UNIVERSIDAD NACIONAL DANIEL ALCIDES CARRIÓN FACULTAD DE INGENIERÍA

ESCUELA DE FORMACIÓN PROFESIONAL DE INGENIERÍA METALÚRGICA

TESIS

Evaluación metalúrgica a minerales de Cu y Mo para la determinación del proceso de flotación a nivel de laboratorio en Empresa Administradora Cerro S.A.C. Perú - 2019

Para optar el título profesional de:

Ingeniero Metalurgista

Autor: Bach. Vicky VILLASANTE VERGARA

Asesor: Mg. Eusebio ROQUE HUAMÁN

Cerro de Pasco – Perú – 2019

UNIVERSIDAD NACIONAL DANIEL ALCIDES CARRIÓN FACULTAD DE INGENIERÍA

ESCUELA DE FORMACIÓN PROFESIONAL DE INGENIERÍA METALÚRGICA

TESIS

Evaluación metalúrgica a minerales de Cu y Mo para la determinación del proceso de flotación a nivel de laboratorio en Empresa Administradora Cerro S.A.C. Perú - 2019

Sustentada y aprobada ante los miembros del jurado:

Dr. Eduardo Jesús MAYORCA BALDOCEDA Mg. José Elí CASTILLO MONTALVAN
PRESIDENTE MIEMBRO

Mg. Ramiro SIUCE BONIFACIO

MIEMBRO

DEDICATORIA

A mis padres por estar en todo el apoyo durante mi formación profesional, por sus consejos, enseñanzas de respeto y responsabilidad, y sobre todo por ser el soporte en mi vida.

RECONOCIMIENTO

Por medio de la presente investigación hago llegar mis sinceros agradecimientos a mis docentes de la Escuela de Formación Profesional de Ingeniería Metalúrgica, quienes aportaron en mi formación profesional.

A los trabajadores de la Volcan Compañía Minera S.A. en especial aquellos que laboran en el área de Laboratorio de química Metalúrgica por sus aportes académicos, sociales y amistad. Al enterarse del desarrollo de la investigación aportaron opiniones valederas para hacer realidad la presente investigación.

A mis familiares, quienes veían con preocupación mi titulación, al enterarse que ya estaba elaborando mi tesis llenaron de alegría nuestro hogar.

RESUMEN

A la fecha el Laboratorio químico-metalúrgico de Volcan Compañía Minera está dedicado a realizar pruebas metalúrgicas con la finalidad de iniciar operaciones y ha encargado a los profesionales a realizar las corridas de prueba que ha culminado con las pruebas metalúrgicas a nivel laboratorio, programadas con 19 compósitos de muestras de mineral denominadas compósito maestro 01 o maestro 02.

Los resultados del análisis químico de las muestras compósito Maestro, se presentan en la siguiente Tabla.

Tabla N° 1: Leyes ensayadas de Cabeza

Compósitos	Leyes ensayadas								
	Cu (%)	CuSolH+	CuCN- (%)	CuRes (%)	Fe (%)	Mo (ppm)	Ag (g/t)	Au (g/t)	
Maestro 1	0,26	0,01	0,02	0,23	3,87	155	1,0	(8)	0,01
Maestro 2	0,38	0,03	0,04	0,32	3,70	223	1,10		0,01

Fuente: Elaboración propia

Las muestras Maestro 01, Maestro 02, ensayan 0,26 %, 0,38 %, Cu y 155 ppm, 223 ppm, de Mo, respectivamente. Los contenidos de Au y Ag de los compósitos Maestro tienen valores relativamente bajos. El contenido de Fe en cada compósito Maestro es de 3,87 %, 3,70 % respectivamente.

Según el análisis de cobre secuencial la muestra de cabeza denominados Maestro 01, Maestro 02, contiene alrededor de 3,85%, 7,89% de cobre como óxidos, el contenido de minerales de cobre como sulfuros secundarios alrededor de 7,69%, 10,53% y con el mayor contenido de sulfuros primarios en el orden de 88,46%, 84,21% respectivamente. El resumen de los resultados de las pruebas de flotación batch abiertas, realizadas con los compósitos Maestro 01 y Maestro 02 se presentan en la Tabla siguiente, en términos de porcentaje en peso, grado y recuperación obtenidos en las etapas Cleaner I y Rougher:

Tabla N° 2: Resumen Pruebas Batch Abiertas

Compósito	Pruebas	Etapas	Peso	Leyes (%)		(ppm)	Recupe	eración (%	5)
			(%)	Cu	Fe	Mo	Cu	Fe	Mo
Maestro 1	33	Cleaner I	1,13	21,50	24,68	10841	86,99	7,35	74,90
		Rougher	2,47	10,53	17,78	5740	92,93	11,54	86,46
Maestro 2	25	Cleaner I	0,99	26,95	25,70	15043	72,25	6,69	72,93
		Rougher	2,50	13,40	18,05	7226	90,69	11,86	88,47

Fuente: Elaboración propia

Las leyes de Cu y Mo en el concentrado final para la muestra compósito Maestro 01 fueron de 21,50 % y 10841 ppm, con recuperaciones de 86,99 % y 74,90 % respectivamente, mientras que para la muestra compósito Maestro 02, el concentrado final ensaya 26,95 % en Cu y 15043 ppm en Mo con recuperaciones de Cu y Mo de 72,25 % y 72,93 %, respectivamente.

Palabras clave: Evaluación metalúrgica, proceso de flotación

ABSTRACT

To date, the Volcan Compañía Minera Chemical-Metallurgical Laboratory is dedicated to performing metallurgical tests with the purpose of starting operations and has commissioned professionals to carry out the test runs that have culminated with the metallurgical tests at the laboratory level, scheduled with 19 mineral sample composites called master 01 or master 02 compound. The results of the chemical analysis of the master compound samples are presented in the following table.

Table N° 1: Tested head laws

Composito	to Laws tested								
	Cu (%)	CuSolH+ (%)	CuCN- (%)	CuRes (%)	Fe (%)	Mo (ppm)	Ag (g/t)	Au (g/t)	
Master 1	0,26	0,01	0,02	0,23	3,87	155	1,0		0,01
Master 2	0,38	0,03	0,04	0,32	3,70	223	1,10		0,01

Source: Self made

Samples Master 01, Master 02, test 0,26%, 0,38%, Cu and 155 ppm, 223 ppm, of Mo, respectively. The contents of Au and Ag of the Master composites have relatively low values. The content of Faith in each Master compound is 3,78 %, 3,70 % respectively. According to the sequential cooper analysis the head sample called Master 01, Master 02, contains about 3,85 %, 7,69 % copper as oxides, the content of cooper minerals as secondary sulphides about 7,69 %, 10,53 % respectively.

The summary of the results of the open batch flotation tests, performed with the Master 01, Master 02 compounds are presented in the following Table, in terms of percentage by weight, grade and recovery obtained in the Cleaner I and Rougher stages:

Table N° 2: Summary Open Batch Tests

Composite	Tests	Stages	weight	Laws			Recove	ery (%)	
				(%)		(ppm)			
			(%)	Cu	Fe	Mo	Cu	Fe	Mo
Master 1	33	Cleaner I	1,13	21,50	24,68	10841	86,99	7,35	74,90
		Rougher	2,47	10,53	17,78	5740	92,93	11,54	86,46
Master 2	25	Cleaner I	0,99	26,95	25,70	15043	72,25	6,69	72,93
		Rougher	2,50	13,40	18,05	7226	90,69	11,86	88,47

Source: Self made

The Cu and Mo laws in the final concéntrate for the Master 01 composite sample were 21,50 % and 10841 ppm, with recoveries of 86,99 % and 74,90 % respectively, while for the Master 02 composite sample, the final concentrate tests 26,95 % in Cu and 15043 ppm in Mo with Cu and Mo recoveries of 72,25 % and 72,93, respectively.

Keywords: Metallurgical evaluation, Flotation process

INTRODUCCIÓN

En cuanto a la estrategia de desarrollo minero, durante el 2018 Volcan concentró sus esfuerzos en las exploraciones de sus operaciones actuales con el objetivo de desarrollar la cadena de valor en los recursos minerales. Es así que en el año se ejecutaron más de 150000 metros de perforación diamantina, entre nuestras unidades Yauli y Chungar. Asimismo, Volcan realizó exploraciones en seis proyectos, tres en fase avanzada y tres en fase inicial, sumando más de 54000 metros de perforación diamantina entre todos ellos. Respecto a los proyectos en etapa avanzada, resaltan Romina II y Carhuacayán, pues permitirían darle continuidad operativa de la unidad Alpamarca. En el caso de Romina II, se ha logrado definir una importante mineralización polimetálica en el cuerpo Puagianca, así como evidenciar otras zonas con alto potencial como Yuncán, Nuevo Yuncán, Why Not y Romina Central. En el caso de Carhuacayán, se ha logrado definir el cuerpo La Tapada, así como otros blancos como La Tapada Oeste y Toldojirca. En cuanto a Palma, en el año 2018 se logró la aprobación de la segunda modificatoria al EIA semi detallado de exploración y se viene ejecutando la actualización del modelo geológico para la estimación de nuevos recursos minerales. En lo que respecta a los proyectos en etapa inicial, destacan los trabajos en Alpamarca Norte, Santa Bárbara y Chumpe.

Además de estos avances, y en línea con la visión de largo plazo de Volcan, la Compañía continuó evaluando oportunidades de adquisición de proyectos y operaciones mineras que estuvieran alineadas con su estrategia.

El presente proyecto de investigación presentada como tesis se sostiene en los siguientes capítulos:

En el capítulo I se trata de dar a conocer el problema de investigación, con la identificación y determinación, formulación de problema de investigación planteándose

al problema principal, problemas específicos, así como también la formulación de los objetivos entre ellos el general y específicos, la justificación de la investigación, la limitación de la investigación.

En el capítulo II damos a conocer los antecedentes de estudio, las bases teóricas - científicas, definición de términos básicos, la formulación de la hipótesis general como las hipótesis específicas, identificación de las variables dependiente e independiente y la definición operacional de variables e indicadores.

En el capítulo III se considera la metodología y técnicas de investigación considerando el tipo, método, diseño de investigación, la población, muestra, técnicas e instrumentos de recolección de datos, técnicas de procesamiento y análisis de datos, tratamiento estadístico, selección validación y confiabilidad de los instrumentos de investigación, orientación ética.

El capítulo IV, refiere a los resultados y discusión, incluyendo la descripción del trabajo de campo, presentación, análisis e interpretación de resultados, la prueba de hipótesis y discusión de resultados.

ÍNDICE

DEDIC	CATORIA
RECO	NOCIMIENTO
RESUI	MEN
ABSTI	RACT
INTRO	DDUCCIÓN
ÍNDIC	E
	CAPÍTULO I
	PROBLEMA DE INVESTIGACIÓN
1.1.	IDENTIFICACIÓN Y DETERMINACIÓN DEL PROBLEMA1
1.2.	DELIMITACIÓN DE LA INVESTIGACIÓN2
1.3.	FORMULACIÓN DEL PROBLEMA2
	1.3.1.PROBLEMA PRINCIPAL 4
	1.3.2.PROBLEMAS ESPECÍFICOS4
1.4.	FORMULACIÓN DE OBJETIVOS4
	1.4.1.OBJETIVO GENERAL4
	1.4.2.OBJETIVOS ESPECÍFICOS4
1.5.	JUSTIFICACIÓN DE LA INVESTIGACIÓN4
1.6.	LIMITACIONES DE LA INVESTIGACIÓN5
	CAPÍTULO II
	MARCO TEÓRICO
2.1.	ANTECEDENTES DE ESTUDIO6
2.2.	BASES TEÓRICAS - CIENTÍFICAS9
2.3.	DEFINICIÓN DE TÉRMINOS BÁSICOS21
2.4.	FORMULACIÓN DE HIPÓTESIS22
	2.4.1.HIPÓTESIS GENERAL 22

	2.4.2.HIPÓTESIS ESPECÍFICOS	22
2.5.	IDENTIFICACIÓN DE VARIABLES	22
2.6.	DEFINICIÓN OPERACIONAL DE VARIABLES E INDICADORES	22
	CAPÍTULO III	
	METODOLOGÍA Y TÉCNICAS DE INVESTIGACIÓN	
3.1.	TIPO DE INVESTIGACIÓN	23
3.2.	MÉTODO DE INVESTIGACIÓN	23
3.3.	DISEÑO DE LA INVESTIGACIÓN	24
3.4.	POBLACIÓN Y MUESTRA	24
3.5.	TÉCNICAS E INSTRUMENTOS DE RECOLECCIÓN DE DATOS	25
3.6.	TÉCNICAS DE PROCESAMIENTO Y ANÁLISIS DE DATOS	30
3.7.	TRATAMIENTO ESTADÍSTICO	35
3.8.	SELECCIÓN, VALIDACIÓN Y CONFIABILIDAD DE LOS	
	RUMENTOS DE INVESTIGACIÓN	
3.9.	ORIENTACIÓN ÉTICA	36
	CAPÍTULO IV	
	RESULTADOS Y DISCUSIÓN	
4.1.DE	SCRIPCIÓN DEL TRABAJO DE CAMPO	37
4.2.PRI	ESENTACIÓN, ANÁLISIS E INTERPRETACIÓN DE RESULTADOS	39
4.3.PRU	JEBA DE HIPÓTESIS	42
4.4.DIS	CUSIÓN DE RESULTADOS	77
CONC	LUSIONES	
RECO	MENDACIONES	
BIBLIC	OGRAFÍA	
ANEX	OS	

CAPÍTULO I

PROBLEMA DE INVESTIGACIÓN

1.1. IDENTIFICACIÓN Y DETERMINACIÓN DEL PROBLEMA

En el Perú se encuentran muchos yacimientos mineros polimetálicos y nativos que contienen minerales de cobre, molibdeno, oro y plata, donde en algunos casos el mayor componente o matriz es el cuarzo en los cuales el cobre, molibdeno, oro y plata se encuentran finamente diseminados, y son explotados en diferentes lugares del Perú. Debido a que a lo largo y ancho del país existe mucha actividad minera que se dedica a la minería artesanal, pequeña y mediana, que en muchos casos procesa su mineral en plantas convencionales propias de la zona o realizan procesos no adecuados obteniéndose bajas recuperaciones. Por lo cual, varios yacimientos mineros con contenidos apreciables de cobre - molibdeno se encuentran

abandonados y desaprovechamos estos recursos minerales solo por no realizar un proceso metalúrgico apropiado.

Los minerales de cobre - molibdeno que está acompañados de minerales sulfurados como la pirita, donde el mayor componente es la sílice o cuarzo, en la mayoría de los casos presentan resistencia a la recuperación del metal valioso, debido a que los elementos se encuentran diseminados dentro del mineral. Estando presente el cuarzo como matriz requiere mayor liberación para obtener una buena recuperación del cobre - molibdeno pues en algunos casos existe cobre – molibdeno en otra matriz que previo al proceso convencional, que permita extraer.

Es conveniente desarrollar diferentes métodos alternativos para la recuperación del cobre - molibdeno, y permita así el apoyo a la pequeña minería, logrando incrementar su rentabilidad.

1.2. DELIMITACIÓN DE LA INVESTIGACIÓN

El presente trabajo de investigación se ha desarrollado en las instalaciones de la Compañía Minera Volcan en su Unidad operativa o Empresa Administradora Cerro S.A.C., dentro de los proyectos de expansión minera se ha ubicado el yacimiento de minerales pórfidos de Cobre que tiene como elemento acompañante el Molibdeno, siendo este mineral complejo en su recuperación debido a su presencia escasa que se tiene dentro de la matriz.

1.3. FORMULACIÓN DEL PROBLEMA

La minería en el Perú se caracteriza por la explotación y beneficio de los minerales polimetálicos destacando como metales principales exportación al oro, cobre, plata, zinc y plomo. La producción de estos metales permite que el Perú esté colocado entre los principales productores mineros del mundo.

Un alto porcentaje de la producción minera de plata, plomo y zinc se exportan como concentrados. En el caso del cobre - molibdeno la presentación es básicamente en forma metálica con diferentes grados de pureza.

Los rasgos actuales del contexto minero en el Perú se caracterizan por:

- Explotación exitosa de yacimientos de baja ley de minerales de cobre y minerales de molibdeno.
- Incorporación de aspectos ambientales en el manejo de las operaciones metalúrgicas.
- Ejecución de acciones en beneficio de las poblaciones vecinas a las faenas mineras.

En el Perú, es notable el desarrollo de la gran minería aurífera, debido a sus operaciones de alta envergadura que se han beneficiado con la economía de escala, bajo costo unitario por unidad producida y que obtiene beneficios adicionales por algunos subproductos. Ello pudo lograrse por la aplicación exitosa de tecnologías adecuadas, combinado con técnicas de ingeniería, diseño y construcción apropiadas. Los circuitos de molienda, por ejemplo, tienen actualmente un perfil más dinámico, dando como resultado un menor número de operaciones unitarias, que reemplazan a los circuitos de conminución de múltiples etapas.

A su vez, las plantas concentradoras utilizan un menor número de grandes, pero eficientes máquinas de flotación. El transporte hidráulico de sólidos es eficiente y ambientalmente adecuado con el uso de tuberías especiales denominadas mineroductos.

1.3.1. PROBLEMA PRINCIPAL

¿Cómo realizar la evaluación metalúrgica a minerales de Cu y Mo para la determinación del proceso de flotación a nivel de laboratorio en Empresa Administradora Cerro SAC?

1.3.2. PROBLEMAS ESPECÍFICOS

- 1. ¿Cuál es la granulometría que se debe ensayar para la obtención de cobre- molibdeno a nivel de laboratorio?
- 2. ¿Con qué método se podrá obtener mejor recuperación para la obtención de cobre - molibdeno a nivel de laboratorio?

1.4. FORMULACIÓN DE OBJETIVOS

1.4.1. OBJETIVO GENERAL

Evaluar metalúrgicamente a minerales de Cu y Mo para la determinación del proceso de flotación a nivel de laboratorio en Empresa Administradora Cerro S.A.C.

1.4.2. OBJETIVOS ESPECÍFICOS

- Determinar la granulometría que se debe ensayar para la obtener el cobre y molibdeno a nivel de laboratorio.
- 2. Determinar el método en que se podrá obtener mejor recuperación para obtener el cobre y molibdeno a nivel de laboratorio.

1.5. JUSTIFICACIÓN DE LA INVESTIGACIÓN

La presente investigación está enmarcada en la aplicación de diferentes métodos con la finalidad de recuperar el cobre - molibdeno a partir de los minerales sulfurados en la recuperación de cobre - molibdeno en la Empresa Administradora Cerro S.A.C. Es una investigación de índole tecnológica y preservando el medio ambiente. En su factibilidad económica podremos decir que sí es posible llevar a

cabo esta aplicación toda vez que está en constante alza el precio de los metales sulfurados en el mundo.

1.6. LIMITACIONES DE LA INVESTIGACIÓN

El presente estudio de investigación nos conllevará a conocer el método adecuado en la recuperación del cobre - molibdeno de los minerales sulfurados con la finalidad de determinar su factibilidad tecnológica en los laboratorios químico metalúrgico de la Empresa Administradora Cerro S.A.C. La investigación a realizarse tendrá como tema principal la determinación del método adecuado que se debe llevar a cabo en la obtención de cobre - molibdeno a partir de minerales sulfurados para determinar la mejor recuperación de cobre - molibdeno, teniendo en cuenta que la bibliografía es escasa en el mundo de la minería, así como también se llevará a cabo en un lapso de 6 meses de estudio.

