51504630	597.1	601	Dm	Bx	MG	N3	W4	90	10
2N51504630	601	603.4	Dm	Bx	M	N3	W2	70	30
2N51504630	603.4	610.5	Dm	Bx	M	N3	W4	80	20
2N51504630	610.5	616.25	Dm	Bx	M	N3	W3	70	30
2N51504630	616.25	622	Dm	BxHy	MF	N3	W3	90	10
2N51504630	622	626.75	Dm	BxHy	MF	N3	W4	80	20
2N51504630	626.75	628.5	Dm	Bx	M	N3	W3	100	0
2N51504630	628.5	634.75	DmC	BxHy	MF	N3	W3	90	10
2N51504630	634.75	635.2	Dm	RMBx	MF	N3	W1	0	100
2N51504630	635.2	638.1	Dm	Bx	FM	N3	W3	80	20
2N51504630	638.1	639	DmC	RMBx	M	N3	W2	60	40
2N51504630	639	643.05	Dm	BxHy	M	N3	W3	90	10
2N51504630	643.05	644.05	DmC	BxHy	M	N3	W3	50	50
2N51504630	644.05	647.4	Dm	BxHy	FM	N2	W3	95	5
2N51504630	647.4	648.4	Dm	CrBx	M	N3	W2	95	5
2N51504630	648.4	651	Cz	Lm	FM	N1	W1	0	0

son	from	to	leng	roca	textur	grano	n	w	gsd	W	sd
2N51504664	ļ	0	1.9	CzN	Lm	F	N1	W1		0	0
2N51504664	1	1.9	4.5	CzN	Lm	F	N1			0	0
2N51504664	1	4.5	6.1	CzN	Lm	F	N1			0	0
2N51504664	ļ	6.1	6.6	CzN	Lm	F	N1			0	0
2N51504664	1	6.6	7.2	CzN	BxT	F	N3	W4		0	0
2N51504664	ļ	7.2	9	CzN	CrBx	F	N2	W2		0	0
2N51504664	ļ	9	14.7	CzN	Ms	F	N2	W2		0	0
2N51504664	1	14.7	18.2	CzN	Ms	F	N2			0	0
2N51504664	1	18.2	27	CzN	CrBx	F	N2	W2		0	0
2N51504664	ļ	27	29.3	CzN	Ms	F	N2	W2		0	0
2N51504664	ļ	29.3	30.9	Dm	Bx	F	N3	W3		80	20
2N51504664	ļ	30.9	32.5	Dm	CrBx	M	N3	W3		60	40
2N51504664	ļ	32.5	33.7	Dm	CrBx	F	N2	W2		20	80
2N51504664	ļ	33.7	37.5	DmC	Ms	FM	N3	W1		30	70
2N51504664	ļ	37.5	42.2	Dm	Ms	M	N4	W1		70	30
2N51504664	ļ	42.2	43.8	Dm	MMBx	MG	N4	W5		80	20
2N51504664	ļ	43.8	47.15	Dm	CbG	G	N4	W5		60	40
2N51504664	ļ	47.15	49.25	DmC	Lm	FM	N3	W2		70	30
2N51504664	1	49.25	51.5	Dm	PseBx	FM	N3	W3		80	20
2N51504664	ļ	51.5	56.5	Dm	CrBx	FM	N3	W2		70	30
2N51504664	ļ	56.5	59.2	Dm	Ms	F	N3	W1		0	0
2N51504664	ļ	59.2	65.2	Dm	CrBx	FM	N3	W2		50	50
2N51504664	ļ	65.2	66.7	Dm	PseBx	F	N3	W2		70	30
2N51504664	ļ	66.7	68.3	Dm	Lm	MF	N3	W2		40	60
2N51504664	ļ	68.3	72.4	Dm	Ms	F	N3	W1		0	0
2N51504664	ļ	72.4	79.6	Dm	PseBx	FM	N3	W3		50	50
2N51504664	ļ	79.6	83.1	Dm	Ms	F	N3			0	0
2N51504664	ļ	83.1	85.1	Falla	-	-				0	0
2N51504664	ļ	85.1	89.5	Dm	BxT	-				0	0
2N51504664	ļ	89.5	95.2	Dm	BxT	FM	N3			0	0
2N51504664	ļ	95.2	100.5	Dm	PseBx	M	N4	W3		30	70
2N51504664	ļ	100.5	103.6	Dm	Ms	F	N3	W1		30	70

2N51504664	103.6	104.5	Dm	BxT	FM	N3	W2	30	70
2N51504664	104.5	109.5	Dm	PseBx	M	N3	W3	40	60
2N51504664	109.5	112.5	Dm	CrBx	MF	N3	W3	70	30
2N51504664	112.5	118	Dm	PseBx	M	N3	W4	30	70
2N51504664	118	121.6	Dm	PseBx	M	N3	W2	30	70
2N51504664	121.6	124.8	Dm	Ms	M	N3	W1	30	70
2N51504664	124.8	126.2	Dm	MMBx	FM	N3	W2	30	70
2N51504664	126.2	130	Dm	MMBx	M	N3	W3	40	60
2N51504664	130	136.2	Dm	CrBx	FM	N3	W2	0	0
2N51504664	136.2	139	Dm	Ms	M	N3		0	0
2N51504664	139	141.9	Dm	Bx	M	N3	W3	60	40
2N51504664	141.9	149.3	Dm	BxT	FM	N3	W2	0	0
2N51504664	149.3	152.8	Dm	Bx	M	N3	W2	60	40
2N51504664	152.8	186	CzN	Ms	F	N2		0	0
2N51504664	186	188.4	CzN	Lm	F	N1		0	0
2N51504664	188.4	195.7	CzN	Ms	F	N1	W1	0	0
2N51504664	195.7	197	CzN	CrBx	F	N1	W1	0	0
2N51504664	197	210.4	CzN	Lm	F	N1	W2	0	0
2N51504664	210.4	245.2	CzN	Ms	F	N1	W2	0	0
2N51504664	245.2	292.5	CzN	Lm	F	N1	W2	0	0
2N51504664	292.5	300	CzN	Lm	F	N1	W2	0	0
2N51504664	300	309	CzN	Lm	F	N1	W1	0	0
2N51504664	309	320.15	CzN	Lm	F	N1	W2	0	0
2N51504664	320.15	321	Falla	-	-		W2	0	0
2N51504664	321	337.5	CzN	Lm	F			0	0
2N51504664	337.5	339.9	CzN	Lm	F	N1	W2	0	0
2N51504664	339.9	346	CzN	Lm	F	N1	W1	0	0
2N51504664	346	350.1	Dm	CrBx	FM	N4	W2	60	40
2N51504664	350.1	352.3	Dm	cblcp.	MG	N4	W2	60	40
2N51504664	352.3	353.9	Dm	0	MG	N4	W2	70	30
2N51504664	353.9	354.85	Dm	PseBx	MG	N4	W3	70	30
2N51504664	354.85	355.6	Dm	MMBx	G	N4	W4	50	50
2N51504664	355.6	356.2	Dm	PseBx	G	N4	W4	50	50

2N51504664	356.2	357	Dm	PseBx	G	N4	W3	50	50
2N51504664	357	357.6	Dm	PseBx	G	N4	W3	60	40
2N51504664	357.6	358.5	Dm	MMBx	MG	N4	W4	60	40
2N51504664	358.5	359.1	Dm	MMBx	MG	N4	W4	80	20
2N51504664	359.1	359.7	Dm	MMBx	MG	N4	W4	80	20
2N51504664	359.7	361.1	Dm	MMBx	MG	N4	W5	80	20
2N51504664	361.1	362.7	Dm	MMBx	MG	N4	W5	80	20
2N51504664	362.7	365.4	Dm	cblcp.	MG	N4	W2	90	10
2N51504664	365.4	366.8	Dm	cblcp.	MG	N4	W1	90	10
2N51504664	366.8	367.5	Dm	Cb	M	N4	W4	90	10
2N51504664	367.5	368.7	Dm	Cb	M	N4	W4	90	10
2N51504664	368.7	369.85	Dm	CbBx	M	N3	W4	90	10
2N51504664	369.85	370.75	Dm	MO	M	N3	W2	90	10
2N51504664	370.75	371.5	Dm	MMBx	M	N3	W4	70	30
2N51504664	371.5	372.9	Dm	0	G	N4	W2	50	50
2N51504664	372.9	373.5	Dm	0	G	N4	W1	0	0
2N51504664	373.5	375	Dm	MO	M	N4	W2	50	50
2N51504664	375	376	Dm	MO	M	N4	W2	50	50
2N51504664	376	376.6	Dm	MMBx	M	N4	W4	70	30
2N51504664	376.6	377.8	Dm	Cb	MG	N4	W5	70	30
2N51504664	377.8	378.75	Dm	MMBx	G	N4	W4	60	40
2N51504664	378.75	379.8	Dm	CbBx	G	N4	W5	60	40
2N51504664	379.8	380.3	Dm	MMBx	G	N4	W5	60	40
2N51504664	380.3	380.8	Dm	MMBx	G	N4	W5	80	20
2N51504664	380.8	381.52	Dm	MMBx	G	N4	W5	60	40
2N51504664	381.52	382.35	Dm	MMBx	G	N3	W4	80	20
2N51504664	382.35	383.4	Dm	MMBx	G	N3	W4	80	20
2N51504664	383.4	384.2	Dm	PseBx	G	N3	W5	70	30
2N51504664	384.2	385	Dm	MMBx	G	N3	W5	60	40
2N51504664	385	385.6	Dm	MO	FM	N3	W1	0	0
2N51504664	385.6	386.4	Dm	PseBx	MG	N3	W4	60	40
2N51504664	386.4	387.6	Dm	PseBx	MG	N3	W4	60	40
2N51504664	387.6	388.5	Dm	Cb	M	N3	W4	80	20