CAPÍTULO II

MARCO TEÓRICO

En el presente estudio de investigación se desarrollará con el uso adecuado del laboratorio metalúrgico.

2.1. ANTECEDENTES DE ESTUDIO

• Procesamiento de Molibdeno por flotación (911 metallurgist)

Este circuito de flotación de molibdeno es para un tonelaje de 250 a 500 por 24 horas y está diseñado para un mineral de molibdeno de baja ley teniendo el deposito solo algunas zonas de alta ley y con ganga de cuarzo y pirita. Es también básicamente atinado para muchos otros minerales sulfurados, como antimonio, plata y algunas menas de plomo. Las ideas básicas acentuadas en este diagrama de flujo son la simplicidad y la separación rápida del mineral liberado. El flujo por gravedad es usado lo más posible en manejar el mineral y

la pulpa. La habilidad de las celdas de flotación mecánicas para producir un concentrado alto de grado y también para circular productos intermedios por la gravedad son características importantes. La molienda excesiva el mineral es un parámetro importante en la flotación, pero también requiere más equipo, molinos de bolas más largos, celdas de flotación y espesadores.

Circuito de flotación de gruesos

En muchos minerales de molibdeno un concentrado de calidad superior puede hacerse en este circuito de flotación de gruesos de cuatro celdas. Las celdas mecánicas es una unidad que exitosamente puede tratar el material grueso sin arenarse. Los relaves de este circuito de flotación se remuelen en un circuito especialmente diseñado.

Circuito de Remolienda

Esto consta de un Molino de Bolas en circuito cerrado con una celda unitaria y el clasificador en Espiral. La celda unitaria toma el material fino de molino de bolas, separa el mineral liberado y, produce un concentrado muy alto grado de molibdeno.

La celda unitaria es una de las partes más importantes del circuito, pues no sólo remueve una porción principal del mineral de molibdeno como un producto de alto grado, sino que también puede remover un mayor tonelaje de un producto intermedio para su posterior mejora de calidad. La descarga de la celda unitaria se dirige por gravedad a un clasificador para separación de los finos para flotación y el producto grueso para su remolienda.

Circuito de flotación de finos

Los finos se dirigen a un acondicionador para proveer una alimentación estable y también para el condicionamiento necesario de los reactivos para los mejores

resultados de flotación. La pulpa condicionada va a la primera celda del circuito de flotación primaria.

Es posible concentrar una cantidad sustancial de concentrado de molibdeno de alto grado para no efectuar su limpieza. El resto del concentrado normalmente requiere limpieza convencional en varias etapas. Muchos otros minerales, como antimonio, plata y plomo también pueden generar un producto de calidad superior.

El circuito primario tiene seis celdas y el de limpieza de seis celdas lo cual es típico para molibdeno o cualquier otro mineral en donde se requiere de varias etapas de limpieza. La recirculación se hace por la gravedad en el banco de celdas. Con su flexibilidad de diseño cualquier flujo puede hacerse fácilmente manipulable sin el uso de bombas.

Los relaves de flotación primaria se dirigen a un circuito de flotación de agotamiento. Estas celdas pueden tener doble impulsor y doble descarga. Son usadas para recuperar todo el de mineral flotable. Este concentrado es enviado por la gravedad para las celdas inmediatamente precedentes.

Evaluación del proceso de flotación Cobre-Molibdeno (Yañez Silva, Sergio Andree)

La evaluación del proceso de flotación en todo procesamiento de minerales se debe tener una estrategia adecuada para obtener las condiciones óptimas de una manera rápida eficiente y confiable.

El desarrollo del presente trabajo está orientado a solucionar un problema tecnológico, ya que en la mayoría de las empresas que procesan mineral tienen problemas operacionales que dificultan la recuperación de un metal en forma de concentrado en nuestro caso es la evaluación de los principales factores de la flotación del cobre-molibdeno.

En el tratamiento de los minerales, para obtener resultados satisfactorios, es necesaria la conjugación de muchos factores, dentro de ellos determinar los parámetros o condiciones óptimas para el control del proceso, la finalidad es obtener una buena calidad de concentrados con las mínimas perdidas.

Si bien el tratamiento de los datos estadísticos de muestras poblacionales tuvo sus comienzos en el campo de la bioquímica y la agricultura desde aquellos años todas las ramas de la ingeniería han puesto énfasis en aplicarlos, y como era de esperarse la metalurgia también ha encontrado en ella una herramienta muy útil para mejorar los procesos.

2.2. BASES TEÓRICAS - CIENTÍFICAS

2.2.1. FLOTACIÓN DE MINERALES

La flotación por espumas es un proceso físico - químico de la concentración de minerales finamente molidos. El proceso comprende el tratamiento químico de una pulpa de mineral a fin de crear condiciones favorables para la adhesión de ciertas partículas de minerales a las burbujas de aire. Tiene por objeto la separación de especies minerales, divididos a partir de una pulpa acuosa, aprovechando sus propiedades de afinidad (hidrofílico) o repulsión (hidrofóbico) por el agua. Las especies valiosas o útiles constituyen una fracción menor del mineral, mientras que las especies no valiosas o estériles constituyen la mayor parte El carácter hidrofílico o de afinidad hace que estas partículas se mojen, permanezcan en suspensión en la pulpa, para finalmente hundirse. El carácter hidrofóbico o de repulsión evita el mojado de las partículas

minerales que pueden adherirse a las burbujas y ascender Estas propiedades de algunos minerales tienen en forma natural, pero pueden darse o asentarse mediante los reactivos de flotación minerales hidrofilicos. Son mojables por el agua, constituidos por: óxidos, sulfatos, silicatos, carbonatos y otros, que generalmente representan la mayoría de los minerales estériles o ganga. Haciendo que se mojen, permanezcan en suspensión en la pulpa para finalmente hundirse minerales hidrofóbicos. Son aquellos minerales que no son mojables o son poco mojables por el agua, dentro de ellos tenemos: Los metales nativos, sulfuros de metales o especies tales como: Grafito, carbón bituminoso, talco y otros, haciendo de que evite el mojado de las partículas minerales, que pueden adherirse a las burbujas de aire y ascender Además se puede observar, que los minerales hidrofóbicos son aerofílicos, ósea tienen afinidad con las burbujas de aire, mientras que los minerales hidrofílicos son aerofóbicos, ósea no se adhieren normalmente a ellas. Los minerales hidrofílicos e hidrofóbicos de una pulpa acuosa se pueden separar entre sí, después de ser finamente molidos y acondicionado con los reactivos químicos que hacen más pronunciadas las propiedades hidrofílicas e hidrofóbicas, haciendo pasar burbujas de aire a través de la pulpa. Las partículas hidrofílicas se van a mojar y caer al fondo de la celda de flotación. De esta forma se puede separar un mineral que contiene en los casos más simples dos componentes, un útil y otra estéril, en dos productos:

- un concentrado de la parte valiosa, y
- un relave que contiene la parte estéril.

La flotación funciona de la siguiente manera: La flotación es algo similar al lavado de ropa con los detergentes. Ejemplo: Tomemos un recipiente con agua y un poco de detergente, y agitamos un poco; al agitar se produce una espuma blanca. Si ponemos ropa para lavar, entonces la espuma se tiñe de oscuro. Simplemente que las partículas de suciedad se han pegado a las burbujas y las han teñido La flotación es muy similar, ya que las partículas de los sulfuros se pegan a las burbujas en idéntica forma. La sección de flotación es importante porque:

Después de haber chancado y molido el mineral, ¿hemos obtenido ya los concentrados? claro que NO. Entonces, ¿Dónde se obtienen los concentrados?, En la flotación Veamos mejor esto; Tenemos en un vaso un poco de pulpa del overflow de los hidrociclones. En esta pulpa hay una infinidad de granitos con valor y sin valor, pero completamente mezclados, entreverados. Entonces lo que tenemos que hacer ahora es seleccionar todos los granitos de sulfuro de cobre a un lado, separar los granitos de sulfuro de molibdeno a otro lado, y lo mismo con las partículas sulfuro de hierro. Cada uno de estos sulfuros constituye un concentrado y lo que botamos es el relave. Esto quiere decir que en las celdas de flotación es donde verdaderamente se realiza la concentración y, por lo tanto, es la parte más importante del proceso de concentración.

2.2.2. ELEMENTOS DE LA FLOTACIÓN FASE SÓLIDA:

Está representada por los sólidos a separar (minerales) que tienen generalmente una estructura cristalina. Esta estructura es una consecuencia de la comparación química de las moléculas, iones y átomos componentes que son cada uno, un cuerpo completo. Los factores de

importancia en el proceso de flotación, en lo que se refiere a los sólidos, son los siguientes:

- a. Carácter de la superficie aireada en la ruptura del sólido (Tipo de superficie, fuerzas residuales de enlaces)
- b. Imperfecciones en la red cristalina
- c. Contaminante preveniente de los sólidos, líquido, gases.

FASE LÍQUIDA. Es el agua debido a su abundancia y bajo precio; y también debido a sus propiedades específicas, constituye un medio ideal para dichas separaciones La estructura de una molécula de agua investigada por espectroscopia es bastante compleja; aparece que aproximadamente el 46% de los enlaces es covalente y 54% es iónico Finalmente hay que subrayar la importancia de las impurezas y contaminaciones que tiene toda agua natural o industrial. En primer lugar, hay que mencionar la dureza del agua ósea la contaminación natural causada por sales de calcio, magnesio y sodio. Estas sales y otro tipo de contaminaciones no solo pueden cambiar la naturaleza de la flotabilidad de ciertos minerales sino también son casi siempre causa de un considerable consumo de reactivos de flotación con los cuáles a menudo forman sales solubles A parte de la contaminación inorgánica también la contaminación orgánica que puede ser mucho más importante y peligrosa, particularmente si se trata de aguas servidas

FASE GASEOSA. Es el aire que se inyecta en la pulpa neumática o mecánicamente para poder formar las burbujas que son los centros sobre los cuales se adhieren las partículas sólidas. La fundición del aire en la flotación tiene distintos aspectos de los cuales los principales son: a. El aire influye químicamente en el proceso de flotación b. Es el medio de

transporte de las partículas de mineral hasta la superficie de la pulpa El aire es una mezcla de nitrógeno (78,10%) y oxígeno (20,96%) con pequeñas cantidades de dióxido de carbono (0,04%) y gases inertes como argón y otros.

2.2.3. FACTORES QUE INTERVIENEN EN LA FLOTACIÓN

En toda operación de flotación intervienen cuatro factores principales, que son: Pulpa, Reactivos, Agitación, Aire.

a. LA PULPA.- Es una mezcla del mineral molido con el agua, y viene a constituir el elemento básico de la flotación ya que contiene todos los elementos que forman el mineral La pulpa debe reunir ciertas condiciones, es decir que el mineral debe estar debidamente molido a un tamaño no mayor de la malla 48, ni menor a la malla 270, dentro de este rango de tamaño de partículas, se podrá recuperar de una manera efectiva las partículas de los sulfuros valiosos (Esto depende básicamente de la mineralogía de tipo de mineral).

Cuando la pulpa contiene partículas gruesas (mayores a malla 48), debido a una mala molienda, estas partículas tienden a sentarse en el fondo de las celdas de flotación y pueden llegar a plantar el impulsor de la celda, atorar la tubería y causar más trabajo que de costumbre (rebasarían los canales, se atorarían las bombas etc.)

Si la pulpa contiene partículas muy finas (menores a malla 270), la recuperación de los sulfuros valiosos no va ser efectiva ya que se perderían en forma de lamas. Al estar la pulpa aguada, el flotador debe cuidar de que las espumas salgan normalmente de los bancos de limpieza y que no bote mucha espuma en los bancos scavenger. Si la pulpa está

muy fina, a la vez debe estar muy diluida, significa que estamos pasando menos tonelaje por lo tanto estamos perdiendo capacidad

Pulpa: El circuito de molienda nos entrega, el overflow de los ciclones, un producto al que se le ha chancado y molido y que contiene sulfuros valiosos, ganga y agua; a esto nosotros llamamos pulpa. La pulpa debe cumplir ciertas condiciones tales como: Densidad y pH correcto según se requiera.

Pulpa espesa; Una pulpa espesa (densidad muy alta) nos indicará molienda gruesa. Si esta pulpa ingresa a los circuitos de flotación, veremos que no flota o flota muy poco, debido a que los reactivos y el aire no pueden levantar granos muy grandes aun cuando se agregan cantidades enormes de reactivos. Además, se perderían también los sulfuros valiosos en los relaves, por falta de liberación.

Una pulpa muy fina implica que tenemos una pulpa de densidad baja y significará que está pasando menos tonelaje. Si bien la cantidad de pulpa que llega a las celdas es igual, contiene menos sólidos, ya que es una pulpa aguada. Esto quiere decir entonces que hay fuertes pérdidas de tonelaje. Además, cuando la pulpa es muy fina hay exceso de lamas que dificultan la flotación; ensuciando los concentrados, unas veces, y los relaves en otras.

El pH indica la cantidad de cal que contiene el circuito de flotación, esto es, su alcalinidad; a más cal, la pulpa es más alcalina; a menos cal, menos alcalina. En otras palabras, el pH no es sino la forma de medir la cal en la pulpa. El factor pH se mide de 0 a 14, con un aparato llamado Potenciómetro; de 0 a 6 es ácido y de 8 a 14 es alcalino. El pH 7 es neutro (ni alcalino ni ácido) y corresponde al agua pura.

b. **EL AIRE**. Es un factor importante que sirve para la formación de las burbujas (el conjunto de burbujas acompañadas de partículas de sulfuros forma las espumas) que se necesita en las celdas. Por tanto, el aire ayuda a agitar la pulpa Las espumas se encargan de hacer subir o flotar los elementos valiosos hacia la superficie de la pulpa, en cada celda o circuito El aire se obtiene a través de los ventiladores (Blowers) que ingresa a baja presión (2- 6 lb/pulg² = 2-6 PSI) al interior de las celdas de flotación llenas de pulpa. O También la aeración en los tipos de celdas Sub – A es en forma natural o del medio ambiente que ingresan a baja presión al interior de la celda.

Si se usa mucho aire, se está haciendo una excesiva agitación, provocando que las espumas se revienten antes de rebosar por los labios de la celda o salgan conjuntamente con la pulpa, rebalsando las celdas, llevándose consigo a la ganga que no es necesaria.

Cuando se usa poco aire, la columna de espumas es baja e insuficiente no pidiéndose recuperar los elementos valiosos, que se pierden en el relave general. La cantidad de aire se regula de acuerdo a las necesidades requeridas en el proceso, En conclusión, no se debe usar ni mucho ni poco aire. El correcto control del aire y la altura de las compuertas nos darán siempre una buena espuma. (Con un espumante bien regulado).

c. LOS REACTIVOS. Son sustancias químicas que sirven para la recuperación de los sulfuros valiosos, despreciando o deprimiendo a la ganga e insolubles. Mediante el uso de reactivos podemos seleccionar los elementos de valor en sus respectivos concentrados. Para tener un mayor conocimiento de la función específica de cada reactivo, los podemos

clasificar en tres grupos: Espumantes, Colectores y modificadores; que posteriormente lo estudiaremos en forma muy detallada todo lo referente a los reactivos químicos Ya sabemos que en cualquier celda de flotación encontramos agua, aire, mineral molino y reactivos. Estos reactivos son sustancias que gustan y se asocian a uno o más de los elementos valiosos, pero no a los otros. Por ejemplo, hay reactivos que les gusta el aire, pero no el agua; hay otros sulfuros que les gusta la roca, pero no los sulfuros, a otros les gustan los sulfuros, pero no la roca y así sucesivamente. Y. ¿Qué hacemos cuando nos gusta una cosa? Por ejemplo: Si nos gusta el pisco... nos tomamos un trago ¿no es así? Si nos gusta el calor nos acercamos al fuego. Los reactivos hacen lo mismo; se acercan al elemento que más les gusta, lo rodean y se pegan a él. En la flotación, los reactivos hacen lo mismo, se pegan al elemento que más les atrae, ya sea la roca, los sulfuros, el agua o el aire.

d. LA AGITACIÓN. La agitación de la pulpa nos permite la formación de las espumas de aire para la flotación, y además nos sirve para conseguir la mezcla uniforme de los reactivos con los elementos que constituyen el mineral de la pulpa, dentro de la celda. Además, la agitación, nos evita el asentamiento de los sólidos contenidos en la pulpa Si tomamos en un vaso un poco de rebalse del ciclón y lo dejamos sobre una mesa sin agitarlo, veremos que al cabo de un cierto tiempo todas las partes sólidas se han asentado en el fondo. Si en estas condiciones agregamos un poco de reactivo, ¿Cree usted que se mezclará con todas las partículas? Evidentemente que no. Pero si luego agitamos esta pulpa con una varilla, será posible evitar el asentamiento de las partículas y podremos conseguir

que el reactivo entre en contacto con los granos valiosos y actúe sobre ellos. En resumen, podemos decir que la agitación hace los siguientes trabajos:

- No dejar que las partículas se asienten, manteniéndose suspendidos.
- Permite una mayor mezcla de los reactivos con la pulpa:
- a. La agitación en una celda de flotación debe ser moderada. Si es excesiva rebalsa pulpa en lugar de espumas, también hace que se rompan las burbujas y si es insuficiente se achica la espuma y no alcanza a rebalsar.
- b. Cuando la agitación es insuficiente, se disminuye la columna de espuma y no alcanza a renvalsar las espumas se achican y esto ocurre cuando los impulsores están gastados o cuando hay poco aire (tubos de aire atorados).
- c. Hay deficiencia de agitación de la pulpa en una celda, cuando:
 - El impulsor de la celda esta gastada El estabilizador esta malogrado.
 - Las fajas en "v" del sistema de movimiento (polea motriz y polea del árbol de agitación) están demasiado flojas, lo cual hace que la velocidad del impulsor disminuya.

2.2.4. PÓRFIDOS CUPRÍFEROS

Los pórfidos cupríferos son esencialmente depósitos minerales de baja ley y gran tonelaje. Se denominan pórfidos porque frecuentemente, pero no exclusivamente, se asocian con rocas ígneas intrusivas con fenocristales de feldespato en una masa fundamental de grano fino (Maksaev, 2004). Los pórfidos cupríferos son la fuente principal de cobre, contribuyendo más de la mitad de todo el cobre de mina en el mundo, y también son una fuente importante de oro. Estos depósitos son la fuente más importante de

molibdeno (Mo) y renio (Re), este último asociado a la estructura cristalina de la molibdenita. Además, es posible recuperar plata (Ag), oro (Au) y otros metales, incluyendo tungsteno (W), estaño (Sn), plomo (Pb) y zinc (Zn) en algunas operaciones de pórfidos. Estos depósitos contienen de cientos millones a billones de toneladas de mineral con leyes desde 0,2% a más de 1% Cu, 0,005% a 0,030% Mo y 0,4 a 2 g/t Au (Maksaev, 2004). Debido a sus bajas leyes, la minería de pórfidos es implementada a bajos costos y ello se logra mediante una minería masiva no selectiva, haciendo uso de estrategias relacionadas a economía de escala. Además, para que el costo sea menor muchos de estos depósitos se explotan a rajo abierto, lo cual es menos costoso que operaciones mineras subterráneas (Maksaev, 2004). La mayor parte de la producción chilena de cobre proviene de 16 pórfidos cupríferos en explotación, 12 en el Norte de Chile y 4 en la Zona Central; siendo unos de los pórfidos más grandes, incluso a nivel mundial, El Teniente y Chuquicamata. Las edades de los yacimientos cupríferos de la Zona Norte y Central de Chile corresponden al lapso Cretácico Superior-Plioceno, y sus mineralizaciones están caracterizadas por alteración hidrotermal, que contiene una fase sulfurada compuesta esencialmente por pirita, calcopirita, molibdenita y bornita (Neumann, 1974). Los minerales principales de estos pórfidos.