2N51504664	388.5	389.8	Dm	CbBx	M	N3	W4	70	30
2N51504664	389.8	391.2	Dm	CbBx	M	N3	W4	90	10
2N51504664	391.2	392.35	Dm	CbG	M	N3	W4	60	40
2N51504664	392.35	393.7	Dm	CbBx	M	N3	W4	70	30
2N51504664	393.7	394.25	Dm	CbBx	MG	N3	W4	80	20
2N51504664	394.25	395	Dm	MO	MF	N3	W2	70	30
2N51504664	395	396	Dm	CbBx	M	N3	W4	80	20
2N51504664	396	396.6	Dm	MMBx	M	N3	W3	80	20
2N51504664	396.6	397.15	Dm	MMBx	M	N3	W3	80	20
2N51504664	397.15	398.35	Dm	CbBx	M	N3	W4	80	20
2N51504664	398.35	399.3	Dm	CbBx	M	N3	W4	80	20
2N51504664	399.3	400.5	Dm	PseBx	M	N3	W4	80	20
2N51504664	400.5	401	Dm	PseBx	M	N3	W4	80	20
2N51504664	401	401.8	Dm	Cb	M	N3	W4	90	10
2N51504664	401.8	402.5	Dm	CbBx	M	N3	W4	100	0
2N51504664	402.5	403.7	Dm	cblcp.	M	N3	W3	90	10
2N51504664	403.7	404.5	Dm	cblcp.	M	N3	W3	80	20
2N51504664	404.5	405	Dm	MMBx	M	N3	W4	95	5
2N51504664	405	405.5	Dm	CbF	M	N3	W3	95	5
2N51504664	405.5	406.8	Dm	Bx	M	N3	W3	90	10
2N51504664	406.8	408.3	Dm	Bx	M	N3	W3	90	10
2N51504664	408.3	409.1	Dm	MMBx	M	N3	W5	80	20
2N51504664	409.1	410.2	Dm	Bx	M	N3	W3	90	10
2N51504664	410.2	410.8	Dm	CrBx	M	N3	W3	95	5
2N51504664	410.8	412.3	Dm	cblcp.	M	N3	W3	95	5
2N51504664	412.3	413.1	Dm	MMBx	M	N3	W4	95	5
2N51504664	413.1	413.5	Dm	Cb	M	N3	W5	90	10
2N51504664	413.5	414.4	Dm	CbBx	M	N3	W4	95	5
2N51504664	414.4	414.85	Dm	cblcp.	M	N3	W2	95	5
2N51504664	414.85	415.4	Dm	MMBx	M	N3	W4	95	5
2N51504664	415.4	416.65	Dm	Bx	M	N3	W3	90	10
2N51504664	416.65	417.6	Dm	MMBx	M	N3	W5	95	5
2N51504664	417.6	418.3	Dm	MMBx	M	N3	W5	80	20

2N51504664	418.3	419	Dm	MMBx	M	N3	W5	80	20
2N51504664	419	419.5	Dm	MMBx	M	N3	W4	70	30
2N51504664	419.5	420.25	Dm	Cb	M	N3	W5	80	20
2N51504664	420.25	421.15	Dm	Cb	M	N3	W4	40	60
2N51504664	421.15	422.25	Dm	Cb	M	N3	W3	80	20
2N51504664	422.25	422.55	Dm	CbF	M	N3	W4	70	30
2N51504664	422.55	423.85	Dm	cblcp.	M	N3	W3	95	5
2N51504664	423.85	427.4	Dm	cblcp.	MG	N4	W3	85	15
2N51504664	427.4	427.85	Dm	Bx	M	N3	W3	95	5
2N51504664	427.85	428.7	Dm	MMBx	M	N3	W5	90	10
2N51504664	428.7	429.7	Dm	cblcp.	M	N3	W3	95	5
2N51504664	429.7	432.6	Dm	MMBx	MG	N3	W3	90	10
2N51504664	432.6	433.85	Dm	CbBx	M	N3	W3	95	5
2N51504664	433.85	434.45	Dm	Cb	M	N3	W4	95	5
2N51504664	434.45	439.85	Dm	Cb	MG	N3	W3	85	15
2N51504664	439.85	440.5	Dm	CbF	M	N3	W3	95	5
2N51504664	440.5	442.75	Dm	Bx	MG	N3	W2	80	20
2N51504664	442.75	443.2	Dm	Bx	M	N4	W2	50	50
2N51504664	443.2	444.55	Dm	Bx	M	N3	W2	40	60
2N51504664	444.55	445.3	Dm	Cb	MG	N3	W3	80	20
2N51504664	445.3	449.05	Dm	cblcp.	MG	N4	W3	85	15
2N51504664	449.05	451.5	Dm	MMBx	MG	N3	W4	95	5
2N51504664	451.5	457.8	Dm	Bx	M	N3	W3	70	30
2N51504664	457.8	458.4	Dm	MMBx	M	N4	W5	80	20
2N51504664	458.4	465.15	Dm	Bx	MF	N3	W2	70	30
2N51504664	465.15	466.2	Dm	cblcp.	M	N3	W3	90	10
2N51504664	466.2	473.7	Dm	cblcp.	M	N3	W2	95	5
2N51504664	473.7	478	Dm	Bx	MF	N3	W3	30	70
2N51504664	478	481.4	Dm	cblcp.	MF	N3	W3	70	30
2N51504664	481.4	491.35	Dm	Bx	MF	N3	W3	60	40
2N51504664	491.35	493.9	Dm	Bx	MF	N3	W2	40	60
2N51504664	493.9	495.2	Dm	Bx	M	N3	W1	100	0
2N51504664	495.2	499	Dm	PseBx	M	N3	W3	70	30

2N51504664	499	500	Dm	Bx	M	N3	W4	70	30	
2N51504664	500	503.1	Dm	cblcp.	M	N4	W3	80	20	
2N51504664	503.1	505.4	Dm	Bx	M	N3	W3	50	50	
2N51504664	505.4	507.35	Dm	Bx	M	N3	W2	30	70	
2N51504664	507.35	509	Dm	PseBx	MF	N3	W2	40	60	
2N51504664	509	519.3	Dm	Bx	M	N3	W3	70	30	
2N51504664	519.3	521.1	Dm	Bx	M	N4	W3	80	20	
2N51504664	521.1	525.15	Dm	Bx	MF	N3	W3	75	25	
2N51504664	525.15	529.1	Dm	Bx	MF	N2	W2	40	60	
2N51504664	529.1	538.1	Dm	Bx	M	N3	W3	90	10	
2N51504664	538.1	538.6	Dm	Bx	M	N4	W2	95	5	
2N51504664	538.6	540.4	Dm	Bx	MF	N3	W3	90	10	
2N51504664	540.4	541.3	Dm	Bx	MF	N3	W3	80	20	
2N51504664	541.3	544.6	Dm	Bx	M	N3	W3	85	15	
2N51504664	544.6	544.75	Dm	BxT	MF	N3	W4	95	5	
2N51504664	544.75	549	Dm	Bx	MF	N3	W3	70	30	
2N51504664	549	551.45	Dm	Bx	MF	N3	W3	70	30	
2N51504664	551.45	552.8	Dm	Bx	FM	N2	W3	30	70	
2N51504664	552.8	554.55	Dm	Bx	F	N2	W3	30	70	
2N51504664	554.55	559.5	Dm	Bx	F	N2	W3	80	20	
2N51504664	559.5	565.5	Cz	Lm	F	N1	W1	0	0	

Anexo 13: DDH_Ayala Inferior_Assay

- DDH-2N51504302
- DDH-2N51504357
- DDH-2N51504466
- DDH-2N51504592
- DDH-2N51504630
- DDH-2N51504664

son	from t	to le	eng muestr	pb	zn	fe
2N51504302	270.85	271.35	12304	0.01	0.02	0.25
2N51504302	271.35	272.6	12305	0.02	1.92	0.21
2N51504302	272.6	273.35	12306	0.05	0.07	0.33
2N51504302	273.35	273.85	12307	0.01	0.47	0.34
2N51504302	273.85	274.15	12308	0.68	9.14	0.5
2N51504302	274.15	274.5	12309	0.02	5.26	0.34
2N51504302	274.5	275.35	12310	0.08	0.66	0.31
2N51504302	275.35	276	12311	0.01	0.75	0.38
2N51504302	276	276.25	12312	12.74	37.37	0.43
2N51504302	276.25	277.3	12345	0.01	0.09	0.3
2N51504302	277.3	278.3	12346	0.07	13.04	0.31
2N51504302	278.3	279.4	12347	0.13	2.26	0.33
2N51504302	279.4	280.5	12348	0.01	5.11	0.4
2N51504302	280.5	281.2	12349	0.01	0.4	0.3
2N51504302	281.2	282.6	12350	0.12	7.02	0.44
2N51504302	282.65	283.5	12351	0.03	12.26	0.47
2N51504302	283.5	285	12352	0.01	0.66	0.3
2N51504302	285	285.9	12353	0.02	7.08	0.44
2N51504302	285.9	286.5	12354	0.02	1.57	0.29
2N51504302	286.5	287.6	12355	0.32	3.07	0.33
2N51504302	287.6	288	12356	0.01	0.32	0.36
2N51504302	288	289.3	12357	0.01	0.17	0.38
2N51504302	289.3	290.2	12358	0.06	6.84	0.42
2N51504302	290.2	291	12359	0.04	18.88	0.38
2N51504302	291	291.6	12360	0.04	22.12	0.39
2N51504302	291.6	292.5	12361	0.07	21.34	0.44
2N51504302	292.5	293	12362	0.06	9.41	0.25
2N51504302	293	294	12363	0.43	20.24	0.44
2N51504302	294	294.9	12364	0.02	0.32	0.27
2N51504302	294.9	295.9	12365	0.01	0.04	0.26
2N51504302	295.9	297	12366	0.05	0.02	0.24
2N51504302	297	298	12367	0.48	9.75	0.32
2N51504302	298	298.5	12368	2.03	14.65	0.34
2N51504302	298.5	299.7	12369	0.01	1.09	0.3
2N51504302	299.7	301.1	12370	0.05	5.82	0.35
2N51504302	301.1	301.5	12371	0.01	0.03	0.31
2N51504302	301.5	303	12372	0.01	0.03	0.27
2N51504302	311.25	311.6	12373	0.05	5.57	0.53
2N51504302	311.6	313	12374	0.32	7.16	0.64
2N51504302		314.1	12375	0.07	8.97	0.68
2N51504302		315.4	12376	0.22	3.41	0.59
2N51504302	315.45	316.3	12377	0.22	2.68	0.61
2N51504302	316.3	316.9	12378	0.02	2.16	0.31
2N51504302	316.9	317.6	12379	12.3	13.16	0.53
2N51504302	317.6	318.6	12380	0.02	7.29	0.43
2N51504302	318.6	319.3	12381	0.02	6.19	0.44
2N51504302	319.3	320.3	12382	0.02	6.19	0.62
2N51504302 2N51504302	320.3	321	12383	0.05	14	0.75
	321	322.3	12384	0.03	10.95	0.77
2N51504302	322.3	323.4	12385	0.01	2.43	0.58
2N51504302		324.8	12386	0.03	27.76	0.96
2N51504302	324.8	325.9	12387	0.02	18.19	0.94