2.2.5. SULFUROS DE COBRE

Dentro de estos minerales, la calcopirita (CuFeS₂) se considera la especie principal de cobre primario en los pórfidos cupríferos; y se encuentra asociada con otros sulfuros de cobre como: bornita (Cu₅FeS₄), covelina (CuS) y calcosina (Cu₂S). Estas últimas dos especies, se hallan

generalmente en la zona de enriquecimiento (Dana y Hurlbut, 1960). A su vez, es posible encontrar otros sulfuros de cobre en menores proporciones como la tennantita ($Cu_{12}As_4S_{13}$) y tetraedrita ($Cu_{12}Sb_4S_{13}$), y/o alteraciones de la calcosina como la digenita (Cu_9S_5). Las propiedades de las principales especies de cobre son resumidas en la Tabla N° 2.1.

Tabla N° 2.1: principales propiedades fisicoquímicas de minerales sulfurados de cobre

Propiedad	Calcopirita	Bornita	Covelina	Calcosina
Formula química	$CuFeS_2$	Cu ₅ FeS ₄	CuS	Cu_2S
Peso específico	4,1-4,3	5,06 - 5,08	4,6-4,76	5,5-5,8
Color	Amarillo latón	Bronce pardo	Azul añil u oscuto	Gris de acero
Dureza (Mohs)	3,5 - 4	3	1,5-2	2,5 - 3

Fuente: Mineralogía de Dana y Hurlbut, 1960

2.2.6. SULFUROS DE MOLIBDENO

La molibdenita corresponde a la mena principal de molibdeno, y se encuentra como especie de valor secundaria en algunos pórfidos cupríferos. Las partículas de molibdenita consisten en cristales S-Mo-S agrupados unos sobre otros y unidos por fuerzas de Van de Walls (Sutulov, 1979). En estos cristales, los átomos de S y Mo están unidos por un enlace covalente. Debido a su estructura cristalina, las partículas de molibdenita presentan dos tipos de superficies, una superficie hidrofóbica originada por la ruptura de las interacciones de Van der Waals, asociadas a las caras del cristal, y otra superficie hidrofílica formada por la ruptura de los enlaces covalentes (bordes del cristal) (Sutulov, 1979). La mayor presencia de "Caras" en la molibdenita explica su hidrofobicidad natural, la cual es mayor para partículas gruesas, pues la reducción fina de tamaño genera un rompimiento del cristal preferentemente en los enlaces covalentes (Chander y Fuersternau, 1972). Las principales propiedades de la molibdenita se señalan en la Tabla N° 2.2.

Tabla N° 2.2: principales propiedades fisicoquímicas de la molibdenita

Propiedad	Pirita
Formula química	MoS_2
Peso específico	4,62 - 4,73
Color	Gris de plomo
Dureza (Mohs)	1 - 1,5

Fuente: Mineralogía de Dana y Hurlbut, 1960

Figura N° 2.1: Molibdenita

Fuente: Mineralogía de Dana y Hurlbut, 1960

2.2.7. OTROS MINERALES METÁLICOS

En esta categoría se incluyen minerales sulfurados de fierro como pirita (sulfuro más común de la corteza) y algunos óxidos de fierro como magnetita y hematita. En los pórfidos cupríferos, la pirita representa la principal ganga metálica del yacimiento, asociada generalmente a minerales como calcopirita u otros, en menores concentraciones, como galena y blenda.

Tabla N° 2.3: propiedades fisicoquímicas de minerales de Hierro

Propiedad	Pirita	Magnetita	Hematita
Formula química	FeS_2	Fe_3O_4	Fe_2O_3
Peso específico	5,02	5,18	4,8-5,3
Color	Amarillo latón	Negro de hierro	Castaño rojiso a negro
Dureza (Mohs)	6 - 6,5	6	5,5-6,5

Fuente: Mineralogía de Dana y Hurlbut, 1960

2.3. DEFINICIÓN DE TÉRMINOS BÁSICOS

Mineral. Es aquella sustancia sólida, natural, homogénea, de origen inorgánico, de composición química definida.

Metalurgia. Es la técnica de la obtención y tratamiento de los metales desde minerales metálicos hasta los no metálicos.

Proceso Metalúrgico. Obtención del metal a partir del mineral que lo contiene en estado natural, separándolo de la ganga.

Mena. Minerales de valor económico, los cuales constituyen entre un 5 y 10% del volumen total de la roca. Corresponden a minerales sulfurados y oxidados, que contienen el elemento de interés, por ejemplo, cobre, molibdeno, hierro, etc.

Minerales sulfurados. En geología hay que destacar la gran importancia económica que tiene la minería de extracción de minerales de sulfuro, pues los sulfuros naturales son las menas minerales más empleadas en la metalurgia, para la obtención de hierro, plomo, estaño o manganeso, entre otros muchos metales.

Flotación. Es un proceso fisicoquímico que consta de tres fases sólido-líquidogaseoso que tiene por objetivo la separación de especies minerales mediante la adhesión selectiva de partículas minerales a burbujas de aire.

Molibdeno. Es un elemento metálico que no se encuentra en estado puro en la naturaleza, por lo que se extrae de otros materiales, como por ejemplo, los minerales sulfurados. Se usa, principalmente, en la fabricación de acero gracias a su gran resistencia a la temperatura y corrosión.

Reactivos colectores. Tienen la función de hacer que las partículas de cobre y molibdeno hagan todo lo posible por rechazar el agua. Su objetivo es generar una conducta "hidrófoba" (fobia al agua) en el mineral para que este se separe del agua e ingrese a las burbujas de aire.

Reactivos depresores. Su función es generar el efecto inverso que los reactivos colectores, pero en otro tipo de minerales presentes en las "piscinas". Es decir, que el material que no interesa recolectar, prefiera el agua antes que el aire.

2.4. FORMULACIÓN DE HIPÓTESIS

2.4.1. HIPÓTESIS GENERAL

Si evaluamos metalúrgicamente a los minerales de Cu y Mo entonces podemos determinar el proceso de flotación a nivel de laboratorio en Empresa Administradora Cerro S.A.C.

2.4.2. HIPÓTESIS ESPECÍFICOS

- Si determinamos la granulometría que se debe ensayar entonces podemos obtener el cobre - molibdeno a nivel de laboratorio.
- 2. Si determinamos el método en que se podrá obtener mejor recuperación entonces podemos obtener el cobre molibdeno a nivel de laboratorio.

2.5. IDENTIFICACIÓN DE VARIABLES

2.5.1. VARIABLE DEPENDIENTE

Determinación del proceso de flotación nivel de laboratorio en Empresa Administradora Cerro S.A.C.

2.5.2. VARIABLE INDEPENDIENTE

Evaluación metalúrgica a minerales de Cu y Mo.

2.6. DEFINICIÓN OPERACIONAL DE VARIABLES E INDICADORES

Variable	Definición	Definición	Dimensión	Indicador
	conceptual	operacional		
Independiente	Se va evaluar	Se hará balance	Análisis	Porcentaje
Evaluación metalúrgica a	metalúrgicamente a	metalúrgico para	granulométrico	en
minerales de Cu y Mo.	los minerales de Cu	determinar la	pН	incremento
	y Mo.	evaluación.	Reactivos	
Dependiente	Se determinará el	Se hará pruebas	Incremento	Porcentaje
Determinación del proceso	proceso de	metalúrgicas para		de
de flotación a nivel de	flotación a nivel de	conocer la flotación a		evaluación
laboratorio.	laboratorio.	nivel de laboratorio		

CAPÍTULO III

METODOLOGÍA Y TÉCNICAS DE INVESTIGACIÓN

3.1. TIPO DE INVESTIGACIÓN

Teniendo en cuenta los objetivos de la investigación y la naturaleza del problema planteado, para el desarrollo del presente estudio se empleó el tipo de **investigación cuasi-experimental**, porque permite responder a los problemas planteados, de acuerdo a la aplicación del análisis granulométrico el control del pH y la dosificación de reactivos, traducidos en resultados obtenidos de las pruebas experimentales.

3.2. MÉTODO DE INVESTIGACIÓN

El presente trabajo de Investigación, por tener una naturaleza de carácter práctico, ha sido objeto del empleo del método **Aplicativo**, a fin de conocer sobre la concentración de cobre – molibdeno mediante la flotación por espumas,

habiéndose para el efecto realizado el estudio correspondiente de las variables independiente y dependiente. Podemos decir que la investigación científica se define como la serie de pasos que conducen a la búsqueda de conocimientos mediante la aplicación de métodos y técnicas, para lograr esto nos basamos en la exploratoria que pretende darnos una visión general a la realidad.

3.3. DISEÑO DE LA INVESTIGACIÓN

El diseño empleado en la presenta investigación es el de carácter **experimental**; metodología que permite establecer la relación existente en la evaluación metalúrgica de la variable independiente en el proceso y el resultado obtenido de la aplicación de diversos métodos para la obtención del cobre - molibdeno partir del mineral sulfurado y/o oxidado, considerado como variable dependiente, teniendo en cuenta para ello el problema principal planteado, y que será desarrollado dentro del contexto de la investigación como **experimental.**

Para cumplir con la metodología y diseño de la investigación, el control de las pruebas experimentales se llevará a cabo mediante una observación controlada de la variable independiente y de aquellas que intervinieron circunstancialmente y que han afectado o favorecido en los resultados de la variable dependiente.

3.4. POBLACIÓN Y MUESTRA

3.4.1. Población

Como población de estudio lo considero las reservas probadas y probables que tiene la Unidad Empresa Administradora Cerro SAC. Perteneciente a Volcan Compañía Minera S.A.A. que está depositado en su propiedad en el distrito de Simón Bolívar - Pasco.

Tabla N° 3.1: Reservas probadas de Volcan Cía. Minera SAA

RESERVAS P	ROBADAS – Volc	an Compañí	a Minera S.A	λ.A.	
Unidades Operativas	TMS	% Cu	% Pb	% Zn	Oz/TM Ag
Mina Carahuacra	3 711 100	0,05	0,97	6,23	3,68
Mina San Cristobal	8 547 900	0,18	1,31	7,24	3,70
Mina Andaychagua	6 245 800	0,14	1,08	5,95	8,31
Tajo San Martín Sur	959 940		0,75	3,10	1,31
Tajo Carahuacra	273 800	0,01	0,75	3,05	1,95
Mina Ticlio	1 532 400	0,16	2,73	7,69	2,31
Mina Zoraida	35 300	0,08	2,36	2,87	6,20
Mina Subterranea Cerro SAC	22 880 240		2,49	7,85	3,16
Tajo abierto Cerro SAC	18 398 470		1,36	3,48	1,27
Oxidos Ag (In Situ) Cerro SAC	1 538 700				6,72
Stock piles Óxidos Cerro SAC	2 317 000	1,77			7,10
Stock piles sulfuros Cerro SAC	1 500 000	1,81			8,78
Total	67 940 650	0,04	1,60	5,62	3,51

Fuente: Departamento de Geología Cerro SAC

3.4.2. Muestra

Como muestra de estudio es la recolección de parte del área de Geología quienes entregarán al laboratorio de química – metalurgia de su muestreo aleatorio por mallas del cual utilizaremos mediante un compósito de un determinado grupo de muestras para realizar su tratamiento metalúrgico mediante la aplicación de la reducción de tamaños, al 65 % malla -200, el control del pH, y la clasificación y dosificación de reactivos.

3.5. TÉCNICAS E INSTRUMENTOS DE RECOLECCIÓN DE DATOS

3.5.1. Muestras entregadas por el departamento de geología

Para el desarrollar el proceso de investigación el departamento de Geología nos hizo llegar las muestras diariamente donde se recibió un total de 132 muestras, agrupando en compósitos e identificando con códigos y peso en bruto de cada muestra individual y se detalla en la siguiente tabla:

Tabla N° 3.2: Muestras recibidas del departamento de geología

Compósito	Código	Peso	Compósito	Código	Peso	Compósito	Código	Peso
	1001	(g) 3,48		1011	(g) 3,50		1021	(g) 4,10
	1001	4,11		1011	2,68		1021	2,47
	1002	4,22		1012	3,77		1022	4,04
	1003	3,57		1013	3,30		1023	3,87
	1004	3,59		1014	2,23		1024	3,75
01	1005	3,29	02	1015	4,37	03	1025	3,99
01	1007	3,12	02	1017	3,80	03	1027	3,77
	1007	3,41		1017	3,35		1027	3,79
	1009	3,99		1019	3,98		1029	3,39
	1010	2,44		1020	4,10		1030	2,88
	1031	3,92		1041	4,09		1051	2,90
	1032	3,94		1042	4,44		1052	3,74
	1033	4,07		1043	4,14		1053	2,74
	1034	4,16		1044	4,25		1054	4,13
	1035	4,00		1045	4,08		1055	2,87
04	1036	4,00	05	1046	3,68		1056	3,40
	1037	3,89		1047	4,00	06	1057	3,21
	1038	3,96		1048	4,05		1058	3,33
	1039	4,21		1049	3,18		1059	3,10
	1040	4,57		1050	3,94		1060	2,53
	1061	4,21		1071	3,18		1081	3,10
	1062	4,57		1072	3,94		1082	2,53
	1063	4,61		1073	3,86		1083	2,66
	1064	5,00		1074	3,85		1084	3,26
	1065	4,73		1075	3,83		1085	2,65
	1066	4,01		1076	3,15	09	1086	2,64
07	1067	3,56	08	1077	2,93		1087	3,16
	1068	4,65		1078	3,28		1088	2,89
	1069	3,22		1079	3,30		1089	3,30
	1070	3,32		1080	2,56		1090	2,59
	1091	3,41		1101	3,97		1111	3,83
	1092	3,69		1102	3,69		1112	3,05
	1093	3,40		1103	3,72		1113	2,92
	1094	3,41		1104	3,74		1114	3,74
	1095	3,49		1105	3,49		1115	2,62
10	1096	2,92	11	1106	3,42	12	1116	3,94
	1097	3,20		1107	3,42		1117	3,62
	1098	2,95		1108	3,34		1118	2,64
	1099	2,83		1109	3,29		1119	3,61
	1100	3,59		1110	3,29		1120	2,65
	1121	3,03		1128	2,55		1135	4,09
	1122	3,25		1129	3,15		1136	1,98
12	1123	3,61	1.4	1130	2,87	15	1137	2,69
13	1124	3,46	14	1131	2,73	15	1138	3,11
	1125	3,60		1132	2,47		1139	2,94
	1126	3,61		1133	2,84		1140	3,29
	1127	3,39		1134	2,65			

Fuente: Departamento de Geología y Laboratorio químico-Metalúrgico

3.5.2. Análisis químico de cabeza

Para realizar el análisis químico de cada muestra resultaría tedioso y complicado, es por ello que se agrupó en 19 compósitos de los cuales cada compósito estuvo integrado de 8 muestras, que corresponde a los análisis químicos a los compósitos individuales (62 compósitos), de los compósitos Tramo (08) y del compósito Maestro, los resultados se presentan en las siguientes tablas:

Tabla N° 3.3: Análisis químico Compósitos Individuales - Bloque 01 (1/2)

				Leyes En	sayadas			
Compósitos	Cu (%)	Fe (%)	Mo (ppm)	Au (g/t)	Ag (g/t)	CuSolH+ (%)	CuCN- (%)	CuRes (%)
Compósito 01	0,39	3,49	163,00	0,02	0,80	0,12	0,11	0,15
Compósito 02	0,45	3,92	121,00	0,02	1,40	0,05	0,10	0,30
Compósito 03	0,37	3,24	128,00	0,02	0,90	0,06	0,12	0,20
Compósito 04	0,45	4,14	225,00	0,02	1,70	0,11	0,17	0,17
Compósito 05	0,36	3,72	106,00	0,03	1,00	0,06	0,10	0,20
Compósito 06	0,35	3,63	232,00	0,02	0,80	0,04	0,06	0,25
Compósito 07	0,47	3,77	299,00	0,03	1,10	0,09	0,17	0,22
Compósito 08	0,36	3,85	137,00	0,04	1,00	0,05	0,09	0,23
Compósito 09	0.40	3,19	121,00	0,02	1,00	0,07	0,12	0,21
Compósito 10	0,39	3,38	123,00	0,03	1,10	0,06	0,16	0,16
Compósito 11	0,40	3,56	109,00	0,02	0,80	0,04	0,06	0,30
Compósito 12	0,39	3,34	193,00	0,02	0,80	0,04	0,06	0,30
Compósito 13	0,34	3,37	317,00	0,01	0,90	0,03	0,07	0,23
Compósito 14	0,34	3,64	304,00	0,03	1,00	0,01	0,01	0,33
Compósito 15	0,37	4,06	205,00	0,02	0,90	0,01	0,01	0,36
Compósito 16	0,37	3,62	219,00	0,02	1,10	0,01	0,01	0,36
Compósito 17	0,33	3,33	299,00	0,02	1,10	0,01	0,01	0,32
Compósito 18	0,43	3,78	184,00	0,02	0,70	0,01	0,01	0,42
Compósito 19	0,33	3,73	187,00	0,02	0,90	0,01	0,01	0,32


Fuente: Elaboración propia

3.5.3. Preparación Mecánica de Muestras

La preparación mecánica de las muestras consistió en las siguientes actividades:

Chancado controlado a una granulometría de 100% -m10 Tyler,
 homogeneizado y cuarteo de las muestras denominadas compósitos

- individuales para caracterización química, pruebas metalúrgicas y formación de compósitos, e identificado por Tramo.
- Formación de los compósitos se ha realizado cada 10 muestras recibidas del departamento de Geología.
- Homogeneizado y cuarteo de cada compósito entonces realizamos el Tramo para caracterización química, pruebas metalúrgicas y formación de compósito general conocido como maestro.
- Formación del compósito Maestro con las muestras representativas de cada compósito y tramo.
- Homogeneizado y cuarteo del compósito Maestro en fracciones representativas de 1 kg en base seca, las cuales servirán para la realización de las pruebas metalúrgicas y caracterización química. Figura N° 3.1: Diagrama de bloques de la preparación mecánica de muestras

Finalmente se obtuvieron 08 compósitos denominados compósitos tramo y 01 compósito maestro, cuyos pesos se muestran en las siguientes tablas:

Tabla N° 3.4: Formación de compósitos Tramo – Bloque 02

Compósitos	Pesos (Kg)
Tramo 01	62,53
Tramo 02	131,68
Tramo 03	90,56
Tramo 04	19,16
Tramo 05	327,30
Tramo 06	260,43
Tramo 07	66,54
Tramo 08	4,21

Fuente: Elaboración propia Tabla N° 3.5: Formación del compósito Maestro

Compósitos	Pesos (Kg)
Maestro 02	62,53

3.6. TÉCNICAS DE PROCESAMIENTO Y ANÁLISIS DE DATOS

3.6.1. Caracterización de la Muestra de Cabeza

La Determinación de la Gravedad Específica se realizó a partir de una muestra representativa de Cabeza del composito Maestro 02 por el método del picnómetro, los resultados obtenidos se presentan en la siguiente Tabla.