2N51504302	325.9	326.2	12388	0.01	0.13	0.53
2N51504302	326.2	327.7	12389	0.04	16.62	0.86
2N51504302	327.7	328.5	12390	0.05	17.28	0.91
2N51504302	328.5	329.5	12391	0.02	6.64	0.55
2N51504302	329.5	330.5	12392	0.02	5.68	0.57
2N51504302	330.5	331.2	12393	0.01	0.37	0.16
2N51504302	343.4	343.9	12394	0.02	7.18	0.51
2N51504302	343.9	344.2	12395	0.01	2.57	0.54
2N51504302	344.2	344.7	12396	0.02	10.83	0.63
2N51504302	344.7	345.9	12397	0.01	0.19	0.42
2N51504302	345.9	347	12398	0.01	0	0.37
2N51504302	347	347.6	12399	0.01	0.01	0.31
2N51504302	347.6	348.5	12400	0.01	0.02	0.26
2N51504302	366.05	366.7	12401	0.07	24.68	1.58
2N51504302	366.7	368.6	12402	0.01	0.31	0.4
2N51504302	368.6	370.2	12403	0.01	0.23	0.52
2N51504302	370.2	371.4	12404	0.01	14.55	0.65
2N51504302	371.4	372.6	12405	0.01	10.91	0.61
2N51504302	372.6	373.1	12406	0.01	0.22	0.35
2N51504302	382	382.8	12407	0.01	1.57	0.54
2N51504302	382.8	384	12408	0.01	0.57	0.52
2N51504302	384	384.5	12409	0.01	3.52	0.66
2N51504302	384.5	385.5	12410	0.01	4.89	0.57
2N51504302	385.5	386.7	12411	0.01	0.08	0.46
2N51504302	386.7	387.8	12412	0.01	0	0.53
2N51504302	387.8	389	12413	0.01	0	0.44
2N51504302	389	390	12414	0.01	0.01	0.5
2N51504302	390	390.7	12415	0.01	0.01	0.49
2N51504302	390.7	392.2	12416	0.01	1.46	0.42
2N51504302	392.2	393.2	12417	0.01	3.47	0.5

son	from	to	leng muestr	pb	zn	fe
2N51504357	252.7	253.3	12	2651 0.00	2 17.18	0.46
2N51504357	253.3	254.1	12	2652 0.03	0.19	0.3
2N51504357	254.1	255	12	2653 0.00	1 0.05	0.29
2N51504357	255	255.8	12	654 0.00	1 0	0.27
2N51504357	255.8	257	12	655 0.00	1 0	0.25
2N51504357	257	258	12	2620 0.03	1 0.04	0.32
2N51504357	258	259	12	2621 0.00	9.08	0.32
2N51504357	259	259.7	12	2622 0.00	1 2.25	0.26
2N51504357	259.7	260.9	12	2623 0.00	1 29.71	0.2
2N51504357	302.5	303.9	12	2624 0.03	1 0.19	0.43
2N51504357	303.9	304.4	12	2625 0.04	4 28.18	1.6
2N51504357	304.4	305.4	12	2626 0.00	2 2.55	0.43
2N51504357	305.4	307.3	12	2627 0.03	1 0.02	0.11
2N51504357	307.3	308.2	12	2628 0.00	2 0.22	0.36
2N51504357	308.2	309.4	12	2629 0.02	2 12.55	0.51
2N51504357	309.4	310.8	12	2630 0.03	3 13.96	1
2N51504357	310.8	311.7	12	1631 0.00	2 7.1	0.54
2N51504357	311.7	312.3	12	1632 0.00	5 4.19	0.33
2N51504357	312.3	313.2	12	1633 0.09	5 22.25	0.63
2N51504357	313.2	314.2	12	1634 0.09	5 13.16	0.56
2N51504357	314.2	315.5	12	2635 0.04	4 12.62	0.82
2N51504357	315.5	316.9	12	2636 0.04	4 18.64	0.75
2N51504357	316.9	318.2	12	2637 2.5	5 17.66	0.94
2N51504357	318.2	319.5	12	2638 0.00	2 4.51	0.68
2N51504357	319.5	320.2	12	1639 0.26		0.55
2N51504357	320.2	320.9		2640 0.00		0.57
2N51504357	349.8	350.9		2641 0.00		2.04
2N51504357	350.9	351.8		2642 0.07		1.77
2N51504357	351.8			2643 0.03		8.0
2N51504357	358.9	359.4	12	2644 2.83	3 43.96	2.23
2N51504357	359.4			2645 0.49		1.01
2N51504357	360.2	361.1		2646 0.46		0.76
2N51504357	388.3	388.7		2647 0.03		0.72
2N51504357	388.7			2648 0.03		1.68
2N51504357	389.7			2649 2.59		1.3
2N51504357	390.9	391.3	12	2650 0.03	1 0.27	0.48

son	from	to	leng	muestr	pb	zn	fe	
2N51504466		389.3	389.7	1327	77	0.01	0.02	0.41
2N51504466		389.7	390.7	1327		0.04	1.24	0.4
2N51504466		390.7	391.6	1327	79	0.18	0.63	0.44
2N51504466		391.6	392.7	1328	30	0.01	0.01	0.24
2N51504466		392.7	393.9	1328	31	0.01	0.01	0.13
2N51504466		393.9	394.9	1328	32	0.12	9.15	0.98
2N51504466		394.9	395.8	1328	33	0.01	0.02	0.35
2N51504466		395.8	396.8	1328	34	0.01	0.54	0.31
2N51504466		396.8	397.9	1328	35	0.04	12.42	1
2N51504466		397.9	399.4	1328	36	0.31	11.64	1.08
2N51504466		399.4	399.9	1328	37	0.01	1.29	0.6
2N51504466		399.9	400.9	1328	88	0.2	19.13	1.36
2N51504466	i	400.9	402.1	1328	39	0.03	12.81	0.79
2N51504466	i	402.1	402.9	1329	90	0.03	9.44	0.92
2N51504466		402.9	403.9	1329	91	0.44	17.66	0.91
2N51504466	i	403.9	405	1329	92	0.57	17.48	0.8
2N51504466		405	405.8	1329	93	0.08	0.86	0.62
2N51504466		405.8	406.6	1329	94	0.01	0.04	0.41
2N51504466		406.6	407.3	1329	95	0.04	5.83	0.53
2N51504466		407.3	408.6	1329	96	0.01	0.02	0.5
2N51504466		408.6	409.7	1329	97	0.01	4.25	0.49
2N51504466		409.7	410.8	1329	98	0.05	4.55	0.52
2N51504466		410.8	411.5	1329	99	0.01	1.41	0.41
2N51504466		411.5	412.5	1330	00	0.01	0.57	0.4
2N51504466		412.5	413.3	1330	01	0.16	9.03	0.72
2N51504466		413.3	413.7	1330	02	0.01	0.34	0.28
2N51504466		413.7	414.8	1330	03	0.07	12.11	0.72
2N51504466		414.8	415.6	1330	04	0.73	26.81	1.17
2N51504466		415.6	416.5	1330	05	0.01	0.13	0.52
2N51504466		416.5	417.2	1330	06	0.01	0.07	0.47
2N51504466		417.2	418.5	1330	07	0.01	0.92	0.35
2N51504466		418.5	419.7	1330	08	0.01	4.6	0.51
2N51504466		419.7	420.7	1330	09	0.01	0.85	0.47
2N51504466		420.7	421.3	1331	10	0.01	0.91	0.42
2N51504466		421.3	422	1331	11	0.03	0.81	0.49
2N51504466		422	423.1	1331		0.16	4.59	0.62
2N51504466		423.1	423.7	1331		0.09	9.34	0.77
2N51504466		423.7	425	1331	14	0.06	4.87	0.64
2N51504466		425	425.5	1331	15	0	0.53	0.44
2N51504466		425.5	426	1331	16	0.01	2.38	0.52
2N51504466		426	426.8	1331		0.07	22.7	1.44
2N51504466		426.8	427.7	1331	18	0.58	17.72	1.18
2N51504466		427.7	428.2	1331		0.29	6.67	0.72
2N51504466		428.2	428.9	1332		0.13	3.52	0.67
2N51504466		428.9	429.7	1337		0.06	7.37	0.68
2N51504466		429.7	430.4	1332		0.1	3.26	0.6
2N51504466		430.4	431	1332		0.04	8.15	0.84
2N51504466		431	431.5	1332		0.03	15.24	1.12
2N51504466		431.5	432.2	1332		0.01	15.52	1.06
2N51504466		432.2	433.2	1332		0.01	1.93	0.32
2N51504466		439.7	440.6	1339		0.01	0.19	0.34
2N51504466		440.6	441.9	1339		0.01	5.41	0.37