Tabla N° 3.6: Formación de compósitos Tramo – Bloque 02

Pesos (Kg)
62,53
131,68
90,56
19,16
327,30
260,43
66,54
4,21

Tabla N° 3.7: Resultado de la Gravedad Específica

Compósitos	Gravedad Especifica
Maestro 02	2,72

3.6.2. Caracterización Química

Tabla N° 3.8: Análisis químico ICP Compósitos Individuales - Bloque 01 (1/8)

Compósitos	Ag	Al	As	Ba	Be	Bi	Ca	Cd	Co
Compositos	Ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm
Compósito 01	0,90	6,58	<3	414,00	0,70	12,00	1,35	<1	11,00
Compósito 02	1,60	6,51	20,00	476,00	0,80	<5	0,94	<1	15,00
Compósito 03	1,00	6,47	6,00	441,00	0,70	<5	1,00	<1	12,00
Compósito 04	2,00	4,77	20,00	432,00	0,70	10,00	0,10	<1	14,00
Compósito 05	1,20	6,11	12,00	570,00	0,90	<5	0,69	<1	12,00
Compósito 06	0,90	6,34	10,00	509,00	0,80	<5	0,88	<1	17,00
Compósito 07	1,40	6,74	165,00	514,00	0,90	5,00	0,89	<1	14,00
Compósito 08	1,20	5,56	20,00	524,00	0,90	9,00	0,72	<1	17,00
Compósito 09	0,80	5,55	23,00	463,00	0,80	<5	0,60	<1	13,00
Compósito 10	1,00	7,68	54,00	581,00	0,90	<5	0,57	<1	15,00
Compósito 11	1,00	7,10	7,00	479,00	0,80	<5	0,88	<1	17,00
Compósito 12	1,10	5,50	4,00	530,00	0,80	6,00	0,57	<1	19,00
Compósito 13	1,00	6,65	6,00	677,00	1,50	5,00	0,64	<1	12,00
Compósito 14	1,30	5,49	<3	383,00	0,70	<5	1,69	<1	16,00
Compósito 15	1,10	7,28	<3	523,00	0,80	<5	2,27	<1	18,00
Compósito 16	1,00	7,60	7,00	524,00	1,10	<5	2,47	<1	16,00
Compósito 17	1,00	7,20	<3	559,00	0,80	7,00	1,94	<1	11,00
Compósito 18	1,00	7,87	4,00	807,00	0,60	<5	2,87	<1	14,00
Compósito 19	1,00	6,89	12,00	505,00	0,80	6,00	2,04	<1	14,00

Tabla Nº 3.9: Análisis químico ICP Compósitos Individuales – Bloque 01(2/8)

Compósitos	Cr	Cu	Fe	Ga	K	La	Mg	Mn	Mo
Compositos	Ppm	ppm	%	ppm	%	ppm	%	ppm	ppm
Compósito 01	377,00	3890,00	3,56	20,00	1,71	6,90	0,87	204,00	156,00
Compósito 02	369,00	4514,00	3,63	18,00	2,05	6,80	1,35	372,00	124,00
Compósito 03	359,00	3682,00	3,17	19,00	1,59	5,60	0,93	261,00	118,00
Compósito 04	389,00	4496,00	3,62	19,00	2,40	2,80	0,92	301,00	221,00
Compósito 05	374,00	3578,00	3,43	19,00	2,15	9,70	0,88	250,00	106,00
Compósito 06	340,00	3446,00	3,35	17,00	1,91	6,80	1,03	258,00	214,00
Compósito 07	259,00	4439,00	3,51	17,00	2,04	9,20	0,87	240,00	296,00
Compósito 08	345,00	3613,00	3,47	18,00	2,11	8,10	1,03	353,00	134,00

Compósito 09	277,00	4031,00	2,97	17,00	2,06	4,70	0,83	226,00	121,00
Compósito 10	436,00	3908,00	3,46	20,00	2,66	12,00	0,82	233,00	137,00
Compósito 11	269,00	4002,00	3,61	19,00	2,06	8,00	1,05	313,00	110,00
Compósito 12	495,00	3912,00	3,07	20,00	2,31	8,10	0,86	214,00	190,00
Compósito 13	229,00	3359,00	3,11	19,00	2,64	8,30	1,28	343,00	312,00
Compósito 14	315,00	3379,00	3,59	18,00	1,60	5,50	1,04	318,00	296,00
Compósito 15	199,00	3709,00	3,93	19,00	1,83	7,10	1,13	326,00	194,00
Compósito 16	326,00	3698,00	3,58	18,00	1,93	11,80	1,05	341,00	222,00
Compósito 17	305,00	3249,00	3,24	16,00	1,92	11,30	0,91	252,00	289,00
Compósito 18	284,00	4308,00	3,74	20,00	2,10	8,30	1,04	348,00	184,00

Tabla N^{o} 3.10: Análisis químico ICP Compósitos Individuales – Bloque 02(3/8)

Comméritos	Na	Nb	Ni	P	Pb	S	Sb	Sc	Sn
Compósitos	%	ppm	ppm	%	ppm	%	ppm	ppm	ppm
Compósito 01	1,83	<1	27,00	0,05	9,00	0,38	<5	8,30	<10
Compósito 02	0,94	2,00	28,00	0,04	12,00	1,91	10,00	9,10	<10
Compósito 03	1,09	<1	16,00	0,04	10,00	0,89	<5	7,80	<10
Compósito 04	0,27	4,00	38,00	0,04	7,00	1,12	<5	7,20	<10
Compósito 05	0,74	2,00	18,00	0,04	4,00	1,13	<5	8,30	<10
Compósito 06	0,93	2,00	21,00	0,05	4,00	1,44	6,00	8,30	<10
Compósito 07	0,86	<1	19,00	0,04	7,00	1,41	27,00	10,10	<10
Compósito 08	0,68	<1	26,00	0,05	6,00	1,51	<5	7,90	<10
Compósito 09	0,98	<1	20,00	0,04	4,00	1,17	<5	7,00	<10
Compósito 10	0,60	2,00	29,00	0,03	7,00	1,90	18,00	12,70	<10
Compósito 11	0,68	<1	20,00	0,04	4,00	1,42	6,00	13,60	<10
Compósito 12	0,72	3,00	31,00	0,04	10,00	1,41	<5	10,40	<10
Compósito 13	0,79	<1	23,00	0,04	21,00	0,90	<5	9,10	<10
Compósito 14	1,11	<1	18,00	0,04	4,00	1,79	<5	7,90	<10
Compósito 15	1,00	<1	14,00	0,05	12,00	2,05	<5	11,30	<10
Compósito 16	1,10	2,00	21,00	0,04	4,00	2,05	<5	10,80	<10
Compósito 17	1,29	<1	15,00	0,04	7,00	1,71	<5	8,70	<10
Compósito 18	1,42	2,00	14,00	0,05	3,00	1,66	<5	10,00	<10
Compósito 19	0,99	<1	19,00	0,05	4,00	1,76	15,00	11,20	<10

Tabla N° 3.11: Análisis químico ICP Compósitos Individuales – Bloque 02(4/8)

Compósitos	Sr	Ti	Ti	V	W	Y	Zn	Zr
Compositos	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm
Compósito 01	176,00	0,20	<2	117,00	<10	4,90	70,30	3,50
Compósito 02	118,00	0,16	<2	100,00	<10	5,50	94,40	3,80
Compósito 03	130,00	0,16	<2	100,00	<10	4,00	63,70	3,00
Compósito 04	28,60	0,21	<2	132,00	<10	1,60	68,60	3,50
Compósito 05	112,00	0,14	<2	96,00	<10	4,90	68,60	3,90
Compósito 06	158,00	0,14	<2	95,00	<10	4,80	71,60	3,60
Compósito 07	162,00	0,16	<2	101,00	<10	4,90	104,00	4,40

Compósito 08	111,00	0,14	<2	105,00	<10	4,10	131,00	3,50
Compósito 09	88,60	0,15	<2	99,00	<10	4,20	69,20	2,50
Compósito 10	98,90	0,15	<2	119,00	<10	5,80	81,80	6,40
Compósito 11	118,00	0,16	<2	118,00	<10	5,60	73,70	3,60
Compósito 12	101,00	0,17	<2	126,00	<10	4,10	64,20	4,00
Compósito 13	151,00	0,18	<2	123,00	<10	5,50	89,10	3,40
Compósito 14	167,00	0,15	<2	115,00	<10	4,50	62,10	3,70
Compósito 15	191,00	0,17	<2	115,00	<10	6,40	64,80	5,60
Compósito 16	225,00	0,16	<2	108,00	<10	7,40	70,50	4,90
Compósito 17	205,00	0,14	<2	100,00	<10	6,10	58,40	4,40
Compósito 18	241,00	0,19	<2	118,00	<10	6,80	76,00	4,60

Tabla N° 3.12: Análisis químico de compósitos Maestro

		Leyes Ensayadas									
Compósitos	Cu	CuSolH+	CuCN-	CuRes	Fe	Mo	Ag	Au			
	(%)	(%)	(%)	(%)	(%)	(ppm)	(g/t)	(g/t)			
Maestro 02	0,38	0,03	0,04	0,32	3,70	223	1,10	0,01			

Fuente: Elaboración propia

3.6.3. Análisis Químico de Cabeza - Adicionales

A solicitud del cliente se realizaron ensayos de cabeza adicionales, como parte del control en la formación de compósitos Tramo y Maestro de ambos bloques, los resultados se muestran en la siguiente tabla.

Análisis de Malla Valoradas muestra de cabeza

El análisis de malla valorada de cabeza se realizó a una muestra representativa, el cual fue molido a un grado de molienda de $60\,\%$ - m200 (P80 de 120 μ m). Seguidamente fue analizada granulométricamente, la curva de distribución se presenta en la siguiente Figura:

Figura Nº 3.2: Análisis Granulométrico de Cabeza – Maestro 01 (P80: 120 μm)

Tabla N° 3.13: Análisis de Malla Valorada de Cabeza – Muestra Maestro 02 (P80:120 $\mu m)$

Malla	1	Peso	Le	yes	Distri	bución
		1 650	Cu	Mo	Cu	Mo
Tyler	(um)	(%)	(%)	(ppm)	(%)	(%)
48	300	0,25	0,05	1487	0,04	1,82
65	212	1,17	0,10	612	0,21	3,47
100	150	8,01	0,17	247	3,66	9,59
150	106	15,64	0,25	157	10,49	11,91
200	75	14,73	0,33	178	13,10	12,71
270	53	12,40	0,41	216	13,81	12,99
325	44	4,49	0,44	253	5,32	5,51
-325	-44	43,31	0,46	200	53,28	42,00
Cabeza cal	Cabeza calculada 100,00		0,37	206	100,00	100,00
Cabeza ensayada			0,38	223		

Си Мо

50.0

30.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

Figura Nº 3.3: Distribución del contenido metálico - Maestro 01

Se observa que la distribución del contenido metálico para los elementos de interés Cu y Mo son muy parecidos, reportándose en mayor proporción en la malla más fina.

3.7. TRATAMIENTO ESTADÍSTICO

En el trabajo de investigación realizada no se hizo uso de la estadística diferencial e inferencial debido a que es un trabajo netamente técnico, se ha obtenido los datos de un resultado técnico y se ha evaluado mediante el análisis deductivo inductivo.

3.8. SELECCIÓN, VALIDACIÓN Y CONFIABILIDAD DE LOS INSTRUMENTOS DE INVESTIGACIÓN

Los instrumentos de investigación que han sido utilizados son equipos, materiales y reactivos netamente operativos el cual en su experimentación se ha tenido que recoger los datos para ser analizados e interpretados, cambiando de circuito, cambiando de dosificación de reactivos se han obtenido nuevos resultados que fueron analizados e interpretados dando a conocer en cada paso en el presente informe. El trabajo de investigación realizada es validado por la Gerencia de

operaciones y es muy confiable porque se ha trabajado en las instalaciones del laboratorio de Cerro SAC, Parajsha.

3.9. ORIENTACIÓN ÉTICA

Mediante deseo expresar que los datos obtenidos en la presente investigación han sido recopilados en el laboratorio de la planta concentradora de la Empresa administradora Cerro SAC, concesionaria de Volcan Compañía Minera en Cerro de Pasco, después de haber recibido las muestras del departamento de Geología para tratar minerales de cobre – molibdeno. Asimismo, debo de manifestar que la bibliografía utilizada es debidamente identificada de sus autores.

CAPÍTULO IV

RESULTADOS Y DISCUSIÓN

4.1. DESCRIPCIÓN DEL TRABAJO DE CAMPO

La unidad operativa Cerro de Pasco se encuentra en el departamento de Pasco, a aproximadamente 295 kilómetros de Lima y con acceso a través de la carretera central.

Mina Subterránea Paragsha: Durante el 2017, la mina Paragsha estuvo en suspensión temporal. Cabe resaltar que se mantiene en condiciones operativas y que, con la implementación del programa de eficiencia energética y los mejores controles de costos, se ha logrado disminuir los costos de energía relacionados a la ventilación, aire comprimido y bombeo de la mina. Mineral Stockpiles del Tajo Raúl Rojas Durante el año 2017, se han tratado stockpiles de mineral marginal provenientes de la explotación del tajo Raúl Rojas de años anteriores.

RECORD METALOGISTICS

STATE OF STATE OF

Figura N° 4.1: Ubicación de las principales propiedades mineras de Volcan Cía. Minera

Fuente: Boletín de Cerro SAC

En el año, se culminó la construcción del circuito sorting, mediante el cual se selecciona el mineral con mejor ley antes de tratarse en la planta concentradora. Planta San Expedito/Paragsha Durante el 2017, se continuaron utilizando los circuitos de chancado, molienda y filtrado de planta Paragsha, el circuito de zinc y el circuito de plomo en planta San Expedito. Las plantas Paragsha-San Expedito operaron en forma continua, con tratamiento de mineral marginal polimetálico del tajo Raúl Rojas de Cerro de Pasco. A lo largo del año, se realizaron cambios operativos para incrementar producción y mejorar la metalurgia de los concentrados. En el área de chancado se optimizó la clasificación del marginal con alta humedad, haciendo posible la continuidad de las operaciones. En el tercer trimestre del año se terminó la construcción del circuito de sorting y se inició el

proceso de pruebas para el tratamiento del marginal en el 2018. Esto, aunado a los proyectos de optimización de chancado secundario/terciario, molienda y flotación significarán una mejora de la calidad de las leyes, mejores recuperaciones y un mayor volumen de concentrados.

4.2. PRESENTACIÓN, ANÁLISIS E INTERPRETACIÓN DE RESULTADOS

4.2.1. Moliendabilidad

Para la determinación del tiempo de molienda del compósito Maestro 02 y compósitos Tramo, se realizaron 4 moliendas a diferentes tiempos (5, 10, 15 y 20 minutos), los productos obtenidos fueron analizados granulométricamente para la elaboración de la curva de moliendabilidad. Las pruebas de molienda se efectuaron en un molino de bolas estándar de laboratorio de 6,5" x 9" a un porcentaje de sólidos de 66.6 %. Las condiciones de operación fueron las siguientes:

- ✓ 1 Kg de mineral
- ✓ 0,5 litros de agua
- ✓ Tiempo de molienda: 5, 10, 15 y 20 minutos.
- ✓ 10.80 Kg de bolas (68% de 1" Ø y 32% de 1,5" Ø)
 Los resultados de P80 y porcentajes de mallas para cada compósito se presentan a continuación:

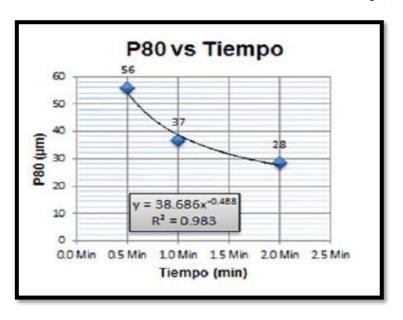
Tabla N° 4.1.: Resumen de Tiempo de molienda - Bloque 02

		Resumen	
Compósitos	%-m200	Tiempo	P80-
		(min)	(um)
	50,0	11,7	167
Maestro 02	60,0	17,0	120
Widestro 02	65,0	20,1	104
	70,0	23,4	90
	50,0	11,8	168
Tramo 1	60,0	17,2	121
Tramo 1	65,0	20,3	104
	70,0	23,6	91
	50,0	11,6	171
Tramo 2	60,0	16,6	122
Traillo 2	65,0	19,4	105
	70,0	22,4	92
	50,0	12,5	164
Tramo 3	60,0	16,9	123
Traillo 5	65,0	19,0	109
	70,0	21,2	99
	50,0	11,1	178
Tramo 4	60,0	16,0	125
Traillo 4	65,0	18,8	107
	70,0	21,8	96
	50,0	13,1	162
T 5	60,0	17,5	121
Tramo 5	65,0	19,8	108
	70,0	22,0	97
	50,0	11,0	170
Trom o 6	60,0	15,8	123
Tramo 6	65,0	18,6	106
	70,0	21,6	93
	50,0	11,7	167
T 7	60,0	17,0	120
Tramo 7	65,0	20,1	104

4.2.2. Remolienda del Concentrado Rougher Bulk

Para determinar el tiempo necesario y llegar a un determinado grado de remolienda (P80), se realizaron 3 remoliendas al concentrado rougher Bulk Cu- Mo del compósito Maestro 02 a distintos intervalos de tiempo (0,5, 1 y

2 minutos), los productos obtenidos fueron analizados granulométricamente para la elaboración de la curva de moliendabilidad.


Tabla N° 4.2: Resumen del análisis granulométrico (remolienda Conc. Ro Bulk)

Tiempo	%-m450	%-m450 %-m500		P80
Minutos	32 μm	25μm	20 μm	(µm)
0,5 Min	64,9	60,2	52,5	56
1,9 Min	74,5	68,7	62,4	37
2,0 Min	83,5	76,6	66,8	28

Fuente: Elaboración propia

Empleando los valores de la tabla anterior se elabora la curva de molienda, en base al cual se determina el tiempo necesario a las condiciones especificadas, para obtener un producto con P80 correspondiente a los valores de malla 635.

Figura Nº 4.2: Gráfico de la curva de remolienda del Conc. Ro (P80 vs Tiempo) - Maestro 01

Fuente: Elaboración propia

Los resultados obtenidos fueron:

Para obtener un producto con P80 = $55 \mu m$, el concentrado Bulk Cu-Mo se debe moler por 0.49 minutos obteniendo un grado de 53 % -m635.