2N51504466	441.9	443	13396	0.01	0.13	0.27
2N51504466	443	444.1	13397	0.01	0.1	0.31
2N51504466	465.4	466.5	13327	0	0.02	0.16
2N51504466	466.5	467.2	13328	0	0.01	0.14
2N51504466	467.2	467.9	13329	0.01	0.55	0.38
2N51504466	467.9	468.8	13330	0.03	11.86	2.1
2N51504466	468.8	469.6	13331	0.01	2.48	0.63
2N51504466	469.6	470.1	13332	0.07	25.03	2.58
2N51504466	470.1	470.8	13333	0.09	19.18	2.09
2N51504466	470.8	471.3	13334	1.05	5.84	1.04
2N51504466	471.3	472.2	13335	0.06	23.85	1.35
2N51504466	472.2	473.2	13336	0.15	42.48	1.83
2N51504466	473.2	473.5	13337	1.04	44.38	1.88
2N51504466	473.5	474.5	13338	0.66	25.34	1.23
2N51504466	474.5	475.1	13339	0.06	21.13	1.07
2N51504466	475.1	476.1	13340	0.15	18.62	1.22
2N51504466	476.1	477	13341	0.04	0.41	0.34
2N51504466	477	477.8	13342	0.03	3.6	0.78
2N51504466	477.8	478.7	13343	0.92	12.66	1.12
2N51504466	478.7	479.7	13344	2.71	33	1.84
2N51504466	479.7	480.2	13345	0.24	3.77	0.66
2N51504466	480.2	481.2	13346	4.68	35.13	1.56
2N51504466	481.2	482.2	13347	2.06	31.17	1.39
2N51504466	482.2	482.9	13348	0.95	25.4	1.26
2N51504466	482.9	483.6	13349	2.73	26.42	1.62
2N51504466	483.6	484	13350	2.1	26.12	1.43
2N51504466	484	484.7	13351	3.51	33.95	1.66
2N51504466	484.7	485.2	13352	0.67	27.98	1.3
2N51504466	485.2	486.1	13353	0.12	29.73	1.49
2N51504466	486.1	487	13354	0.05	13.13	0.89
2N51504466	487	487.7	13355	0.06	17.17	0.86
2N51504466	487.7	488.3	13356	0.06	21.14	0.95
2N51504466	488.3	489.6	13357	0.07	17.71	0.79
2N51504466	489.6	490.2	13358	0.08	27.93	1.51
2N51504466	490.2	491	13359	0.01	0.1	0.32
2N51504466	506.3	507	13360	0.01	0.25	0.47
2N51504466	507	507.9	13361	0.01	4.8	0.61
2N51504466	507.9	509.2	13362	0.01	3.94	0.54
2N51504466	509.2	510.2	13363	0.01	0.35	0.43

son	from	to	leng muestr	pb	zn	fe	
2N51504592	65.3	66.6		14281	0	0.01	0.1
2N51504592	66.6	68.25		14282	0	0.01	0.1
2N51504592	68.25	69		14283	0.01	0.01	0.14
2N51504592	69	69.9		14284	0.01	0.01	0.14
2N51504592	69.9	70.6		14285	0.02	0.06	0.17
2N51504592	70.6	71.1		14286	0.02	0.09	0.09
2N51504592	71.1	71.9		14287	0.08	0.11	0.13
2N51504592	71.9	72.5		14288	0.01	0.02	0.12
2N51504592	83.3	83.7		14289	0.01	0.02	0.09
2N51504592	88.1	89		14290	0.01	0.02	0.2
2N51504592	383.8	384.4		14320	0.01	0.02	0.47
2N51504592	384.4	385		14321	0.01	0.02	0.39
2N51504592	385	385.5		14322	0.02	0.03	0.38
2N51504592	385.5	387		14323	0.01	0.01	0.43
2N51504592	387	388.3		14324	0.01	0.01	0.53
2N51504592	388.3	389.25		14325	0.01	0.01	0.51
2N51504592	389.25	390.6		14326	0.04	0.01	0.55
2N51504592	390.6	391.4		14327	0.01	0.01	0.58
2N51504592	391.4	392.3		14328	0.01	0.01	0.58
2N51504592	397.5	398.6		14329	0.01	0.02	0.39
2N51504592	398.6	400		14330	0.01	0.02	0.44
2N51504592	400	400.85		14331	0.01	0.01	0.28
2N51504592	431.5	432		14332	0.03	0.01	0.29

son	from	to	leng mue	str	pb	zn	fe
2N51504630	436.7	437.1		14672	0.04	2.16	0.24
2N51504630	437.1	437.5		14673	0.13	31.17	3.29
2N51504630	437.5	438.5		14674	0.13	11.43	0.99
2N51504630	438.5	439.1		14675	1.01	10.07	0.87
2N51504630	439.1	439.65		14676	0.09	9.65	0.53
2N51504630	439.65	440.1		14677	1.12	15.09	1.03
2N51504630	440.1	441.3		14678	0.04	2.72	0.34
2N51504630	484.9	486.3		14679	0.02	0.62	0.17
2N51504630	486.3	487.65		14680	0.09	21.07	0.78
2N51504630	487.65	488		14681	0.55	6.43	0.56
2N51504630	488	488.7		14682	4.47	31.04	1.14
2N51504630	488.7	489.15		14683	0.02	4.82	0.63
2N51504630	489.15	489.65		14684	0.03	6.35	0.65
2N51504630	489.65	490.6		14685	0.04	16.88	0.79
2N51504630	490.6	491.8		14686	0.05	18.44	0.68
2N51504630	491.8	492.6		14687	2.91	43.36	1.83
2N51504630	492.6	494.1		14688	0.09	16.49	1.27
2N51504630	494.1	495.2		14689	0.28	15.75	1.03
2N51504630	495.2	495.8		14690	0.09	10.05	0.69
2N51504630	495.8	496.7		14691	0.15	15.1	1.1
2N51504630	496.7	498		14692	0.03	16.18	0.92
2N51504630	498	498.5		14693	0.03	14.14	0.77
2N51504630	498.5	499.2		14694	0.08	10.04	0.85
2N51504630	499.2	500.1		14695	0.04	9.11	0.83
2N51504630	500.1	501.3		14696	0.03	12.65	0.78
2N51504630	501.3	501.8		14697	0.03	20.72	0.94
2N51504630	501.8	502.8		14698	0.01	0.21	0.5

son	from	to	leng muestr	pb	zn	fe	
2N51504664	356.2	357		15079	0.01	0.46	0.36
2N51504664	357	357.6		15080	0.02	8.51	0.68
2N51504664	357.6	358.5		15081	0.03	5.87	0.51
2N51504664	358.5	359.1		15082	0.02	2.05	0.42
2N51504664	359.1	359.7		15083	0.05	7.38	0.58
2N51504664	359.7	361.1		15084	0.01	1.6	0.45
2N51504664	366.8	367.5		15085	0.03	8.23	0.64
2N51504664	367.5	368.7		15086	0.07	10.81	0.74
2N51504664	368.7	369.85		15087	1.04	23.47	1.15
2N51504664	369.85	370.75		15088	0.01	0.02	0.16
2N51504664	370.75	371.5		15089	0.05	21.33	0.97
2N51504664	371.5	372.9		15090	0.01	2.15	0.24
2N51504664	372.9	373.5		15091	0.01	0.04	0.1
2N51504664	373.5	375		15092	0.01	0.01	0.22
2N51504664	375	376		15093	0.01	0.47	0.17
2N51504664	376	376.6		15094	0.01	2.76	0.34
2N51504664	376.6	377.8		15095	0.03	22.26	1.29
2N51504664	377.8	378.75		15096	0.03	9.49	0.61
2N51504664	378.75	379.8		15097	0.06	23.81	1.32
2N51504664	379.8	380.3		15098	0.03	9.57	0.82
2N51504664	380.3	380.8		15099	0.09	1	0.53
2N51504664	380.8	381.52		15100	0.2	20.44	0.93
2N51504664	381.52	382.35		15101	0.04	3.87	0.55
2N51504664	382.35	383.4		15102	0.03	12.59	0.79
2N51504664	383.4	384.2		15103	0.09	20.5	0.7
2N51504664	384.2	385		15104	0.01	6.29	0.52
2N51504664	385	385.6		15105	0.01	0.32	0.51
2N51504664	385.6	386.4		15106	0.4	9.56	0.74
2N51504664	386.4	387.6		15107	0.06	16.18	0.83
2N51504664	387.6	388.5		15108	0.98	15.95	0.67
2N51504664	388.5	389.8		15109	0.94	15.53	0.92
2N51504664	389.8	391.2		15110	0.26	18.51	0.95
2N51504664	391.2	392.35		15111	0.05	20.71	1.11
2N51504664	392.35	393.7		15112	0.14	20.84	1.18
2N51504664	393.7	394.25		15113	0.47	12.54	8.0
2N51504664	394.25	395		15114	0.64	9.44	0.75
2N51504664	395	396		15115	1.12	22.6	1.28
2N51504664	396	396.6		15116	1.13	14.85	0.86
2N51504664	396.6	397.15		15117	1.84	10.1	0.76
2N51504664	397.15	398.35		15118	0.1	11.17	0.73
2N51504664	398.35	399.3		15119	0.66	17.46	1.32
2N51504664	399.3	400.5		15120	1.72	17.35	1.22
2N51504664	400.5	401		15164	0.25	0.51	0.33
2N51504664	401	401.8		15121	0	0.66	0.37
2N51504664	401.8	402.5		15122	0.03	15.27	1.32
2N51504664	402.5	403.7		15123	0.04	18.13	1.46
2N51504664	403.7	404.5		15124	0	0.1	0.27
2N51504664	404.5	405		15125	0.05	16	0.93
2N51504664	405	405.5		15126	0	0.1	0.24
2N51504664	405.5	406.8		15127	0	0.67	0.28
2N51504664	406.8	408.3		15128	0	0.03	0.19
2N51504664	408.3	409.1		15129	0.02	2.38	0.32

2N51504664	409.1	410.2	15130	0.01	12.54	0.75
2N51504664	410.2	410.8	15131	0.02	1.09	0.21
2N51504664	410.8	412.3	15132	0.01	0.53	0.27
2N51504664	412.3	413.1	15133	0.28	20.92	1.22
2N51504664	413.1	413.5	15134	0.15	1.48	0.43
2N51504664	413.5	414.4	15135	0.48	7.06	0.69
2N51504664	414.4	414.85	15136	0	0.67	0.37
2N51504664	414.85	415.4	15137	0.2	11.88	0.94
2N51504664	415.4	416.65	15138	0.02	2.43	0.44
2N51504664	416.65	417.6	15139	0.02	26.55	1.63
2N51504664	417.6	418.3	15140	0.02	11.56	0.76
2N51504664	418.3	419	15141	0.03	15.27	1.21
2N51504664	419	419.5	15142	0.06	13.56	0.95
2N51504664	419.5	420.25	15143	0.07	26.38	1.63
2N51504664	420.25	421.15	15144	0.03	41.4	2.06
2N51504664	421.15	422.25	15145	1.5	32.58	1.53
2N51504664	422.25	422.55	15146	0.02	11.81	0.61
2N51504664	422.55	423.85	15147	0	0.19	0.49

TABLA PARA LA DIGITALIZACION DE PLANOS Y SECCOINES

LEYENDA PARA LOGUEOS Y DIGITALIZACIÓN DE TESTIGOS Dpto Geología SIMSA, 2006

	Tipo de roca						
The party and th	Bsm	Basamemto	Magosta				
\vee \vee \vee	v	Volcanico	202 / 250				
\times \times	I	Intrusivo	241 / 250				
// //	Dm	Dolomita	White / 250				
1111	DmC	Dolomita calcárea	White/250/151				
1.1.	DmBi	Dolomita bituminosa	White / 250				
##	DmR.	Dolomita recristalizada	White / 250				
6 8 6	DmF	Dolomita fosilifera	White / 250				
1//	F	Falla	Blue				
0 m 6 m	DmK.	Dolomita kärstica	White / 250				
	CNU	Caliza Uncush	254/250				
	CNN	Caliza Negra Neptuno	252/250				
	CzBi	Caliza Bituminosa	254/250				
//	CzDm	Caliza Dolomitica	252/250				
	GM	Grupo Mitu	Yellow				
	Fn	Finos	254				
	CN	Caliza Neptuno	150				
	FV	Facies Vilcapoma	Green				
	UB	Umidaes Basales	Cynn				

Otro mineral		Acad
Pirita diseminada		Yellow
Pirita en venillas	///	Yellow
Galena masiva		Red
Galena diseminada		Red
Azufre	111	51

LEYES	Acad
De 0 a 4 %	25
De 5 a 10 %	Green
De 10 a 20 %	40
> 20 %	Red

*	GSD	% dolomia	gris
96	WSD	% dolomia	blancs

Textura			Acad
6 0 0 0	0	Ooide	250
11-11	Ms	Masiva	250
///	Cb	Cebra	250
117	CbF	Cebra fina	250
///	CbG	Cebra guesa	250
P VV V	RMBx	Rock matrix breccia	44
	MMBx	Mineral matrix breccia	44
在 政力	CxBx	Crackle breccia	250
A B A	Bx	Brecha	44
\$ <i>4</i> 8-2	BxHy	Brecha hidraulica	8
Δ_{Δ}	BxC	Brecha de colapso	Cian
* * *	BxT	Brecha tectónica	Blue
W Stran	Fr	Fracturada	Blue

Otro mineral	Acad
Esfalerita gris	Red
Esfalerita marrón	Red
Esfalerita amarilla	Red
Esfalerita naranja	Red
Esfalerita negra	Red
Pirita masiwa	Yellow

TABLA PARA LA DIGITALIZACION DE SONDAJES DIAMANTINOS

LEYENDA PARA LA DIGITALIZACION DE SONDAJES DIAMANTINOS VULCAN

	TIPO DE ROCA	
VULCAN	CODIGO	DESCRIPCION
-99	١	No Definida
1	Cz	Caliza
2	CzBI	Caliza Bituminosa
3	CzDm	Caliza Dolomítica
4	CzG	Caliza Gris
5	CzN	Caliza Negra
6	Dm	Dolomita
7	DmC	Dolomita Calcarea
80	DmBI	Dolomita Bituminosa
9	DmR	Dolomita Recristalizada
10	DmF	Dolomita Fosilifera
11	DmK	Dolomita Karstiea
12	H.	Falls
13		Intrustvo
14	٧	Volcanico

	GRANO		
VULCAN	CODIGO	DESCRIPCION	
-99	-	No Definodo	
1	F	Fino	
2	M	Medio	
3	0	Grueso	
4	FM	Fino a Medio	
5	MG	Medio a Grueso	
6	MF	Medio a Fino	
	INDICE DE COLOR		

	CANTIDAD DE FLUIDO		
VULCAN	CODIGO	DESCRIPCION	
1	WD	0%	
2	W1	0-5%	
3	W2	5-10%	
4	W3	10-20%	
5	W4	20-35%	
9	W5	>35%	

-99	-	No Definida
1		Caliza
2	CzBI	Caliza Bituminosa
3	CzDm	Caliza Dolomitica
4	CzG	Caliza Gris
5	CzN	Caliza Negra
ω	Dm	Dolomita
7	DmC	Dolomita Calcarea
00	DmBI	Dolomita Bituminosa
9	DmR	Dolomita Recristalizada
10	DmF	Dolomita Fosilifera
11	DmK	Dolomita Karstica
12	F	Falls
13		Intrustvo
14	٧	Volcanico

VULCAN	CODIGO	DESCRIPCION
-99	NO	
1	N1	
2	N2	
3	N3	
4	N4	
5	N5	

MANTOS

	CODIGO	DESCRIPCION
WSD GSD	WSD	Dolomita Blanca
GSD	GSD	Dolomita Gris

TIPO DE FLUIDO

		TEXTURA
VULCAN	CODIGO	DESCRIPCION
-99	٠	No Definida
1	0	Colde
2	Ms	Masiva
3	E	Laminar
4	Fr	Frectureds
5	Ps	Porosa
6	K	Carstificada
7	Arc	Arsillosa
88	Aren	Arenose
9	cblcp	Cebra Incipiente
10	Cb	Cebra
11	CbG	Cebra Gruesa
12	CbF	Cebra Fina
13	Bx	Brechs
14	Bxc	Brecha Colapso
15	BxHy	Brecha Hidraulica
16	BxT	Brechs Textonics
17	RMBx	Rock Matrix Brecha
18	MMBx	Minoral Matrix Brecha
19	CrBx	Cracker Brechs

		_
VULCAN	SCRIPCION	CODIGO
-99	No definodo	00 -
1	Affonso III	Alf - Alfonso III
2	Alfonso II	Alf - Alfonso II
3	Alfonso I	Alf - Alfonso I
4	San Vicente Techo	S.V - San Vicente Techo
5	San Vicente Piso	S.V - San Vicente Piso
6	Jesus Techo	S.V - Jesus Techo
7	Jesus	S.V - Jesus
8	Ayele	S.V - Ayala
9	III Techo	S.V - III Techo
10	III Intermedio	S.V - III Intermedio
11	III Piso	S.V - III Piso
12	II	8.V - II
13		S.V - I
14	IA	S.V - IA
15	IB	S.V - IB
16	San Judas III	S.J - San Judas III
17	San Judas II	S.J - San Judas II
18	San Judas I	S.J - San Judas I

	HORIZONTES
VULCAN	DESCRIPCION
1	Otros
2	Dolomita Colea
3	Caliza Oreopuneo
4	Dolomita Alfonso
5	Caliza Uncush
6	Dolomita San Vicente
7	Caliza Neptuno
8	Dolomita San Judas
9	Caliza Porosa Basal

Anexo 16: Registro de logueo

- Logueo DDH-2N51504302 (De 285 a 300m)
- Logueo DDH-2N51504357 (De 300 a 315m)
- Logueo DDH-2N51504466 (De 480 a 495m)
- Logueo DDH-2N51504592 (De 480 a 495m)
- Logueo DDH-2N51504630 (De 480 a 495m)
- Logueo DDH-2N51504664 (De 390 a 405m)