4.3. PRUEBA DE HIPÓTESIS

4.3.1. Evaluación a nivel Rougher/Scavenger

La evaluación de las pruebas de flotación Rougher/Scavenger considera las siguientes variables:

- ✓ Reactivos y su dosificación (Colector primario)
- ✓ Grado de Molienda (P80 y % -m200)
- √ % Solidos en el proceso
- ✓ pH de flotación.

El esquema de flotación evaluado fue el siguiente:

Mineral
100% -m10 Ty

Mollenda
P80= 120 µm

Rougher

Rougher

Rougher

Relave

Conc. Ro

Conc. Scv

Figura Nº 4.3: Esquema de Flotación Rougher/Scavenger

Fuente: Elaboración propia

4.3.2. Evaluación de Reactivos y su Dosificación

Se realizaron diferentes pruebas de flotación Rougher/Scavenger evaluando inicialmente la configuración de reactivos; dentro de los colectores primarios específicos para Cu/Mo evaluados tenemos el AP-3302 y TC-123, dentro de los espumantes tenemos el MIBC y OROPREP 549,

manteniendo constante la dosificación del Diesel (Petróleo) como colector primario de Mo, pH en la etapa Rougher/Scavenger (9.0) y a un grado de molienda de 60 % -m200 (P80=120 μm).

Tabla N° 4.3: Resumen de condiciones de flotación - Evaluación de Reactivos

Prueba		do de ienda	pН	Etapa		Dosi	ficación de	reactivos(g/t)	
	%m200	P80(µm)			Cal, Ind,	A-3302	TC-123	Diesel	MIBC	OR-549
			8,6	Molienda	200	7,5	-	7,5	-	-
P01	01 60 12	120	9,0	Acond.	84	-	-	-	10	-
POI	00	120	9,0	Flot. Ro	-	-	-	-	-	-
			9,0	Flot. Scv	29	2,5	-	-	10	-
			8,6	Molienda	200	=	7,5	7,5	-	-
D02	<i>c</i> 0	120	9,0	Acond.	73,5	-	-	-	10	-
P02	60	120	9,0	Flot.Ro	-	-	-	-	-	-
			9,0	Flot. Scv	28	-	2,5	-	10	-
		120	8,6	Molienda	200	-	10	7,5	-	-
P03	60		9,0	Acond.	60,5	-	-	-	10	-
P03	00	120	9,0	Flot. Ro	-	-	-	-	-	-
			9,0	Flot. Scv	27	ı	2,5	-	10	-
			8,6	Molienda	200	=	7,5	7,5	-	-
P04	60	120	9,0	Acond.	78,5	-	-	-	-	7
P04	00	120	9,0	Flot. Ro	-	-	-	-	-	-
			9,0	Flot. Scv	23	-	2,5	-	-	3
			8,6	Molienda	200	-	5	7,5	-	-
D05	60	120	9,0	Acond.	95,5	-	-	-	-	7
P05	60	120	9,0	Flot. Ro	-	-	-	-	-	-
			9,0	Flot. Scv	27,5	=	2,5	-	-	3

Fuente: Elaboración propia

Los resultados obtenidos en las pruebas de flotación a nivel Rougher/Scavenger de evaluación se presentan en la siguiente Tabla.

Tabla N° 4.4: Resumen de resultados - Evaluación de Reactivos

		Peso		Leyes		Recuperación (%)		
Prueba	Productos	Peso	%		(ppm)	Kecuperación ((70)
		(%)	Cu	Fe	Mo	Cu	Fe	Mo
	Cc. Ro. Bulk	2,73	12,14	25,62	6638	88,18	17,96	88,22
P01	Cc. Scv. Bulk	1,85	0,49	6,19	224	2,42	2,94	2,02
	Cc. Ro + Scv	4,57	7,44	17,78	4049	90,59	2,90	90,23
P02	Cc. Ro. Bulk	2,71	11,84	21,32	6656	90,27	15,24	90,83

	Cc. Scv. Bulk	2,22	0,44	17,34	177	2,77	10,17	1,98
	Cc. Ro + Scv	4,93	6,70	19,53	3736	93,04	25,41	92,81
	Cc. Ro. Bulk	2,91	11,29	20,16	6249	90,55	14,80	89,75
P03	Cc. Scv. Bulk	2,50	0,35	11,70	150	2,41	7,38	1,85
	Cc. Ro + Scv	5,41	6,23	16,25	3431	92,97	22,17	91,60
	Cc. Ro. Bulk	2,85	11,47	18,04	6572	90,94	12,65	88,72
P04	Cc. Scv. Bulk	2,33	0,34	13,56	209	2,21	7,76	2,30
	Cc. Ro + Scv	5,18	6,47	16,03	3713	93,15	20,41	91,02
	Cc. Ro. Bulk	2,68	12,38	15,89	6517	90,47	12,07	85,14
P05	Cc. Scv. Bulk	2,33	0,36	8,41	168	2,29	5,56	1,91
	Cc. Ro + Scv	5,02	6,79	12,41	3564	92,76	17,63	87,05

Fuente: Elaboración propia

Los resultados de las pruebas de flotación a nivel Rougher/Scavenger, indican que las recuperaciones de Cu se encuentran entre 90,59 % y 93,15 % y con respecto al Mo entre 87,05 % y 92,81 %, apreciándose que el uso del colector TC-123 tiene los índices de recuperación más altos en comparación con el colector AP-3302. De acuerdo a la evaluación integral (recuperación metálica y másica) en función al comportamiento del Cu, se concluye que la mejor performance metalúrgica se presenta con las condiciones de la prueba P05 ya que se obtuvo una recuperación en la etapa Rougher con respecto al Cu y Mo de 90,47 % y 85,14 % respectivamente, con la posibilidad de controlar el desplazamiento del Fe en las etapas Cleaner.

4.3.3. Evaluación del Grado de Molienda

Definido el colector (TC-123), el espumante (Oroprep 549) y sus dosificaciones, se evaluó el efecto del grado de molienda manteniendo constante los parámetros de la prueba P05, tal como se indica en la siguiente tabla.

Tabla Nº 4.5: Resumen de condiciones de flotación – Evaluación de Grado de Molienda

Prueba		Grado de Molienda		Etapa	Dosificación de reactivos(g/t)				
	%m200	P80(µm)	pН		Cal. Ind.	TC-123	Diesel	OR-549	
			8,6	Molienda	200	5	7,5	-	
P06	52	150	9,0	Acond.	78,5	-	-	7	
P06	53	150	9,0	Flot. Ro	-	-	-	-	
			9,0	Flot. Scv	34,5	2,5	-	3	
			8,6	Molienda	200	5	7,5	-	
P07	70	00	9,0	Acond.	105	-	-	7	
P07	70	90	9,0	Flot.Ro	-	-	-	-	
			9,0	Flot. Scv	19	2,5	-	3	
			8,6	Molienda	200	5	7,5	-	
P08	D00	104	9,0	Acond.	105	-	-	7	
P08 65	0.5	104	9,0	Flot. Ro	-	-	-	-	
			9,0	Flot. Scv	19	2,5	=	3	

Los resultados obtenidos en las pruebas de evaluación del grado de molienda (P80) a nivel Rougher/Scavenger se presentan en la siguiente Tabla.

Tabla N° 4.6: Resumen de resultados - Evaluación de Grado de Molienda

		Daga		Leyes		Recuperación (%)		
Prueba	Productos	Peso		%	(ppm)			
		(%)	Cu	Fe	Mo	Cu	Fe	Mo
	Cc. Ro. Bulk	2,34	14,27	17,66	6793	88,68	11,37	81,34
P06	Cc. Scv. Bulk	1,85	0,64	12,75	415	3,17	6,50	3,94
	Cc. Ro + Scv	4,19	8,25	15,49	3974	91,85	17,87	85,28
	Cc. Ro. Bulk	2,71	12,41	16,59	6416	90,59	12,15	87,10
P07	Cc. Scv. Bulk	2,13	0,48	11,98	406	2,75	6,88	4,32
	Cc. Ro + Scv	4,84	7,17	14,56	3775	93,34	19,03	91,43
	Cc. Ro. Bulk	2,54	13,70	20,30	7234	90,99	14,21	87,41
P08	Cc. Scv. Bulk	2,12	0,50	14,95	351	2,79	8,71	3,53
	Cc. Ro + Scv	4,66	7,71	17,87	4107	93,77	22,92	90,94

Fuente: Elaboración propia

La variación del P80 se efectuó entre 90, 104 y 150 μm, observando que la recuperación Ro/Scv respecto al Cu aumenta mientras la molienda sea más fina, paralelamente la ley de Fe en el Cc. Ro/Scv también aumenta según el grado de molienda. Por lo tanto, se optó realizar las siguientes evaluaciones

a nivel Rougher/Scavenger manteniendo constante el grado de molienda a 65 % -m200 por dar un equilibrio entre el grado de liberación y la recuperación de los elementos valiosos.

4.3.4. Evaluación del pH en Flotación

Definido los parámetros con respecto a los colectores, espumante y grado de liberación, se procedió a evaluar el efecto del pH de flotación a nivel Rougher/Scavenger, el resumen de las condiciones se presenta a continuación:

Tabla N° 4.7: Resumen de condiciones de flotación – Evaluación de Ph

Prueba	Grado de Prueba Molienda		pН	Etapa	Dosificación de reactivos(g/t)				
	%m200	P80(µm)	·		Cal. Ind.	TC-123	Diesel	OR-549	
			8,6	Molienda	200,0	5,0	7,5	-	
P08	52	150	9,0	Acond.	105	-	-	7,0	
P08	53	130	9,0	Flot. Ro	-	-	-	-	
			9,0	Flot. Scv	19,0	2,5	-	3,0	
			8,6	Molienda	200,0	5,0	7,5	-	
D00	70	00	9,0	Acond.	105,0	-	-	7,0	
P09	70	90	9,0	Flot.Ro	-	-	-	-	
			9,0	Flot. Scv	19,0	2,5	-	3,0	
			8,6	Molienda	200,0	5,0	7,5	-	
D10	65	104	9,0	Acond.	105,0	-	-	7,0	
P10	65	104	9,0	Flot. Ro	-		-	-	
			9,0	Flot. Scv	19,0	2,5	-	3,0	

Fuente: Elaboración propia

Los resultados obtenidos de las pruebas de flotación Rougher/Scavenger de evaluación de pH se presentan en la siguiente Tabla.

Tabla N° 4.8: Resumen de resultados - Evaluación de pH

		Peso		Leyes		Recuperación (%)			
Prueba	Productos	reso	%		(ppm)		Recuperación (78)		
		(%)	Cu	Fe	Mo	Cu	Fe	Mo	
	Cc. Ro. Bulk	2,54	13,70	20,30	7234	90,99	14,21	87,41	
P08	Cc. Scv. Bulk	2,12	0,50	14,95	351	2,79	8,71	3,53	
	Cc. Ro + Scv	4,66	7,71	17,87	4107	93,77	22,92	90,94	
	Cc. Ro. Bulk	3,02	10,80	21,03	6058	88,54	16,73	88,66	
P09	Cc. Scv. Bulk	2,20	0,63	14,15	331	3,74	8,20	3,53	
	Cc. Ro + Scv	5,22	6,51	18,13	3644	92,28	24,93	92,19	

	Cc. Ro. Bulk	2,70	12,55	20,38	6905	90,95	14,92	87,77
P10	Cc. Scv. Bulk	2,15	0,38	6,16	192	2,16	3,59	1,94
	Cc. Ro + Scv	4,85	7,15	14,08	3929	93,11	18,51	89,71

De acuerdo a los resultados obtenidos es apreciable que la recuperación del Cu y Mo no se ve afectada por la variación del pH en la flotación a nivel Rougher; mientras que efecto es más notorio en la recuperación y ley del Fe; ya que la flotabilidad del Fe aumenta a un pH de 8, elevando la ley hasta 21.03 % y estas disminuyen notoriamente a un pH de 10 ensayando 20.38 % a nivel Rougher. Por lo consiguiente se determina trabajar a un pH de flotación rougher de 9.0, siendo innecesario trabajar a pH más alto ya que en las etapas de limpieza el pH de trabajo sería entre 10.5 y 12.0 controlando el desplazamiento de Fe al concentrado final.

4.3.5. Evaluación del porcentaje de Sólidos

A continuación, evaluamos el efecto del % sólidos de flotación manteniendo constante las otras variables como el grado de molienda, pH de flotación y la dosificación de colectores y espumante:

Tabla Nº 4.9: Resumen de condiciones de flotación - Evaluación de % Sólidos

Prueba		do de ienda	Sólidos	Etapa	Dosi	ficación de	reactivos(§	g/t)
	%m200	P80(µm)	(%)	•	Cal. Ind.	TC-123	Diesel	OR-549
				Molienda	200	5,0	7,5	-
P08	65	104	22	Acond.	105	-	-	7
108	63	104	33	Flot. Ro	-	-	-	-
			Flot. Scv	19	2,5	-	3	
			40	Molienda	200	5,0	7,5	-
P11	65	104		Acond.	105	-	-	7
PII	63	104		Flot.Ro	-	-	-	-
				Flot. Scv	19	2,5	-	3
				Molienda	200,0	5,0	7,5	-
D10	D10	4.7	Acond.	105,0	-	-	7,0	
P10 65	104	45	Flot. Ro	-	-	-	-	
			Flot. Scv	19,0	2,5	_	3,0	

Los resultados obtenidos en las pruebas de evaluación del % de sólidos se presentan en la siguiente Tabla.

Tabla N° 4.10: Resumen de resultados - Evaluación de % Sólidos

		Peso		Leyes		Recuperación (%)			
Prueba	Productos	Peso	%		(ppm)	Recuperación (78)			
		(%)	Cu	Fe	Mo	Cu	Fe	Mo	
	Cc. Ro. Bulk	2,54	13,70	20,30	7234	90,99	14,21	87,41	
P08	Cc. Scv. Bulk	2,12	0,50	14,95	351	2,79	8,71	3,53	
	Cc. Ro + Scv	4,66	7,71	17,87	4107	93,77	22,92	90,94	
	Cc. Ro. Bulk	3,17	10,35	23,44	5384	90,87	18,49	81,64	
P11	Cc. Scv. Bulk	2,96	0,35	8,52	313	2,88	6,26	4,43	
	Cc. Ro + Scv	6,12	5,52	16,24	2937	93,76	24,75	86,07	
	Cc. Ro. Bulk	2,98	9,90	19,85	5511	88,39	15,39	80,46	
P12	Cc. Scv. Bulk	3,42	0,31	11,08	181	3,19	9,85	3,03	
	Cc. Ro + Scv	6,40	4,78	15,17	2664	91,59	25,24	83,49	

Fuente: Elaboración propia

Los resultados obtenidos en la evaluación del % de sólidos en la flotación indican que a medida se incrementa el % de sólidos disminuye la ley de 13,70 % hasta 9,90 % para el Cu y de 7234 ppm hasta 5511 ppm para el Mo a nivel Rougher, por otra parte, se observa una caída en la recuperación de 93,77 % a 91,59 % para el Cu y de 90,94 % a 83,49 % para el Mo según aumenta el % de sólidos. Por lo tanto, se determinó trabajar a un % de solidos de 33 % ya que refleja un equilibrio entre la calidad del concentrado Rougher y la recuperación en este nivel.

4.3.6. Cinética de Flotación Rougher

El tiempo de flotación Rougher fue evaluado en función a la flotabilidad del Cu y el Mo cuyo fin es determinar el tiempo óptimo de flotación, obteniendo concentrados a determinados tiempos (1, 2, 4, 8, 16 y 24 minutos). De las pruebas anteriores se ha determinado que las condiciones óptimas de trabajo son las que se presenta en la siguiente Tabla.

Tabla N° 4.11: Condiciones para la prueba de flotación cinética Rougher

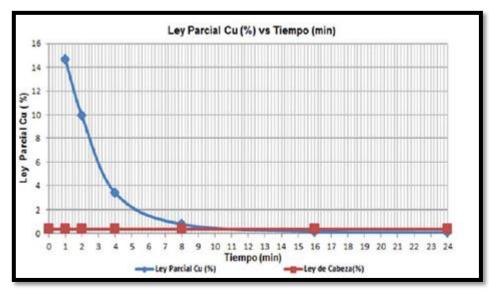

Código de Pruel	oa: P13			Fecha:	09/07/2018	3			
Peso Alimento(g): 2000			Vol. Ce	elda(cc): 600	0			
% Sólidos Molienda: 66 % Sólidos Flot.: 33									
Grado de Molienda: 65%-m200 P ₈₀ (μm): 104									
Etono	Tiempo	"II		Consumo de	reactivos(g/t)				
Etapa	(min)	pН	Tc-123	Diesel	Cal	Or-549			
Molienda	20,0	_	5,0	7,5	200,0	_			
1,101101100	=0,0		5,0	1,5	200,0				
Flot. Ro Bulk	24,0	9,0	-	-	109,0	7,0			

Tabla N° 4.12: Balance metalúrgico – Cinética Rougher

	Peso		Leyes		Door		(0/)	Leg	y Acumula	ada
Productos	reso		%	(ppm)	Recuperación (%)			(%)		(ppm)
	(%)	Cu	Fe	Mo	Cu	Fe	Mo	Cu	Fe	Mo
Conc. Ro Cu(1 min)	1,70	14,65	28,40	8354	6787	13,03	64,20	14,65	28,40	8354
Conc. Ro Cu(2 min)	0,67	9,91	22,80	5469	18,01	4,11	16,49	13,31	26,82	7541
Conc. Ro Cu(4 min)	0,47	3,40	13,81	1862	4,36	1,76	3,97	11,67	24,66	6598
Conc. Ro Cu(8 min)	0,68	0,79	6,61	399	1,47	1,22	1,23	9,56	21,16	5397
Conc. Ro Cu(16 min)	1,83	0,16	3,52	81	0,81	1,74	0,67	6,34	15,13	3578
Conc. Ro Cu(24 min)	1,70	0,08	3,11	51	0,37	1,43	0,39	4,83	12,22	2726
Conc. Ro Cu Total	7,04	4,83	12,22	273	92,89	23,228	86,94	1	-	-
Relave final	92,96	0,03	3,05	31	7,11	76,72	13,06	-	-	-
Cab. Calculada	100,00	0,37	3,70	221	100,00	100,00	100,00	-	-	-
Cabeza Ensayao	la	0,38	3,70	223	-	-	-	=	-	-

Fuente: Elaboración propia

Figura Nº 4.4: Cinética Rougher - Leyes parciales (Cu) vs ley de cabeza (Cu)

El tiempo óptimo de flotación fue determinado en la intersección de la curva de ley parcial de Cu y ley de cabeza de Cu, siendo en promedio 8 minutos.