SII	NE CO			нол	IA DE	LOG	UEC	GEO	LOG	ico		С	IA MRA	SAN	IGN/	ICIO N	IOROC	ОСНА	SAA	1		U	INIDAD:	SAN VICENT	TE		Hole	Name	e: 2N515	0430	02	Hole Page 20 of 35
fin	: 23/01/	2018		f ter: 7	/02/201	8	logi	ueo: RRI	VERA	R	umbo	NW:50:41:	10 Inc	lin -	79:-1:	-55	Coor Nort		87585	69.28	8	Coor	Este	456760.88	Cot	ta	1527.83	RI	Capas	40		NE
	Nivel			10	515			Labor			29	74	Mád	quina			PE75B			Av	ance			519			Bu	z Cap	as			30
		recup	(btf)					assay (b	xt)		Ļ			_				_	_	_			g	reologia (txt)								
from	to	Corr	> 8cm	% Recup	% RQD	Muestr	Pb	Zn	Fe	Manto	X(Start)	Y(Start)	Z(Start)		to	Roci	a Text	ır Gra	ine V	v ,	gs.	DWS	tro Mine						٥	escrip	pcion	
285.		1.50	0.10	100.0	6.67	12353	0.02	7.08	0.44		150724.0	758596.9	1245.58		285.9	Dm	CbBx	M(G W	4 N	4 60	40							****Sph	rub	ia ±49	ó.****
	8.50					12354	0.02	1.57	0.29		56724.5	758507.0	1245.60	1	285.	Dm	СЬВх	M	G W	3 N	4 40	60						-	"Estruc	tura	favora	able."""
286.		1.50	0.00	100.0	0	12355	0.32	3.07	0.33		150724.4	758597.0	1245.10	285.		Dm	ммв»	м	G W	3 N	4 60	40							""Spł	gris	s ±109	, 9.
	8.00					12356	0.01	0.32	0.36		55724.3	758507.1	1244.01	287.0	287.0 288.0	Dm	ммв	M	G W	4 N	4 50	50						""Es	tructura	est	téril fa	vorable."""
288.		1.50	0.70	100.0	46.67	12357	0.01	0.17	0.38		456724.2	758507.1	1243.62	288.0	289.	Dm	ммв»	м	G W	4 N	4 60	40						S _I	ph gris	minad	a ±2%."""	
289.	9.50					12358	0.06	6.84	0.42		150724.1	758597.2	1242.33	289.3	290.	Dm	Сьвх	M	G W	3 N	4 50	50						Estru	ictura e	stéri	il muy	favorable."""
	1.00	1.50	0.50	100.0	33.33	12359	0.04	18.88	0.38		1	758597.3	l	1		Dm	ммв»	М	G W	4 N	4 60	40							Sph gri	s y r	rubia ±	18%.""
291.						12360	0.04	22.12	0.39		56723.9	758597.4	1240.65	291.0	201.0	Dm	ммв	M	G W	4 N	4 60	40							Sph gri	s y r	rubia ±	20%.""
	12.50	1.50	0.90	100.0	60	12361	0.07	21.34	0.44			758597.4		291.0	202	I B	ммв»	М	g w	4 N	4 60	40							Sph gri	s y r	rubia ±	25%."
292.		П				12362	0.06	9.41	0.25		56723.7	758507.5	1230.17			Dm	ммв	M	G W	3 N	4 60	40							Sph gri	s y r	rubia ±	:12%."""
	14.00	1.50	0.80	100.0	53.33	12363	0.43	20.24	0.44		456723.0	758597.6	1238.68	293.0	294.0	Dm	СЬВх	a M	G W	4 N	4 60	40							Sph gri	s y r	rubia ±	25%."
294.		1.50	0.10	100.0	6.67	12364	0.02	0.32	0.27		150723.5	758597.7	1237.60	294.0	294.0	Dm	ммв»	М	G W	3 N	4 50	50						E	structu	a m	uy fav	orable.""
295.	5.50					12365	0.01	0.04	0.26		150723.4	758597.7	1235.80	294.9	205.0	I 17	CbBx	a M	g w	3 N	4 50	50						-	""Roca	muy	y fracti	urada.
	7.00	1.50	0.20	100.0	13.33	12366	0.05	0.02	0.24		150723.2	758507.8	1235.81		297.0		Сьвх	a M(g w	3 N	3 50	50					····Est	ructu	ıra dise	mina	ada m	uy favorable.""
297.		1.50	1.10	100.0	73.33	12367	0.48	9.75	0.32		1	758597.9				Dm	СЬВх	a M	G W	4 N	4 60	40							Sph rui	oia y	gris ±	20%.""
	8.50					12368	2.03	14.65	0.34		150723.0	758598.0	1233.74		298.	Dm	СЬВх	M	G W	3 N	4 60	40							Sph gri	s y r	rubia ±	:18%."""
298.		1.50	0.40	100.0	26.67	12369	0.01	1.09	0.30		156722.9	758598.0	1233.24	298.	200.7	Dm	СЬВх	4 N	ıw	3 N	4 50	50							Estruct	ıra n	nuy fa	vorable.
	0.00			iņa a		12370	0.05	5.82	0.35		56722.8	758508.1	1232.00	200.7		Dm	СЬВх	M	G W	3 N	4 60	40		ļ					S	h gr	ris ±30	1%
	Scale	1:100			Date: 0	9 Novem	ber 20	020		Time: 02	:30 PM		Segme	nt Sta	rt Dep	th: 285	.08		Segm	ent E	nd D	opth: 3	300.08	End o	of hol	le Dep	th: 519.0	00				Datum: WGS84 Zona 18S

SIMSA		ној	A DE	LOG	UEO	GEO	LOG	ico		С	IA MRA	SAN	IGNA	CIO	MOROCO	CHA S	АА		Τ	UI	NIDAD:	SAN VICENT	TE		Но	ole Nar	me: 2N	151504	1357	Hole Page 21 of 35			
f ini: 31/03/201	18	f ter: 11/	04/201	8	logu	eo: RRI	VERA	R	umbo /	NW:73:32:1	24 Inci	lin -8	3:-45:	-57	Coor Norte	87	5862	9.75	c	oor E	Este	456760.76	Col	ta	1527	.91	Rb Cap	oas 6	0	NE			
Nivel		15	15			Labor			29	94	Mác	juine			PE75B		Г	Avai	ice	Т		522		Ť		Buz C	apas	T		25			
/80	cup (bt)				a	ssay (tx	17)				•										g	geologia (txt)											
from to Co	orr 8cm	% Recup	6 RQD	Muestr	Pb	Zn	Fe	Manto	X(Start)	Y(Start)	Z(Start)		to	Roc	a Textu	r Gran	w	n	GSD	wsD	tro Mine	N						Des	eripeio	а			
300.0	500.00	100.0	0						56739.7	758635.0	1220.24		300.8	Dm	Вх	F	W2	N2	20	80	0						го	ca mu	ıy fra	eturada			
)1.50 301.5									156730 6	758635.0	1227 05	300.8		Dm	cblcp	м	wo	N/A	30	70	0			,	/onil	las de	wed	Pos	a into	nsamente fracturada			
	500.10	100.0	6.67						00702.0				302.5				***2	144	30	,,,	٠				VEIIII	ias ue	wsu.	· Noc	a nite	isamente nacturada			
303.0	+			12624	0.01	0.19	0.43	0	150739.5	758635.0	1225.25	302.5		Dm	СЬ	MG	w3	N4	40	60	0					E	Estru	ctura	esteri	l favorable			
1.6 14.50	500.00	100.0	0	12625	0.04	28.18	1.60	0	150739.4	758636.0	1224.80	303.0	303.9 304.4	Dm	ммв»	MG	W4	N4	60	40	SphG							Sph g	ris +-	25%			
304.5	500.00	400.0		12626	0.02	2.55	0.43			758636.0		304.4		Dm	ммв»	MG	W3	N4	50	50	SphG		Estructura diseminada de sph gris +- 2%										
16.00	500.00	100.0	U				П					305.4	305.4																				
	500.00	100.0	0	12627	0.01	0.02	0.11	0	156739.3	758636.0	1223.36		307.3	Dm	Вх	MF	W1	N4	0	0	0			Ven	Venillas finas de wsd. Roca intensamente fracturada								
307.5				12628	0.02	0.22	0.36	0	150739.1	758636.0	1221.47	307.3		Dm	Сь	MG	W3	N4	30	70	0				Ct	b brec	hoide	. Estr	uctur	a esteril favorable			
1.3 19.00 309.0	500.30	100.0	20	12629	0.02	12.58	0.51	0	158739.1	758636.0	1220.57	308.2		Dm	ммв»	MG	W4	N4	60	40	SphG						,	Sph g	ris +-	12%			
0.50	500.40	100.0	26.67	12630	0.03	13.96	1.00	0	158739.0	758636.1	1219.37	309.4		Dm	ммв»	мс	W4	N4	60	40	SphG						:	Sph g	ris +-	15%			
1.5	500.15	100.0	10	12631	0.02	7.10	0.54			758636.1		310.8	311.7		ммв»	9			- 1	- 1										- 8%			
312.0	+	\vdash	\dashv	12632	0.06	4.19	0.33	0	55738.8	758636.1	1217.08	311.7	312.3	Dm	ммв»	MG	W3	N4	50	50	SphG	Sph gris +- 4%							- 4%				
	500.30	100.0	20	12633	0.05	22.25	0.63			758636.1		312.3		- B	ммв»	•				\neg							:	Sph g	ris +-	20%			
3.50 313.5	+		\dashv	12634	0.05	13.16	0.56	0	156738.7	758636.1	1215.58	313.2		Dm	ммв»	MG	W3	N4	50	50	SphG							sph g	ris +-	12%			
5.00	500.00	100.0	0	12635	0.04	12.62	0.82	0	150738.7	758636.2	1214.58	314.2		Dm	ммв»	MG	w3	N4	60	40	0						9	ph ru	bia +	- 12%			
Scale 1:10	00	L	ate: 06	Novemb	oer 20	20		Time: 04	:07 PM		Segme	nt Stan	Dept	h: 300	.08	Se	gmer	nt Enc	i Dep	th: 3	15.08	End	of hol	le Dep	oth: 5	22.00				Detum: WGS84 Zone 18S			

Sin	S C		но	JA DE	LOG	UEC) GE	OLO	GICO)	С	IA MRA	SAN	IGNA	CIOI	MOROCO	CHA S	AA		Τ	UI	NIDAD:	SAN VICENT	TE		н	ole Na	ame: 2	N515	0446	86	Hole Page 33 of 44
f in	i: 1/08/2	2018	f tor: 1	4/08/201	18	logo	ueo: Ri	RIVERA	ı	Rumbo	NW:58:17:	38 Inc	lin -6	4:-46:	-43	Coor Norte	87	5872	5.92	c	oor E	Este	456758.91	Co	ta	152	8.63	Rb C	apas	0		
	Nivel		1	515			Labo	or		30	159	Mád	quina			PE75B			Avan	ce			657				Buz (Capas				0
		recup (tx	1)				assay	(DxT)														g	reologia (txt)									
from	to	Corr 8cr	% Recup	% RQD	Muestr 13345	Pb	Zn	Fe		nto X(Start)	Y(Start)	Z(Start)			Roc	a Textu	Grand	W				tro Mine						Sete			pelon	rda < 9%
480.0	1.50	1.500.6	0100.0	40	13346				Т	156625.6	758815.7	1076.83		481.2	Dm	ммв»	9				- 1											In +- 3%
481.5					13347	2.06	81.17	1.3	9 0	456625.4	758815.0	1075.88	5	482.2	Dm	ммв	MG	W3	N4	50	50	SphG						Sph	gris +	- 30)%. G	In +- 2%
	3.00	1.500.0	0100.0	0	13348	0.95	25.40	1.2	6 0	456625.1	758816.1	1074.93		482.9	Dm	ммв»	MG	W3	N4	50	50	SphG							Sph	gris	+- 25	5%
483.0		4 500 0	0400.0	12.22	13349	F	T			- 1	758816.3	I	1 1	483.6	Dm							SphG							•	_	s +- 30	
	14.50	1.500.2	0.00.0	13.33	13350	1	1		+		758816.4 758816.5	İ	484.0		Dm Dm	<i>7</i> 2	•			\rightarrow	\dashv	SphG SphG						Sp		_	ubia + s +- 30	- 18% 1%
484.5	1.00				13352	\perp	\perp				758816.6	l	1 1	484.7	Dm	/a	4	\perp		_												
	6.00	1.500.0	0100.0	0	13353	0.12	29.73	1.4	9 0		758816.7		485.2		1 1	ммв»	MG	W3	N4	50	50	SphG				Sph gris y rubia +- 25% Sph gris +- 30%						
486.0		1.500.2	5100.0	16.67	13354	0.05	13.13	0.8	9 0	150024.1	758816.9	1071.24	485.1	487.0	Dm	ммв»	MG	w3	N4	50	50	SphG				Sph gris +- 12%						
487.5	7.50				13355	0.06	17.17	0.8	6 0		758817.0	l		487.7	Dm	ммв	MG	W3	N4	50	50	SphG							Sph	gris	+- 20)%
407.3		1.500.0	0100.0	0	13356	0.06	21.14	0.9	5 0	55623.7	758817.2	1059.72		488.3	Dm	ммв	MG	W3	N4	50	50	SphG							Sph	gris	s +- 18	3%
489.0	9.00		_		13357	0.07	17.71	0.7	9 0	450023.0	758817.3	1069.15			Dm	ммв	МG	w3	N4	50	50	SphG							Sph	gris	s +- 15	5%
		1.500.1	0100.0	6.67	13358	0.08	27.93	1.5	1 0	156623.2	758817.5	1067.92	489.0	489.0 490.2	Dm	ммв»	MG	W3	N4	50	50	SphG							Sph	gris	s +- 12	2%
490.5	0.50		_	H	13359	0.01	0.10	0.3	2 0		758817.7		490.2		Dm	ммв	MG	W3	N4	50	50	0						Estru	ctura	dis	emina	ida < 2%
	2.00	1.500.0	0100.0	0			П		T	150022.0	758817.8	1055.50	491.0		Dm	eblep.	MG	W2	N4	20	80	0		Roca moderadadamente fracturada								
492.0	2.00			П										492.5																		
	3.50	1.501.2	0100.0	80									492.5																			
493.8	IE 00	1.500.2	0100.0	13.33						156622.5	758818.1	1065.18	5	405	Dm	BxO	MG	W2	N4	30	70	0		٧	/enas	ıs gr	uesas	s de v	vsd. F	Roci	a mod	eradamente fracturada
40E (5.00	1.500.2	dipo o	13.33			Ш	Н_			758818.0		405.0	495.0	Dm	Ø o !	MG					0			_				s de	WSC		a muv fracturada
	Scale 1:100 Date: 09 November 2020 Time: 04:08 i											Segme	nt Stan	t Dept	in: 480	2.13	Se	gmer	nt End	Dep	th: 4	95.13	End o	of ho	de Dep	pth:	657.00					Datum: WGS84 Zona 18S

SIMI	P			ној	A DE	LOG	SUE(O GE	EOL	LOG	ICO		c	IA MRA	SAN	IGN/	CIO	IOROCO	CHA S	iΑΑ		Τ	U	NIDAD:	SAN VICENT	TE	Т	н	iole Na	ame	2N5	1504	592	Hole Page 33 of 38
fini:	8/12/2	018		f to	ur: -	-	logued	x E W	ILLAF	FUER1	TE R	lumbo	NW:59:27:	24 Inc	lin	71:-4	4 (Coor Norte	87	5884	8.56	1	Coor E	Este	456758.33	Co	ota	152	9.49	Rb	Capas	0		
-	Vivel			15	15			Lat	bor			31	192	Mác	juina			PE75C			Ava	nce			567				Buz	Сара	ıs	Т		0
		recup (l	brt)					assay	y (txt)	9						_					_	_	_	g	geologia (txt)									
from	to	Corr 8	> om F	% Recup	K RQD	Muest	r Pb	z	Zn	Fe	Manto	X(Start)	Y(Start)	Z(Start)	fron	to	Roc	a Textur	Gran	w	n	GSD	wso	tro Mine									dpcion	
480.0									Ш			450024.8	758927.3	1077.73	477.0	480.7	Dm	ммв»	MF	W5	N3	90	10	0	Moder	rado	o bitu	ume						nen en fracturas. Muy fracturado. no favorable.
1	.50	1.500.	201	00.0	13.33										480.7			4																
481.5		\top	T									150024.0	758927.8	1074.79			Dm	СЬВх	MF	W4	N3	60	40	0	de che	ert. H	Habi	ito al	gareo	o dis	turba	do.	Con a	dolomita algarea. Algunos nodulos Igunos tramos espaciados de Bx.
	ı	1.500.	401	00.0	26.67																				Algu	inos	nod	dulos	de c	hert	. Algu	ınas	oque	dades con dolomía cristalizada.
483.0	.00	_	4	_											483.0	483.0				L			Ш											
700.0		1.500.	75	00.0	50											1		8 8																
		1.500.	/5	00.0	50																													
484.5	.50	\top	\dagger	\dashv								450023.3	758928.1	1072.62			Dm	Lm	MF	W2	N3	70	30	Ca										amos espaciados de Bx. Algunos
	-	1.500.	401	00.00	26.67																				'	nodulos de Chert. Algunas oquedades con dolomia cristalizada.								
	.00		\perp																															
486.0																485.0																		
	.50	1.500.	451	00.0	30							150022.3	3758928.7	1059.21	485.0		Dm	Lm	MF	W1	N3	0	100	Ca	н	labit	to lar	mina	ar. Es	scas			morfo talizad	s de Wca. Algunas fracturas as
487.5															487.	487.8			1	┢			Н											
		1.500.	151	00.0	10																													
489.0	0.00	+	+	\dashv																														
	ŀ	1.500.	451	00.0	30							V58800 /	758928.0	4050.00			Dm	Lm	ME	NAT 4	N3		100	Ca			Doo		مالنحم				- W	. Tramo erratico de Bx.
00	.50											150022.0	/// 30V20.V	1000.00	1		D		MIF	VV 1	INS	U	100	Ca			FUC	205 V	enne	:05 y	ven	as u	e vvca	. Tramo erratico de Bx.
490.5		\top	\dashv																															
		1.500.	001	00.0	0																													
492.0	.00	\perp	4	\longrightarrow											492.0	492.0			1_	L			Щ											
482.0		1.500.	20.	00.0	12 22										492.	1																		
		1.500.	201	UU.U	13.33							150020.8	758929.0	1054.11			Dm	3	М	W2	N3	60	40	0			L	Liger	o hab	oito :	algan	eo. /	Alguno	s venilleos de Wca.
493.5	3.50	+	+	\dashv																														
		1.500.	401	00.00	26.67								-		494.	494.2	H		-	\vdash	-		Н											
405.0	.00											456620.2	758930.0	1052.02		495.7	Dm	Вх	М	W2	N3	80	20	0			Esti	ilolito	os de	bitu	men.	Alg	unas (quedades con drusas.
	cale 1	:100	and I		Date: 0	9 Nover	nber 2	020	Τ	1	Time: 04	:21 PM	<u> </u>	Segme	nt Sta		th: 480	.13	Se	gme	nt En	d Dog	oth: 4	95.13	End	of ho	ole De	opth:	567.00		Τ			Datum: WGS84 Zona 18S