Recuperación Acumulada (%) vs Tiempo (min)

80

80

80

80

80

90

10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

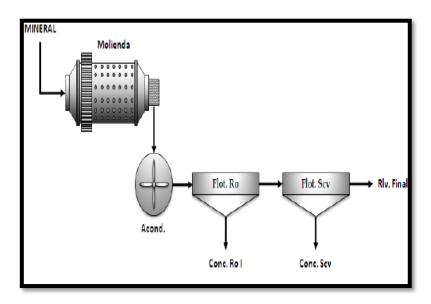
Tiempo (min)

Rec. Acum. Cu (N)

Rec. Acum. Fe (%)

Rec. Acum. Mo (%)

Figura Nº 4.5: Cinética Rougher - Recuperación Acumulada vs Tiempo


Fuente: Elaboración propia

La máxima recuperación de Cu y Mo obtenida hasta el minuto 24 de flotación es de 92,89 % y 86,94 % respectivamente, con leyes acumuladas de 4,83 % para el Cu y 273 ppm para el Mo.

4.3.7. Rougher de Confirmación

Una vez evaluados las condiciones y el tiempo de flotación óptimo, se realizó una prueba de confirmación de resultados; el esquema considerado consiste en una etapa de flotación Rougher y una etapa de flotación Scavenger.

Figura Nº 4.6: Esquema de Flotación Rougher/Scavenger

El resumen de las condiciones y resultados se presentan en las siguientes tablas.

Tabla N° 4.13: Condiciones de Flotación – P14

Código de Prueba:	P14			F	Fecha:	11/07/2018				
Peso Alimento(g):	2000				Vol. Celda(d	ec): 6000				
% Sólidos Molienda:	66,6				% Sólidos I	Flot.: 33				
Grado de Molienda:	65%-m200]	$P_{80}(\mu m)$:	104				
Etapa Tiempo pH Consumo de reactivos(g/t)										
ьцара	(min)	рп	Cal. Ind	Tc-123	Diesel	Or-549	-			
Molienda	20,0	8,4	200,0	5,0	7,5	-	-			
Acond.	5,0	9,0	122,0	-	ı	7,0	ı			
Flot. Rougher	8,0	9,0	-	-	-	-	-			
Acond. Scv	2,0	9,0	36,0	2,5	-	3,0	-			
Flot. Scavenger	4,0	9,0	-	-	-	-	ı			
Total	39,0	-	358,0	7,5	7,5	10,0	-			

Fuente: Elaboración propia

Tabla N° 4.14: Balance Metalúrgico – P14

	Peso		Leyes		Door	unorogión	(0/.)	
Productos	reso	%		(ppm)	Recuperación (%)			
	(%)	Cu	Fe	Mo	Cu	Fe	Mo	
Conc. Ro Bulk	3,26	11,03	17,20	6168	92,64	14,89	89.91	
Conc. Scv. Bulk	1,89	0,31	15,35	239	1,49	7,70	2.02	
Conc. Ro + Scv	5,15	7,09	16,52	3992	94,13	22,59	91.94	
Relave final	94,85	0,02	3,07	19	5,87	77,41	8.06	
Cab. Calculada	100,00	0,39	3,76	223	100,00 100,00		100.00	
223Cabeza Ensaya	ada	0,38	3,70	223				

De acuerdo a los resultados se obtuvo recuperaciones para el Cu y Mo de 94,13 % y 91,94 % a nivel Rougher /Scavenger respectivamente, teniendo un desplazamiento de Fe del orden de 17,20 % a nivel Rougher, con calidad que ensayan 11,03 % en Cu y 6168 ppm en Mo.

4.3.8. Flotación Rougher /Scavenger (Adicional)

Por indicaciones del cliente, se realizó una prueba a nivel Rougher/Scavenger con la finalidad de evaluar la interacción del colector AP-3302 y el espumante MIBC, disminuyendo la dosificación del Diesel (de 7g/t a 5 g/t) a un grado de molienda de 65 % -m200 (P80=104 μ m).

Las condiciones y resultados se presentan en las siguientes tablas.

Tabla N° 4.15: Condiciones de Flotación – P16

Código de Prueba:	P16			Fe	echa: 1	6/07/2018				
Peso Alimento(g):	2000				Vol. Celda(o	ec): 6000				
% Sólidos Molienda:	66,6				% Sólidos l	Flot.: 33				
Grado de Molienda:	65%-m200]	P ₈₀ (μm):	104				
Etapa Tiempo pH Consumo de reactivos(g/t)										
Етара	(min)	рн	Cal. Ind	Tc-123	Diesel	Or-549	-			
Molienda	20,0	8,4	200,0	5,0	5,0	-	ı			
Acond.	5,0	9,0	108,0	-	1	10,0	ı			
Flot. Rougher	4,0	9,0	-	-	1	-	ı			
Acond. Scv	2,0	9,0	36,0	2,5	1	10,0	ı			
Flot. Scavenger	6,0	9,0	-	-	-	-	-			
Total	37,0	-	344,0	7,5	5,0	20,0	-			

Fuente: Elaboración propia

Tabla N° 4.16: Balance Metalúrgico – P16

	Peso		Leyes		Recuperación (%)			
Productos	reso	%		(ppm)		uperacion	peración (70)	
	(%)	Cu	Fe	Mo	Cu	Fe	Mo	
Conc. Ro Bulk	2,19	14,57	22,65	8559	90,61	13,24	89.79	
Conc. Scv. Bulk	1,55	0,51	5,67	378	2,27	2,36	2.82	
Conc. Ro + Scv	3,74	8,73	15,60	5159	92,88	15,60	92.61	
Relave final	96,26	0,03	3,28	16	5 7,12 84		7.39	
Cab. Calculada	100,00	0,35	,35 3,74 208 100,00		100,00	100.00		
223Cabeza Ensayada		0,38	3,70	223				

De acuerdo a los resultados se obtuvo recuperaciones para el Cu y Mo de 92,88 % y 92,61 % a nivel Rougher /Scavenger respectivamente, teniendo un desplazamiento de Fe del orden de 22,65 % a nivel Rougher, con calidades que ensayan 14,57 % en Cu y 8559 ppm en Mo. Por lo consiguiente la interacción AP-3302/MIBC tiene una mejor selectividad por el Cu y Mo, esto se refleja en el incremento de la calidad a nivel Rougher comparado con el TC-123/OROPREP 549, pero con recuperaciones ligeramente menores.

4.3.9. Batch con 02 etapas Cleaner

Se evaluaron diferentes condiciones de flotación con la finalidad de obtener un concentrado de Cu/Mo de buen grado y una máxima recuperación posible. Las variables evaluadas son las siguientes.

- ✓ Variación en el grado de molienda primaria.
- ✓ Remolienda del concentrado Rougher (con y sin remolienda).
- ✓ Etapa Cleaner/Scavenger para los Medios I (con la finalidad de evacuar la mayor cantidad de pirita e insolubles flotado en la etapa Rougher).

El esquema de flotación utilizado fue el siguiente:

Medios II

Conc. Cu/Mo

Rougher

Scavenger

Riv. Final

Conc. Scv

Remoisenda

Conc. CL- Scv

Figura Nº 4.7: Esquema de Flotación Batch con 2 Etapas de Limpieza

Flotación Batch (Variación del grado de molienda primaria)

Por indicación del cliente esta prueba se realizó a una molienda primaria a 65~% -m200 (104 µm), manteniéndose constante las condiciones en la flotación a nivel rougher (dosificación de reactivos, tiempo de acondicionamiento y tiempo de flotación), se incluyó una etapa Cleaner/Scavenger para los medios I mientras que en las etapas Cleaner se trabajó a un pH de 10.

Tabla Nº 4.17: Condiciones de Flotación - P17

P17 Código de Prueba: 18/07/2018 Fecha: Peso Alimento(g): 2000 Grado de Remolienda: % Sólidos Molienda: 66.0 P80 Remolienda (µm): Grado de Molienda: 65% - m200 Vol. Celda(cc): 6000 104 % Sólidos Flot.: $P_{80} (\mu m)$: 33 Presión Consumo de reactivos(g/t) Flujo Tiempo Aire Etapa рH **RPM** Aire **Diesel** (min) Ap-3302 MICB Cal. Ind (psi) (L/min) 5,0 Molienda 20,0 200,0 5,0 -Acond. Ro 5,0 9,0 750,0 120,0 10,0 _ 15,0 Flot. Ro 8,0 9,0 750,0 15,0 2,5 Acond. Scv 2,0 9,0 750,0 -10,0 15,0 Flot. Scv 4,0 9,0 750,0 15,0 Acond. CL 01 1,0 10,0 600,0 16,0 15,0 Flot. CL 01 5,0 10,0 600,0 5,0 1,0 Acond. CL - Scv 1,0 9,4 600,0 2,0 15,0 Flot.. CL - Scv 6,0 9,4 600,0 5,0 Acond. CL 02 1,0 10,0 600,0 -

Fuente: Elaboración propia

15,0

Flot. CL 02

Total

2,5

55,5

10,0

600,0

Los resultados obtenidos en esta prueba de flotación tipo Batch se presentan en la siguiente Tabla.

5,0

8,5

22.0

5,0

336.0

Tabla N°4.18: Balance Metalúrgico – P17

	Daga		Leyes		R	ecuperació	ón
Productos	Peso		%	(ppm)		(%)	
	(%)	Cu	Fe	Mo	Cu	Fe	Mo
Conc. Cu-Mo	0,69	31,90	27,09	11857	62,19	4,77	40.54
Medios II	0,38	13,15	23,85	14109	14,03	2,30	26.41
Conc. CL-Scv	0,27	12,79	19,15	8017	9,65	1,31	10.60
Rlv-Cl-Scv	1,43	1,39	11,12	1397	5,67	4,09	9.97
Medios I	1,70	3,18	12,38	2432	15,32	5,39	20.57
Conc. Ro	2,76	11,68	17,60	6365	91,54	12,47	87.51
Conc. Scv	1,36	0,36	4,96	221	1,37	1,73	1.49
Conc. Ro + Scv	4,12	7,94	13,43	4339	92,91	14,20	89.01
Relave Scv	95,88	0,03	3,48	23	7,09	85,80	10.99
Cab. Calculada	100,00	0,35	3,89	201	100,00	100,00	100.00
Cabeza Ensayada		0,38	3,70	223			

Fuente: Elaboración propia

La recuperación de Cobre en el concentrado final es del orden de 62,19%,
 con una calidad que ensaya 31,90 %

- La recuperación de Molibdeno en el concentrado final es del orden de 40,54 %, con una calidad que ensaya 11857 ppm
- El hierro el principal contamínate se presenta en el orden de 4,77 % con una ley de 27,09 %
- Comparando las leyes ensayadas con respecto al Cu y Fe en el concentrado final se deduce que la mayor aportación de Fe es dada por los minerales de Cu como la calcopirita y bornita.

Tabla N° 4.19: Condiciones de Flotación – P18

Fecha: Código de Prueba: P18 21/07/2018 Peso Alimento(g): 2000 Grado de Remolienda: % Sólidos Molienda: 66.0 P80 Remolienda (µm): Grado de Molienda: 60% - m200 Vol. Celda(cc): 6000 P_{80} (um): 120 % Sólidos Flot.:

1 80 (μπ).	120				70 SUNGOS I 1	Ot	33		
	Tiempo			Presión	Flujo	C	onsumo de r	eactivos(g/	t)
Etapa	(min)	pН	RPM	Aire (psi)	Aire (L/min)	Cal. Ind	Ap-3302	MICB	Diesel
Molienda	17,1	-	-	-	-	200,0	5,0	-	5,0
Acond. Ro	5,0	9,0	750,0	-	-	115,0	-	10,0	-
Flot. Ro	8,0	9,0	750,0	15,0	15,0	-	-	-	-
Acond. Scv	2,0	9,0	750,0	-	-	-	2,5	10,0	-
Flot. Scv	4,0	9,0	750,0	15,0	15,0	-	-	-	-
Acond. CL 01	1,0	10,0	600,0	-	-	19,0	-	-	-
Flot. CL 01	5,0	10,0	600,0	15,0	5,0	-	-	-	-
Acond. CL - Scv	1,0	9,5	600,0	-	-	-	1,0	3,0	-
Flot CL – Scv	6,0	9,5	600,0	15,0	5,0	-	-	-	-
Acond. CL 02	1,0	10,0	600,0	-	-	-	-	1,0	-
Flot. CL 02	2,5	10,0	600,0	15,0	5,0	-	-	-	-
Total	52,6	-	-	-	-	334,0	8,5	24,0	5,0

Fuente: Elaboración propia

Por indicación del cliente, esta prueba se realizó una molienda primaria a 60 % - m200 (P80=120 μm), manteniéndose constante las condiciones en la flotación a nivel Rougher/Scavenger (dosificación de reactivos, tiempo de condicionamiento y tiempo de flotación).

Los resultados de la prueba se presentan en la siguiente Tabla.

Tabla N° 4.20: Balance Metalúrgico – P18

	Dogo		Leyes		R	ecuperacio	ón
Productos	Peso		%	(ppm)	(%)		
	(%)	Cu	Fe	Mo	Cu	Fe	Mo
Conc. Cu-Mo	0,60	31,88	27,01	8628	53,68	4,41	25.01
Medios II	0,41	16,83	22,64	19446	19,37	2,53	38.51
Conc. CL-Scv	0,24	13,48	19,71	9657	8,89	1,26	10.96
Rlv-Cl-Scv	1,31	2,07	11,78	2440	7,62	4,20	15.44
Medios I	1,55	3,81	12,99	3538	16,52	5,46	26.40
Conc. Ro	2,56	12,49	17,83	7286	89,56	12,40	89.92
Conc. Scv	0,89	0,50	5,27	395	1,23	1,27	1.69
Conc. Ro + Scv	3,44	9,40	14,60	5513	90,79	13,67	91.61
Relave Scv	96,56	0,03	3,29	18	9,21	86,33	8.39
Cab. Calculada	100,00	0,36	3,67	207	100,00	100,00	100.00
Cabeza Ensayada	•	0,38	3,70	223		•	

- ✓ La recuperación de Cobre en el concentrado final es del orden de 53,68%, con una calidad que ensaya 31,88 %
- ✓ La recuperación de Molibdeno en el concentrado final es del orden de 25,01%, con una calidad que ensaya 8628 ppm
- ✓ El hierro el principal contamínate se presenta en el orden de 4,41 % con una ley de 27,01%
- ✓ La presencia considerable de Cu y Mo en los Medios II es un indicador que es necesario incluir una etapa de remolienda con la finalidad de liberar las especies valiosas de las no valiosas e incrementar la recuperación en el concentrado final.

4.3.10. Flotación Batch (Remolienda del Concentrado Rougher)

Por indicaciones del cliente se realizó una remolienda del concentrado rougher hasta obtener un P80 de 55 μm, con la finalidad de bajar las presencias de mixtos (Calcopirita/Pirita, Bornita/Pirita, Molibdenita/Pirita) y obtener un concentrado de Cu/Mo de buen grado con una máxima recuperación posible, manteniéndose constantes las condiciones en la flotación a nivel Rougher/Scavenger (dosificación de reactivos, tiempo de acondicionamiento y tiempo de flotación).

Tabla N° 4.21: Condiciones de Flotación – P19

Código de Prueba: P18 Fecha: 24/07/2018

	Tiempo			Presión	Flujo	Consumo de reactivos(g/t)				
Etapa	(min)	pН	RPM	Aire (psi)	Aire (L/min)	Cal. Ind	Ap-3302	MICB	Diesel	
Molienda	17,1	-	-	-	-	200,0	5,0	-	5,0	
Acond. Ro	5,0	9,0	750,0	-	-	120,0	-	10,0	-	
Flot. Ro	8,0	9,0	750,0	15,0	15,0	-	-	-	-	
Acond. Scv	2,0	9,0	750,0	-	-	42,0	2,5	10,0	-	
Flot. Scv	4,0	9,0	750,0	15,0	15,0	-	-	-	-	
Acond. CL 01	1,0	10,0	600,0	-	-	29,0	-	-	-	
Flot. CL 01	5,0	10,0	600,0	15,0	5,0	-	-	-	-	
Acond. CL - Scv	1,0	9,5	600,0	-	-	-	2,0	3,0	-	
Flot CL – Scv	6,0	9,5	600,0	15,0	5,0	-	-	-	-	
Acond. CL 02	1,0	10,0	800,0	-	-	22,0	2,5	20,0	-	
Flot. CL 02	2,5	10,0	800,0	15,0	5,0	-	-	-	-	
Total	52,6	-	-	-	-	413,0	12,0	43,0	5,0	

Fuente: Elaboración propia

Los resultados obtenidos en esta prueba de flotación Batch con remolienda del concentrado Rougher a un P80 de 55 μ m y 02 etapas de limpieza se presentan en la siguiente Tabla.

Tabla N°4.22: Balance Metalúrgico – P19

	Peso		Leyes		Recuperación			
Productos	reso	•	%	(ppm)	(%)			
	(%)	Cu	Fe	Mo	Cu	Fe	Mo	
Conc. Cu-Mo	0,32	30,58	28,32	15070	28,57	2,37	24.49	
Medios II	0,45	26,12	26,46	13570	34,48	3,12	31.15	
Conc. CL-Scv	0,31	17,86	23,31	11022	16,43	1,92	17.63	
Rlv-Cl-Scv	1,55	2,52	22,43	2050	11,57	9,22	16.39	
Medios I	1,86	5,07	22,58	3545	28,00	11,14	34.02	
Conc. Ro	2,62	11,72	23,93	6634	91,05	16,63	89.66	
Conc. Scv	0,85	0,38	4,53	320	0,94	1,02	1.39	
Conc. Ro + Scv	3,47	8,95	19,20	5094	92,00	17,65	91.05	
Relave Scv	96,53	0,03	3,22	18	8,00	82,35	8.95	
Cab. Calculada	100,00	0,34	3,78	194	100,00	100,00	100.00	
Cabeza Ensayada	0,38	3,70	223					

- ✓ La recuperación de Cobre y Molibdeno en el concentrado final es de 28,57 % y 24,49 %, con unas calidades que ensayan 30,58 % y 15070 ppm respectivamente.
- ✓ El hierro el principal contamínate se presenta en el orden de 2,37 % con una ley de 28,32 % en el concentrado final.
- ✓ La baja recuperación respecto al Cu y Mo en el concentrado final y la alta presencia de estos en los medios II se debe que al remoler el concentrado Rougher se genera nuevas áreas superficiales en el mineral, por lo tanto, se necesita mayor contacto (tiempo de acondicionamiento) con los reactivos colectores.
- ✓ Se recomienda explorar el uso de colectores en la etapa de remolienda, puesto que el reactivo tendría mejor contacto con la superficie del mineral expuesto.

4.3.11. Batch (Adicionales)

Código de Prueba:

P15

Por indicaciones del cliente se procedió a realizar una prueba tipo Batch sin remolienda del concentrado Rougher, 03 etapas de limpieza, una etapa Cleaner/Scavenger, grado de molienda primaria de 65 % -m200 y como colectores el TC-123, Diesel y MIBC como espumante.

El resumen de condiciones y resultados se presentan en las siguientes tablas.