SIMSA		н	JA D	E LOG	UEC	GE0	LOG	ICO		С	IA MRA	SAN	IGNA	CIO	MOROCO	ОСНА	SAA		Т	U	INIDAD:	SAN VICENTE	Τ	Hole Name: 28	151504	630	Hole Page 33 of 44
fini: 26/01/201	19	f ter	6/02/201	19 ueo:	E.VILI	LAFUER	RTE/P.LL	.AMC R	tumbo	NW:67:42:	35 Inc	lin -6	7:-58:	-42 (Coor Nort	e 87	5878	1.742	-	Coor	Este	456758.8336 Co	ota	1529.0309 Rb Cap	oas 0		
Nivel			1515	\perp		Labor			31	111	Más	quine			PE75C			Ava	nce			651		Buz Capas			0
rec	cup (b	-		<u> </u>		issay (b	xt)		<u> </u>				_	_		_	_	_	_	_		geologia (txt)					
from to Co.	orr 8ci	m Recu	p % RQL	Muestr	Pb	Zn	Fe	Manto	X(Start)	Y(Start)	Z(Start)		to	Roc	a Texts	r Gran	w	n	GSD	wso	tro Mine	n .			Desc	dpcion	
10.90		0100							56632.7	758856.1	1074.30	1	480.9	Dm	cblcp.	G	w:	3 N4	40	60	0			Matriz ooli	ica. R	oca mu	y fracturada.
480.8	600.0	0100	0 0						156632.2	758856.6	1071.72	480.9		Dm	CrBx	М	w:	2 N4	70	30	0		R	oca intensamen	te frac	cturado.	Espejo falla <)50°.
481.5 12.50	000.0	0100	0 0						550537.0	758850.8	1070.70	481.0 482.1	481.9 482.1	Dm	HYT	MG	w:	3 N4	60	40	0			Ve	nilleo	WSD-W	lea .
	500.0	0100	0 0	1											8 1	7											
483.0	0.00	0100	0 0						150031.0	758856.0	1070.57	7		Dm	CrBx	мс	w	3 N4	70	30	0	Roca inter	ensar	mente fracturad		urado. V derado.	/enillas finas WSD-Wca. Fluido
484.0	0.00	0100	0 0						£50031.3	758857.4	1058.00	484.7	484.7 484.5	Dm	BXT	×	w:	3 N4	80	20					Mil	lonita	
485.0 1.0)6.00	0.00	0100	0 0	14679	0.02	0.62	0.17	0	1	758857.4	l	484.9		Dm	o	3 0 3	w:	2 N4	60	40	0		С	blop aislada. Es	structu	ıra ester	il. Venas de fluido.
486.0 1.5 17.50	500.9	0100	0 60	14680	0.09	21.07	0.78	0	150031.0	758857.7	1066.50	486.3		Dm	Сь	М	W4	4 N4	90	10	SphM			SphM y Sph	G =+-2	25%Zn.	Gn =+-2%Pb.
487.5	\top	Т		14681	0.55	6.43	0.56	0	156630.7	758858.0	1055.27		487.0 488.0	Dm	MMBx	М	W	5 N4	90	10	SphM			Sph	M y Sp	ohA =+-1	1%Zn.
	501.0	0100	066.67	14682	4.47	31.04	1.14	0	1	758858.0	l	488.0	488.7	Dm	Сь	М	W	5 N4	85	15	SphM		Spl	hM y SphG =+-3	35%Zn	n. Bitum	inoso. Gn =+-3%Pb.
489.0	+	+	+	14683	-		0.63	0	_	758858.2				Dm	MMB	•	+	4 N4	_	-						hG =+-	
1.5	500 e	0100	0 40	14684	0.03	8.35	0.65	0	150030.3	758858.3	1053.84	489.1 489.0	489.0	Dm	Bx	M	W	5 N4	80	20	SphM				SphM:	=+-2%Z	n.
0.50				14685	0.04	16.88	0.79	0	456630.2	758858.4	1063.30		490.0	Dm	СЬВх	M	W4	4 N4	80	20	SphM			SphM= 189	%Zn. E	Bandead	da por SphA.
	501.2	0100	0 80	14686	0.05	18.44	0.68	0	£56630.0	758858.0	1062.40	490.0	491.8	Dm	ммв»	М	W	5 N3	95	5	0	SphM =+-15	5%Zr	n en bandas de	Cb y e	escarape	elada. Pirobitumen envenas GSD.
492.0	+			14687	2.91	13.36	1.83	0	555529.7	758858.8	1051.31	491.8		Dm	ммв»	М	w	5 N3	90	10	0			SphM +-4	2%Zn	en ban	das <) 55°.
	500.8	0100	053.33									492.0					T			П							
493.5	+	-	+	14688	0.09	16.49	1.27	0	150029.0	758859.0	1060.55		494.1	Dm	Bx	MG	W:	3 N3	95	5	0	SphM y s	sph(3 +-16% Zn. Flu	ido GS	SD engl	obando clastos subangulosos.
1.5	500.7	0100	046.67	14689	0.28	15.78	1.03	0	450029.2	758850.3	1050.12	494.1	495.2	Dm	ммв»	М	w	5 N3	95	5	0			SphG +- 16%Zr	masi	vo. Bitu	men en fracturas.
Scale 1:10	00		Date: 1	11 Novem	ber 20	20	1	Time: 10	:28 AM		Segme	nt Star	t Dept	h: 480	0.13	s	egme	ont En	d Dep	oth: 4	495.13	End of ho	ole De	pth: 651.00			Datum: WGS84 Zona 18S

SIMSA		ној	A DE	LOG	UEC	GEO	LOG	ico		c	IA MRA	SAN	IGNA	CIO	IOROCO	CHA S	SAA			U	NIDAD:	SAN VICEN	TΕ	Hole Name: 2N	151504	664	Hole Page 27 of 38				
f ini: 23/03/2019	,	f ter: 1/	04/2019	9 lo	gueo:	E VILL	AFUER1	TE R	umbo	NW:66:7:2	9 Inci	lin -7	5:-30:	-11	Coor Norte	87	5891	10.35	-	Coort	Este	456759.065	Cota	1529.778 Rb Cap	oas 0)					
Nivel		15	15			Labor			31	92	Mág	juine			PE75C	•	Π	Ava	nce	Т		565.5		Buz Capas	$\neg \top$	•	0				
recup	ip (txt)					issay (t	xt)				_										g	eologia (txt)		•							
from to Corr	, sem	% Recup	% RQD	Muestr	Pb	Zn	Fe	Manto	X(Start)	Y(Start)	Z(Start)			Roc	a Textu	Gran	w	n	GSD	WSD	tro Mine				Desc	eripcion					
390.0 1.50	00.50	100.0	33.33	15110	0.26	18.51	0.95	0	156687.2	758958.3	1150.08		391.2	Dm	СЬВх	М	W4	1 N3	90	10	SphA			Sph g	ris y rı	ubio +- 3	30 % Zn				
391.5	01.00	100.06	36.67	15111	0.05	20.71	1.11	0	150087.1	758958.0	1148.71		392.3	Dm	СЬG	М	W4	1 N3	60	40	SphA			Sph rubio c	ristale	s grand	es +- 20% Zn				
393.0				15112	0.14	20.84	1.18	0	£56686.9	758958.8	1147.50			Dm	CbBx	М	W4	1 N3	70	30	SphA			Sph rubio	o crist	alizado	+- 28% Zn				
1.50 14.50	09.00	100.0	60	15113	0.47	12.54	0.80	0	150080.8	758959.0	1145.27	303.7	393.7 394.2	Dm	СЬВх	MG	W4	1 N3	80	20	SphA			S	Zn						
394.5	\Box		\neg	15114	0.64	9.44	0.75	0	50080.7	758959.1	1145.73		395.0	Dm	мо	MF	W2	N3	70	30	SphG			S	ph gri	s +- 3%	Zn				
1.50 (6.00	01.00	100.06	86.67	15115	1.12	22.60	1.28			758959.3		305.0	395.0	Dm	СьВх	М	W4	N3	80	20	SphA		Sph rubio cristalziado +- 20% Zn								
396.0				15116	1.13	14.85	0.86	0	150080.5	758050.4	1144.02	395.0	395.6	Dm	ммв»	М	W3	N3	80	20	SphA			Sp	oh rub	Zn .					
1.50	01.05	100.0	70	15117	1.84	10.10	0.76	0	150080.5	758959.0	1143.44		397.1	Dm	ммв»	М	W3	N3	80	20	SphG			s	ph gri	s +- 4%	Zn				
397.5 1.50	00.50	100.0	33.33	15118	0.10	11.17	0.73	0	150080.4	758959.7	1142.90		398.3	Dm	СьВх	М	W4	1 N3	80	20	SphA			Sphi	rubio g	gris +- 1	5% Zn				
399.0				15119	0.66	17.46	1.32	0	150080.3	758959.9	1141.73		300.3	Dm	Сьвх	М	W4	1 N3	80	20	SphA			Sp	h rubi	o +- 30°	% Zn				
1.50	00.20	100.01	13.33	15120	1.72	17.38	1.22	0	156686.2	758960.0	1140.80	1 1		Dm	PseBx	м	W4	1 N3	80	20	SphA			Sp	h rubio	o +- 25°	% Zn				
400.5	П		\Box	15164	0.25	0.51	0.33	0	55585.0	758960.3	1139.63		401.0	Dm	PseBx	М	W4	1 N3	80	20	0			Esteril. I	ntensa	amente	fracturado				
1.50	ob.00	100.0	0	15121	0.00	0.66	0.37	0	150080.0	758960.4	1130.14		401.8	Dm	СЬ	М	W4	N3	90	10	0	Estructura favorable esteril. Bitumen en fracturas. Py de arrastre									
402.0	$\dagger \dagger$		\neg	15122	0.03	15.27	1.32	0	150085.0	758960.5	1138.36	1	402.5	Dm	CbBx	М	W4	N3	100	0	PyFr	Sph G y Sph B +- 25% Zn en bandas y vnlls en fracturas. Bitumen en fractura									
3.50	00.30	100.0	20	15123	0.04	18.13	1.46	0	150085.8	758960.6	1137.67	1 1		Dm	cblcp	м	W3	3 N3	90	10	SphG	Sph G	+- 155	% Zn en bandas. I	Pseud	lomorfos	s de GSD. Bitumen en estilolitos				
403.5	00.20	100.01	13.33	15124	0.00	0.10	0.27			758960.9		403.7	404.5	Dm	cblcp.	4	L	N3		Ш	0			Banda C	blop a	angulo 4	15°. Esteril				
15.00		100 0	6.67	15125	0.05	16.00	0.93	0	450085.0	758961.0 758901.1	1135.72	404.5	405.0	Dm Dm	MMBx	M	W4	N3	95 95	5	SphG			Sph +- 10% Zn e	n ban	das. Bit	umen en estilolitos orable esteril				
Scale 1:100	,		Date: 06	Novem	ber 20	20		Time: 04	:19 PM		Segme	nt Stan	t Dept	th: 390	.10					oth: 4	405.11	End	of hole I	Depth: 565.50			Datum: WGS84 Zona 18S				

Anexo 17: Registro de fotos

- DDH-2N51504302 (De 281.00 a 307.50m)
- DDH-2N51504357 (De 297.10 a 323.90m)
- DDH-2N51504466 (De 480.10 a 500.80m)
- DDH-2N51504592 (De 381.70 a 402.00m)
- DDH-2N51504630 (De 478.90 a 492.40m)
- DDH-2N51504664 (De 373.50 a 400.50m)