Fecha:

12/03/2018

Tabla N° 4.23: Condiciones de Flotación – P15

Peso Alimento(g):	2000 Grado de Remolienda : -										
% Sólidos Molienda:	66.0	66.0 P80 Remolienda (μm): -									
Grado de Molienda:	65% - m20	65% - m200 Vol. Celda(cc): 6000									
$P_{80}(\mu m)$:	104										
	Tiempo			Presión	Flujo	C	onsumo de re	eactivos(g/	t)		
Etapa	(min)	pН	RPM	Aire (psi)	Aire (L/min)	Cal. Ind	Ap-3302	MICB	Diesel		
Molienda	20,0	-	-	-	-	200,0	5,0	-	7,5		
Acond. Ro	5,0	9,0	750,0	-	-	118,0	-	7,0	-		
Flot. Ro	8,0	9,0	750,0	15,0	15,0	-	=	-	-		
Acond. Scv	2,0	9,0	750,0	-	-	-	2,5	3,0	-		
Flot. Scv	4,0	9,0	750,0	15,0	15,0	-	-	-	-		

Acond. CL 01	1,0	10,0	600,0	-	-	14,0	-	-	-
Flot. CL 01	5,0	10,0	600,0	15,0	3,0	-	-	-	-
Acond. CL - Scv	2,0	9,5	600,0	-	-	-	1,0	-	-
Flot CL – Scv	6,0	9,5	600,0	15,0	5,0	-	-	-	-
Acond. CL 02	2,0	10,0	600,0	-	-	-	-	-	-
Flot. CL 02	2,5	10,0	600,0	15,0	3,0	-	-	-	-
Acond. CL 03	1,0	10,0	600,0	ı	-	-	_	1,0	-
Total	58,5	105	7200	75,0	41,0	332,0	8,5	10,0	7,5

Fuente: Elaboración propia Tabla 4.24: Pruebas metalúrgicas consumo de reactivos

	Tiomno		Presión	Flujo	Consumo de reactivos(g/t)				
Etapa	Tiempo (min)	pН	RPM	Aire (psi)	Aire (L/min)	Cal. Ind	TC-123	OR-549	Diesel
Molienda	20,0	-	-	-	-	200,0	5,0	-	7,5
Acond. Ro	5,0	9,0	750,0	-	-	118,0	-	7,0	-
Flot. Ro	8,0	9,0	750,0	15,0	15,0	-	-	-	-
Acond. Scv	2,0	9,0	750,0	-	-	-	2,5	3,0	-
Flot. Scv	4,0	9,0	750,0	15,0	15,0	-	-	-	-
Acond. CL 01	1,0	10,0	600,0	-	-	14,0	-	-	-
Flot. CL 01	5,0	10,0	600,0	15,0	3,0	-	=	-	-
Acond. CL - Scv	2,0	9,5	600,0	-	-	-	1,0	-	-
Flot CL – Scv	6,0	9,5	600,0	15,0	5,0	-	-	-	-
Acond. CL 02	2,0	10,0	600,0	-	-	-	-	-	-
Flot. CL 02	2,5	10,0	600,0	15,0	3,0	-	-	-	-
Acond. CL 03	1,0	10,0	600,0	-	-	-	-	1,0	
Flot – CL 03	1,5	10,0	600,0	15,0	5,0				
Total	60,0	-	-	-	-	332,0	8,5	11,0	7,5

Tabla N° 4.25: Balance Metalúrgico – P15

	Peso		Leyes		Recuperación			
Productos	reso		%	(ppm)	(%)			
	(%)	Cu	Fe	Mo	Cu	Fe	Mo	
Conc. Cu-Mo	0,58	32,32	26,41	15556	52,75	3,92	44,14	
Medios III	0,31	22,73	25,03	15333	20,00	2,00	23,45	
Medios II	0,43	7,18	28,63	5640	8,66	3,14	11,83	
Conc. CL-Scv	0,30	6,69	27,68	3226	5,69	2,14	4,78	
Rlv-Cl-Scv	1,63	1,04	11,93	5760	4,83	5,02	4,58	
Medios I	1,93	1,92	14,38	983	10,52	7,16	9,36	
Conc. Ro	3,25	10,00	19,40	5553	91,93	16,22	88,78	
Conc. Scv	1,70	0,28	16,42	222	1,34	7,20	1,86	
Conc. Ro + Scv	4,95	6,65	18,38	3718	93,27	23,43	90,64	
Relave Scv	95,05	0,03	3,13	20	6,73	76,57	9,36	
Cab. Calculada	100,00	0,35	3,88	203	100,00	100,00	100,00	
Cabeza Ensayada		0,38	3,70	223				

- ✓ De acuerdo a los resultados se obtuvo recuperaciones con respecto al Cu y Mo de 52,75 % y 44,14 % con calidades que ensayan 32,32 % y 15556 ppm respectivamente, teniendo un desplazamiento de Fe del orden de 3,92 % que ensaya 26,41 % en el concentrado final.
- ✓ La presencia de Cu y Mo en el relave Cleaner/Scavenger es del orden de 4,83 % y 4,58 % con leyes de 1,04 % y 570 ppm, pudiéndose bajar estos índices con el incremento del colector Tc-123 y la adición de diesel en esta etapa.

Por indicaciones del cliente se procedió a realizar una prueba tipo Batch incrementando el tiempo de flotación en la primera etapa de Limpieza (de 5 a 6 minutos), sin remolienda del concentrado Rougher, sin una etapa Cleaner/Scavenger para los Medios I y a un grado de molienda primaria de 65 %-m200.

El resumen de condiciones y resultados se presentan en las siguientes tablas.

Tabla N° 4.26: Condiciones de Flotación – P21

Código de Prueba:	P21				Fec	ha: 18/	07/2018			
Peso Alimento(g):	2000				Grado de Re	molienda:	-			
% Sólidos Molienda:	66.0				P80 Remoli	enda (µm):	-			
Grado de Molienda:	65% - m20	0	Vol. Celda(cc): 6000							
$P_{80} (\mu m)$:	104		% Sólidos Flot.: 33							
	Tiempo			Presión	Flujo	C	onsumo de r	eactivos(g/	t)	
Etapa	(min)	pН	RPM	Aire (psi)	Aire (L/min)	Cal. Ind	Ap-3302	MICB	Diesel	
Molienda	20,0	-	-	-	-	200,0	5,0	-	5,0	
Acond. Ro	5,0	9,0	750,0	-	-	115,0	-	10,0	-	
Flot. Ro	8,0	9,0	750,0	15,0	15,0	-	-	-	-	
Acond. Scv	2,0	9,0	750,0	-	-	55,0	-	10,0	-	
Flot. Scv	4,0	9,0	750,0	15,0	15,0	-	=	-	-	
Acond. CL 01	2,0	10,0	600,0	-	-	20,0	=	-	-	
Flot. CL 01	6,0	10,0	600,0	15,0	5,0	-	=	-	-	
Acond. CL 02	2,0	10,0	600,0							
Flot. CL 02	2,5	10,0	600,0 15,0 3,0							
Total	51,5	•	-	-	-	332,0	5,0	20,0	5,0	

Tabla N° 4.27: Balance Metalúrgico – P21

	Peso		Leyes		R	ecuperacio	ón
Productos	Peso		%	(ppm)		(%)	
	(%)	Cu	Fe	Mo	Cu	Fe	Mo
Conc. Cu-Mo	0,72	27,91	28,01	11597	56,87	5,22	41.89
Medios II	0,32	17,96	27,21	11568	16,38	2,27	18.70
Medios I	1,69	3,75	19,59	3080	18,07	8,63	26.30
Conc. Ro	2,73	11,76	22,69	6311	91,32	16,12	86.89
Conc. Scv	1,39	0,40	5,16	352	1,58	1,87	2.47
Conc. Ro + Scv	4,12	7,92	16,77	4298	92,91	17,99	89.36
Relave Scv	95,88	0,03	3,29	22	7,09	82,01	10.64
Cab. Calculada	100,00	0,35	3,84	198	100,00	100,00	100.00
Cabeza Ensayada		0,38	3,70	223			

- ✓ La recuperación de Cobre en el concentrado final es del orden de 41,89
 %, con una calidad que ensaya 27,91 %
- ✓ La recuperación de Molibdeno en el concentrado final es del orden de 41,89 %, con una calidad que ensaya 11597 ppm
- ✓ El hierro el principal contamínate se presenta en el orden de 5,22 % con una ley de 28,01 %
- ✓ Se concluye que al no realizar remolienda del concentrado Rougher la presencia de mixtos es notoria y al controlar el Fe por desplazamiento en el concentrado final incrementando el valor del pH, estos también son afectados (deprimidos) reflejándose en la alta presencia de estos (Cu y Mo) en los medios II.

Por indicaciones del cliente se procedió a realizar una prueba tipo Batch reduciendo el tiempo de flotación en la primera etapa de Limpieza (de 6 a 5 minutos), sin remolienda del concentrado Rougher, sin una etapa Cleaner/Scavenger para los Medios I y a un grado de molienda primaria de 65 % -m200.

El resumen de condiciones y resultados se presentan en las siguientes tablas.

Tabla N°4.28: Condiciones de Flotación - P23

Muestra: Código de Prueba:	Maestro 01 P23				Fec	ha: 18/	/07/2018			
Peso Alimento(g):	2000				Grado de Re	molienda:	-			
% Sólidos Molienda:	66,0		P80 Remolienda (μm): -							
Grado de Molienda:	65% - m20	0			Vol. Celda(c	c):	6000			
P ₈₀ (μm):	104			9	6 Sólidos Flo	ot.:	33			
	Tiomno			Presión	Flujo	C	onsumo de r	eactivos(g/	t)	
Etapa	Tiempo (min)	pН	RPM	Aire (psi)	Aire (L/min)	Cal. Ind	Ap-3302	MICB	Diesel	
Molienda	20,0	-	-	-	-	200,0	5,0	-	5,0	
Acond. Ro	5,0	9,0	750,0	-	-	110,0	-	10,0	-	
Flot. Ro	8,0	9,0	750,0	15,0	15,0	-	-	-	-	
Acond. Scv	2,0	9,0	750,0	-	-	45,0	-	10,0	-	
Flot. Scv	4,0	9,0	750,0	15,0	15,0	=	1	=	-	
Acond. CL 01	1,0	10,0	600,0	-	-	18,0	1	-	-	
Flot. CL 01	5,0	10,0	600,0	15,0	5,0	-	-	-	-	
Acond. CL 02	1,0	10,0	850,0							
Flot. CL 02	2,5	10,0	850,0 15,0 3,0							
Total	48,5	-	-	-	-	373,0	5,0	20,0	5,0	

Fuente: Elaboración propia

Tabla N° 4.29: Balance Metalúrgico – P21

	Peso		Leyes		R	ecuperacio	ón
Productos	Peso		%	(ppm)		(%)	
	(%)	Cu	Fe	Mo	Cu	Fe	Mo
Conc. Cu-Mo	0,66	29,62	28,34	12738	54,93	4,69	40.90
Medios II	0,35	15,78	27,47	11603	15,41	2,39	19.62
Medios I	1,83	4,02	18,31	3179	20,77	8,44	28.44
Conc. Ro	2,83	11,39	21,75	6424	91,11	15,53	88.95
Conc. Scv	1,33	0,42	5,18	255	1,57	1,74	1.66
Conc. Ro + Scv	4,16	7,88	16,45	4449	92,68	17,27	90.62
Relave Scv	95,84	0,03	3,42	20	7,32	82,73	9.38
Cab. Calculada	100,00	0,35	3,96	204	100,00	100,00	100.00
Cabeza Ensayada		0,38	3,70	223			

- ✓ La recuperación de Cobre en el concentrado final es del orden de 54,93
 %, con una calidad que ensaya 29,62 %
- ✓ La recuperación de Molibdeno en el concentrado final es del orden de 40,90 %, con una calidad que ensaya 12738 ppm

- ✓ El hierro el principal contamínate se presenta en el orden de 4,69 % con una ley de 28,34 %.
- ✓ De acuerdo a los resultados obtenidos se puede observar que al disminuir el tiempo de flotación en la primera etapa de Limpieza (de 6 a 5 minutos), permite obtener un concentrado final con mayor calidad comparado con la prueba P21 (de 27,91 % a 29,62 % para el Cu y 11597 ppm a 12738 ppm para el Mo), con recuperaciones ligeramente menores (de 56,87 % a 54,93 % para el Cu y de 41,89 % a 40,90 % para el Mo).

4.3.12. Batch con 01 etapa Cleaner

Muestra de Cabeza

Rougher Scavenger Riv. Final

Conc. Scv

Conc. Scv

Figura Nº 4.8: Esquema de flotación Tipo Batch con 01 etapa Cleaner

Fuente: Elaboración propia

Por indicaciones del cliente se realizaron pruebas tipo Batch con una etapa Cleaner, variando el tiempo de flotación de Limpieza, el grado de molienda primaria, con y sin remolienda del concentrado Rougher, con la finalidad de evaluar la recuperación y calidad del concentrado final respecto al Cu/Mo y

el desplazamiento de Fe del mismo, manteniéndose constantes las condiciones a nivel Rougher/Scavenger (dosificación de reactivos, tiempo de acondicionamiento y tiempo de flotación).

Tabla Nº 4.30: Condiciones de Flotación - P20

Muestra:	Maestro 01									
Código de Prueba:	P20				Fecl	ha: 25/	/07/2018			
Peso Alimento(g): 2000 Grado de Remolienda: - % Sólidos Molienda: 66,0 P80 Remolienda (μm): - Grado de Molienda: 60%- m200 Vol. Celda(cc): 6000 P ₈₀ (μm): 120 % Sólidos Flot.: 33										
	TP:		Presión Flujo Consumo de reactivos(g/t)							
Etapa	Tiempo (min)	pН	RPM	Aire (psi)	Aire (L/min)	Cal. Ind	Ap-3302	MICB	Diesel	
Molienda	17,1	-	-	-	-	200,0	5,0	-	5,0	
Acond. Ro	5,0	9,0	750,0	-	-	119,0	-	10,0	-	
Flot. Ro	8,0	9,0	750,0	15,0	15,0	-	-	-	-	
Acond. Scv	2,0	9,0	750,0	-	-	38,0	2,5	10,0	-	
Flot. Scv	4,0	9,0	,0 750,0 15,0 15,0							
Acond. CL 01	1,0	10,0	600,0	-	-	25,0	ı	-	-	

Fuente: Elaboración propia

5,0

382,0

7,5

20,0

5,0

15,0

Flot. CL 01

Total

5,0

42,1

10,0

600,0

Tabla N° 4.31: Balance Metalúrgico – P20

	Peso		Leyes		R	ecuperacio	ón
Productos	reso		%	(ppm)		(%)	
	(%)	Cu	Fe	Mo	Cu	Fe	Mo
Conc. Cu-Mo	0,91	28,24	26,38	12846	65,24	5,82	51,78
Medios I	1,55	6,57	18,11	5399	25,89	6,82	37,16
Conc. Ro	2,45	14,57	21,16	8150	91,13	12,65	88,94
Conc. Scv	0,87	0,67	5,63	413	1,48	1,20	1,60
Conc. Ro + Scv	3,32	10,93	17,10	6122	92,61	13,84	90,54
Relave Final	96,68	0,03	3,66	22	7,39	86,16	9,46
Cab. Calculada	100,00	0,39	4,11	225	100,00	100,00	100,00
Cabeza Ensayada		0,38	3,70	223			

- ✓ La recuperación de Cobre en el concentrado final es del orden de 65,24
 %, con una calidad que ensaya 28,24%.
- ✓ La recuperación de Molibdeno en el concentrado final es del orden de 51,78 %, con una calidad que ensaya 12846 ppm.

- ✓ El hierro el principal contamínate se presenta en el orden de 5,82 % con una ley de 26,38 %.
- ✓ De acuerdo a los resultados obtenidos, con una sola etapa se llega a una calidad con respecto al cobre muy aceptable (28,24%), pudiéndose extender un poco más el tiempo de flotación elevando el pH en la Limpieza con la finalidad de incrementar la recuperación de Cu y Mo y controlar el desplazamiento de Fe en el concentrado Final.

Tabla N° 4.32: Condiciones de Flotación – P22

Muestra:	Maestro 01									
Código de Prueba:	P22				Fecl	ha: 25	/07/2018			
Peso Alimento(g):	2000				Grado de Re	molienda:	-			
% Sólidos Molienda:	66,0				P80 Remolie	enda (µm):	-			
Grado de Molienda:	65% - m20	• •								
$P_{80} (\mu m)$:	104		% Sólidos Flot.: 33							
	Tioner		Presión Flujo Consumo de reactivos(g/t)							
							Die			
Etapa	Tiempo (min)	pН	RPM	Aire (psi)	Aire (L/min)	Cal. Ind	Ap-3302	MICB	Diesel	
Etapa Molienda	_	pH -	RPM -		-	Cal. Ind 200,0	Ap-3302 5,0	MICB -	Diesel 5,0	
•	(min)		RPM - 750,0		-		-			
Molienda	(min) 20,0	-	-		-	200,0	5,0	-		

15,0

15,0

Flot. Scv

Acond. CL 01

Flot. CL 01

Total

4,0

1,0

6,0

46,0

9,0

10,0

10,0

750,0

850,0

850,0

Fuente: Elaboración propia

Los resultados obtenidos en esta prueba a 65 % -m200 (molienda primaria) y sin remolienda del concentrado Rougher e incrementando el Tiempo de flotación en la etapa de Limpieza se presenta en la siguiente Tabla.

15,0

_

3,0

23,0

383,0

5,0

-

20,0

5,0

 $Tabla\ N^{\circ}4.33\text{: Balance Metalúrgico} - P22$

	Dogo		Leyes		R	ecuperacio	ón
Productos	Peso		%	(ppm)		(%)	
	(%)	Cu	Fe	Mo	Cu	Fe	Mo
Conc. Cu-Mo	0,95	27,57	26,48	10492	70,79	6,48	49,01
Medios I	1,84	4,12	16,95	4084	20,56	8,06	37,04
Conc. Ro	2,79	12,09	20,19	6262	91,35	14,54	86,05

Conc. Scv	1,32	0,46	5,17	4619	1,64	1,76	4,02
Conc. Ro + Scv	4,11	8,36	15,37	4450	92,99	16,30	90,07
Relave Final	95,89	0,03	3,38	21	7,01	83,70	9,93
Cab. Calculada	100,00	0,37	3,87	203	100,00	100,00	100,00
Cabeza Ensayada		0,38	3,70	223			•

- ✓ La recuperación de Cobre en el concentrado final es de 70,79 %, con una calidad que ensaya 27,57%
- ✓ La recuperación de Molibdeno en el concentrado final es de 49,01 %, con una calidad que ensaya 10492 ppm
- ✓ El hierro el principal contamínate se presenta en el orden de 6,48 % con una ley de 26,48 %
- ✓ Se observa que al realizar una molienda primaria más fina (de 60 a 65 %
 m200) e incrementar el tiempo de flotación en la etapa de Limpieza se incrementa la recuperación a nivel Rougher con respecto al Cu y Mo comparado con la prueba anterior (P20).

En la siguiente prueba de flotación se realizó una remolienda del concentrado Rougher a un P80 de 35 μ m, incrementando en valor del pH en la etapa de Limpieza a 10,5, el resumen de las condiciones y resultados se presentan en las siguientes Tablas.

Tabla Nº 4.34: Condiciones de Flotación – P24

Muestra:	Maestro 01								
Código de Prueba:	P24				Fech	ıa:	27/07/2018		
Peso Alimento(g):	2000				Grado de Re	moliend	a: -		
% Sólidos Molienda:	66,0				P80 Remolie	nda (µn	n): 35		
Grado de Molienda:	65% - m200)			Vol. Celda(c	c):	6000		
$P_{80} (\mu m)$:	104			9	% Sólidos Flo	t.:	33		
	Tiomno			Presión	Flujo		Consumo de re	eactivos(g/	t)
TC4	Tiempo	TT	DDM	Aimo	A • *				

	Tiempo			Presión	Flujo	C	Consumo de re	eactivos(g/t)		
Etapa	(min)	pН	RPM	Aire (psi)	Aire (L/min)	Cal. Ind	Ap-3302	MICB	Diesel	
Molienda	20,0	-	-	-	-	200,0	5,0	-	5,0	
Acond. Ro	5,0	9,0	750,0	-	-	110,0	-	10,0	ı	
Flot. Ro	8,0	9,0	750,0	15,0	15,0	-	-	-	-	
Acond. Scv	2,0	9,0	750,0	-	-	40,0	-	10,0	-	
Flot. Scv	4,0	9,0	750,0	15,0	15,0	-	-	-	-	
Acond. CL 01	2,0	10,5	600,0	-	-	21,0	-	-	-	
Flot. CL 01	6,0	10,5	600,0	15,0	5,0	-	-	-	-	
Total	47,0	-	-	-	-	383,0	5,0	20,0	5,0	

Tabla N° 4.35: Balance Metalúrgico – P24

	Peso		Leyes		R	ecuperacio	ón
Productos	Peso		%	(ppm)		(%)	
	(%)	Cu	Fe	Mo	Cu	Fe	Mo
Conc. Cu-Mo	0,74	29,32	25,55	12200	64,86	4,74	46.55
Medios I	2,00	4,32	15,18	4050	25,74	7,59	41.66
Conc. Ro	2,74	11,08	17,99	6255	90,60	12,32	88.22
Conc. Scv	1,37	0,27	4,41	340	1,10	1,51	2.40
Conc. Ro + Scv	4,11	7,47	13,45	4281	91,70	13,83	90.62
Relave Final	95,89	0,03	3,59	19	8,30	86,17	9.38
Cab. Calculada	100,00	0,34	4,00	194	100,00	100,00	100.00
Cabeza Ensavada		0,38	3,70	223		•	•

- ✓ La recuperación de Cobre en el concentrado final es de 64,86 %, con una calidad que ensaya 29,32 %
- ✓ La recuperación de Molibdeno en el concentrado final es de 46,55 %, con una calidad que ensaya 12200 ppm
- ✓ El hierro el principal contamínate se presenta en el orden de 4,74 % con una ley de 25,55 %
- ✓ Se observa que al realizar una remolienda del concentrado Rougher (P80=37µm) y elevar el pH de 10 a 10,5 en la etapa Cleaner, la calidad del

concentrado final respecto al Cu y Mo se incrementa de 27,57 % a 29,32 % para el Cu y de 10492 ppm a 12200 ppm para el Mo).

Por indicaciones del cliente se procedió a realizar una prueba de flotación con la finalidad de replicar los resultados de la prueba P24. Los resultados se presentan en las siguientes tablas.

Tabla N° 4.36: Condiciones de Flotación – P25

Muestra:	Maestro 02									
Código de Prueba:	P25				Fec	ha: 27/	/07/2018			
Peso Alimento(g):	2000				Grado de Re	molienda:	-			
% Sólidos Molienda:	66,0	4. /.								
Grado de Molienda:	65% - m20	m200 Vol. Celda(cc): 6000								
P ₈₀ (μm):	104	% Sólidos Flot.: 33								
	Tiomno	Presión Flujo Consumo de reactivos(g/t)								
Etapa	Tiempo (min)	pН	RPM	Aire	Aire	Cal Ind	A 2202	MICD	Diesel	
	(11111)			(psi)	(L/min)	Cal. Ind	Ap-3302	MICB		
Molienda	20,0	-	-	-	-	200,0	5,0	-	5,0	
Acond. Ro	5,0	9,0	750,0	-	-	112,0	ı	10,0	-	
Flot. Ro	8,0	9,0	750,0	15,0	15,0	-	-	-	-	
Acond. Scv	2,0	9,0	750,0	-	-	43,0	-	10,0	-	
Flot. Scv	4,0	9,0	750,0	15,0	15,0	-	-	-	-	
Acond. CL 01	2,0	10,5	10,5 600,0 23,0							
Flot. CL 01	6,0	10,5	600,0	15,0	5,0	-	-	-	-	
Total	47,0	-	-	-	-	378,0	5,0	20,0	5,0	

Fuente: Elaboración propia

Tabla N° 4.37: Balance Metalúrgico – P25

	Doss		Leyes		Recuperación			
Productos	Peso		%	(ppm)	(%)			
	(%)	Cu	Fe	Mo	Cu	Fe	Mo	
Conc. Cu-Mo	0,61	30,04	25,99	14609	53,37	3,94	42.52	
Medios I	2,04	6,27	16,80	4751	37,22	8,52	46.25	
Conc. Ro	2,65	11,74	18,92	7020	90,60	12,46	88.77	
Conc. Scv	1,41	0,32	4,69	243	1,31	1,64	1.63	
Conc. Ro + Scv	4,06	7,78	13,99	4672	91,90	14,10	90.40	
Relave Final	95,94	0,03	3,61	21	8,10	85,90	9.60	
Cab. Calculada	100,00	0,34	4,03	210	100,00	100,00	100.00	
Cabeza Ensayada		0,38	3,70	223				

Los resultados obtenidos replican las leyes en el concentrado Final de la prueba P24 respecto al Cu y Mo, manteniendo recuperaciones parecidas a nivel Rougher/Scavenger corroborando los resultados de dicha prueba. Con el fin de optimizar las condiciones de flotación Batch y mejorar los índices metalúrgicos en coordinación con el cliente se realizó la última prueba Batch, variando el grado de molienda primaria (de 65 a 60 % -m200) y variando el P80 en la remolienda (de 35 a 55 µm) del concentrado Rougher, manteniendo las otras variables de la prueba P25.

Tabla N°4.38: Condiciones de Flotación – P26

Muestra:	Maestro 01										
Código de Prueba:	P26				Fec	ha: 25/	07/2018				
Peso Alimento(g):	2000				Grado de Re	emolienda:	-				
% Sólidos Molienda:	66,0	P80 Remolienda (μm): 55									
Grado de Molienda:	60%- m20	• /									
$P_{80} (\mu m)$:	120	% Sólidos Flot.: 33									
	Tioner o	Presión Flujo Consumo de reactivos(g/t)									
Etapa	Tiempo (min)	pН	RPM Aire (psi) Aire (L/min) Cal. Ind Ap-3302 MICB Diese								
Molienda	17,1,0	-	-	-	-	200,0	5,0	-	5,0		
Acond. Ro	5,0	9,0	750,0	-	-	111,0	-	10,0	-		
Flot. Ro	8,0	9,0	750,0	15,0	15,0	-	-	-	-		
Acond. Scv	2,0	9,0	750,0	-	-	47,0	-	10,0	-		
Flot. Scv	4,0	9,0	750,0	15,0	15,0	-	-	-	-		
Remolienda	0,5	10,5	0,5 18,0 2,5 - 2,5								
Acond. CL 01	2,0	10,5	0,5 600,0 5,0 -								
Flot. CL 01	6,0	10,5	,5 600,0 15,0 5,0								
Total	44,6	-	-	-	-	376,0	7,5	25,0	7,5		

Fuente: Elaboración propia

Los resultados obtenidos se presentan en la siguiente Tabla

Tabla N° 4.39: Balance Metalúrgico – P26

	Peso		Leyes		Recuperación			
Productos	Peso		%		(%)			
	(%)	Cu	Fe	Mo	Cu	Fe	Mo	
Conc. Cu-Mo	0,99	26,95	25,70	15043	72,25	6,69	72,93	
Medios I	1,51	4,51	13,04	2101	18,44	5,17	15,54	
Conc. Ro	2,50	13,40	18,05	7226	90,69	11,86	88,47	
Conc. Scv	0,87	0,51	5,02	379	1,20	1,14	1,61	
Conc. Ro + Scv	3,37	10,08	14,70	5466	91,90	13,00	90,08	
Relave Final	96,63	0,03	3,43	21	8,10	87,00	9,92	
Cab. Calculada	100,00	0,37	3,81	204	100,00	100,00	100,00	
Cabeza Ensayada		0,38	3,70	223		•	=	

- ✓ La recuperación de Cobre en el concentrado final es de 72,25 %, con una calidad que ensaya 29,95 %
- ✓ La recuperación de Molibdeno en el concentrado final es de 72,93 %, con una calidad que ensaya 15043 ppm
- ✓ El hierro el principal contamínate se presenta en el orden de 6,69 % con una ley de 25,70 %
- ✓ De acuerdo a los resultados obtenidos se observa que la variación es mínima con respecto a la recuperación y calidad en el concentrado final comparado con las demás pruebas, por lo tanto, no es necesario realizar una molienda primaria más fina (65% -m200) y trabajar con un P80 de 35 μm en la remolienda del concentrado Rougher.
- ✓ Se concluye que los mejores resultados Metalúrgicos respecto a calidad y recuperación en el concentrado Final se obtienen a una molienda primaria de 60 % -m200, con remolienda del concentrado Rougher a un P80 de 55 μm.

4.3.13. Cíclica con 01 etapa Cleaner (Ciclo Cerrado)

Por indicación del cliente se realizó la prueba de flotación de Ciclo Cerrado (Cíclica) con una sola etapa Cleaner con el fin de evaluar el efecto de la carga circulante y del agua de proceso de acuerdo al siguiente esquema en circuito abierto y cerrado:

Mulienda

Conc. Scv

Raugher

Acond.

Remollenda

Remollenda

Conc. Cu/Mo

Figura Nº 4.9: Esquema de flotación ciclo cerrado (01 etapa cleaner)

De acuerdo a los resultados de la prueba Batch P26 se realizó la prueba de flotación de Ciclo Cerrado (Cíclica) incluyendo remolienda del concentrado rougher e incrementando el pH en la etapa de limpieza (de 10 a 10.5), el cual considera el esquema de tratamiento mostrado anteriormente.

Los balances metalúrgicos (general y en el equilibrio) se presentan en las siguientes Tablas.

Tabla N° 4.40: Balance Metalúrgico General – Cíclica 01

	Peso		Leyes		Recuperación			
Productos	Peso	%		(ppm)	(%)			
	(%)	Cu	Fe	Mo	Cu	Fe	Mo	
Conc. Cu/Mo Ciclo 1	0,16	26,65	24,71	15098	12,20	1,10	12,11	
Conc. Cu/Mo Ciclo 2	0,21	24,59	24,48	14140	14,59	1,41	14,71	
Conc. Cu/Mo Ciclo 3	0,22	23,41	24,50	13010	14,60	1,48	14,22	
Conc. Cu/Mo Ciclo 4	0,24	21,64	24,58	12511	14,71	1,62	14,91	
Conc. Cu/Mo Ciclo 5	0,26	21,37	25,57	11792	15,37	1,79	14,87	
Conc. Cu/Mo Ciclo 6	0,26	21,40	25,30	11895	15,54	1,79	15,14	

Conc. Cu/Mo Total	1,37	22,90	24,89	12905	87,01	9,19	85,96
Medios I	0,52	3,10	14,24	1378	4,50	2,01	3,52
Conc. Rougher Cu/Mo	1,89	17,41	21,94	9713	91,51	11,20	89,48
Conc. Scv Cu/Mo	0,32	0,36	5,24	212	0,32	0,46	0,33
Conc. Ro + Scv	2,21	14,93	19,51	8328	91,83	11,66	89,81
Relave Ciclo 1	16,10	0,03	3,28	22	1,39	14,26	1,73
Relave Ciclo 2	16,16	0,03	3,31	17	1,30	14,47	1,34
Relave Ciclo 3	16,22	0,03	3,26	21	1,35	14,29	1,66
Relave Ciclo 4	16,29	0,03	3,27	19	1,31	14,40	1,51
Relave Ciclo 5	16,49	0,03	3,42	24	1,38	15,24	1,93
Relave Ciclo 6	16,52	0,03	3,51	25	1,43	15,68	2,02
Relave Total	97,79	0,03	3,34	21	8,17	88,34	10,19
Cab. Calculada	100,00	0,36	3,70	205	100,00	100,00	100,00
Cabeza Ensayada		0,38	3,70	223			

Fuente. Elaboración propia

Tabla N° 4.41: Balance en el equilibrio circuito cerrado (2 últimos ciclos) – Cíclica 1

	Peso		Leyes		Recuperación			
Productos	reso	%		(ppm)	(%)			
	(%)	Cu	Fe	Mo	Cu	Fe	Mo	
Conc. Cu/Mo	1,55	21,39	25,43	11844	91,69	10,36	88.38	
Relave Total	98,45	0,03	3,46	25	8,31	89,64	11.62	
Cab. Calculada	100,00	0,36	3,80	208	100,00	100,00	100.00	
Cabeza Ensayada		0,38 3,70 223			•			

El balance metalúrgico proyectado nos muestra que, en el equilibrio, con el efecto de la carga circulante empleando un esquema de circuito cerrado para el tratamiento del mineral, podemos obtener una calidad de concentrado de 21.39 % de cobre y 11844 ppm de molibdeno, con una recuperación de 91.69 % y 88.38 % respectivamente, siendo necesario una segunda etapa de limpieza para poder incrementar la calidad del concentrado final.

4.3.14. Cíclica con 02 etapas Cleaner

Muestra de Cabeas

Conc. Sev

Rougher

Acond.

Remolianda

Medios II

Medios II

Figura Nº 4.10: Esquema de flotación ciclo cerrado (02 etapas Cleaner)

Por indicación del cliente se realizó la prueba de flotación de Ciclo Cerrado (Cíclica) con 02 etapas Cleaner con el fin de incrementar la calidad con respecto al cobre y molibdeno en el concentrado final y evaluar el efecto de la carga circulante y del agua de proceso de acuerdo al esquema mostrado en circuito abierto y cerrado:

Los balances metalúrgicos (general y en el equilibrio) se presentan en las siguientes Tablas.

Tabla Nº 4.42: Balance Metalúrgico General – Cíclica 02

	Dogg		Leyes		Recuperación			
Productos	Peso	%		(ppm)	(%)			
	(%)	Cu	Fe	Mo	Cu	Fe	Mo	
Conc. Cu/Mo Ciclo 1	0,09	31,02	28,45	12618	8,21	0,67	5,16	
Conc. Cu/Mo Ciclo 2	0,10	32,13	27,14	13145	9,87	0,75	6,23	
Conc. Cu/Mo Ciclo 3	0,13	31,38	27,05	14597	12,14	0,94	8,72	
Conc. Cu/Mo Ciclo 4	0,15	30,14	27,01	16071	13,32	1,07	10,97	
Conc. Cu/Mo Ciclo 5	0,17	29,70	26,98	15906	15,20	1,24	12,57	
Conc. Cu/Mo Ciclo 6	0,18	29,70	27,06	15647	15,80	1,29	12,85	
Conc. Cu/Mo Total	0,82	30,49	27,19	14969	74,54	5,95	56,50	

Medios II	0,48	5,80	29,83	7856	8,28	3,82	17,32
Medios I	1,23	2,07	29,48	2304	7,62	9,71	13,07
Conc. Rougher Cu/Mo	2,52	11,98	28,81	7456	90,44	19,48	86,89
Conc. Scv Cu/Mo	0,30	0,33	4,64	94	0,29	0,37	0,13
Conc. Ro + Scv	2,81	10,76	26,27	6682	90,73	19,85	87,02
Relave Ciclo 1	15,95	0,03	3,17	27	1,53	13,55	1,99
Relave Ciclo 2	15,99	0,03	2,95	29	1,58	12,65	2,15
Relave Ciclo 3	16,08	0,03	2,98	26	1,54	12,88	1,93
Relave Ciclo 4	16,24	0,03	3,07	31	1,56	13,38	2,33
Relave Ciclo 5	16,43	0,03	3,06	32	1,53	13,52	2,43
Relave Ciclo 6	16,50	0,03	3,20	28	1,53	14,17	2,14
Relave Total	97,19	0,03	3,07	29	9,27	80,15	12,98
Cab. Calculada	100,00	0,36	3,72	216	100,00	100,00	100,00
Cabeza Ensayada		0,38	3,70	223			

Fuente. Elaboración propia

Tabla $N^{\circ}4.43$: Balance en el equilibrio circuito cerrado (0 últimos ciclos) - Cíclica 2

Productos	Daga		Leyes		Recuperación			
	Peso		%	(ppm)	(%)			
	(%)	Cu	Fe	Mo	Cu	Fe	Mo	
Conc. Cu/Mo	1,05	29,70	27,02	15774	91,01	8,36	84.75	
Relave Total	98,95	0,03	3,13	30	8,99	91,64	15.25	
Cab. Calculada	100,00	0,34	3,38	195	100,00	100,00	100.00	
Cabeza Ensayada		0,38	3,70	223				

El balance metalúrgico proyectado nos muestra que, en el equilibrio, con el efecto de la carga circulante empleando un esquema de circuito cerrado para el tratamiento del mineral, podemos obtener una calidad de concentrado de 29,70 % de cobre y 15774 ppm de molibdeno, con una recuperación de 91,01 % y 84,75 % respectivamente corroborando incluir una segunda etapa de Limpieza.

Acumulada

A partir de las mejores condiciones de flotación, se procedió a realizar 20 pruebas de flotación rougher/scavenger acumulado en celda de 45 litros de capacidad, posteriormente el concentrado rougher acumulado fue remolido y

sometido a una etapa Cleaner en una celda de 2.5 Litros de laboratorio, con el fin de obtener concentrado Bulk suficiente para las pruebas de separación Cu/Mo de acuerdo al siguiente esquema.

de Cabeza

Mollenda

Rougher

Acond.

Scavenger

Riv. Finst

Acond.

Conc. Scv

Figura Nº 4.11: Esquema de flotación Acumulada

Fuente. Elaboración propia

El resumen de las condiciones y balance metalúrgico acumulado se presentan en las siguientes tablas.

Tabla N° 4.44: Condiciones de Flotación – Acumulada

Muestra:	Maestro 02								
Código de Prueba:	P. Acumula	da			Fecha:	25/07/2018			
Peso Alimento(g):	300.0			Grad	o de Remolier	nda: -			
% Sólidos Molienda:	66.0			P80	Remolienda (p	um): 55			
Grado de Molienda:	60% - m20	0			Celda(cc): blidos Flot.:	45			
P ₈₀ (μm):	120		33						
E4ono	Tiempo	empo Consumo de reactivos(g/t)							
Etapa	(min)	PO NH RPM							
Molienda	17,0	-	-	200,0	5,0	5,0	-		
Acond. Ro	5,0	9,0	1300	138,0	-	-	10,0		
Flot. Ro	16,0	9,0	1300	-	ı	-	-		
Acond. Scv	4,0	9,0	1300	79,0	2,5	-	10,0		
Flot. Scv	8,0	9,0	1300	-	-	-	-		
Remolienda	6,7	10,5	-	21,0	2,5	2,5	-		
Acond. CL 01	2,0	10,5	750,0		-	-	5,0		
Flot. CL 01	6,0	10,5	-	-					
Total	64,7	-	-	438,0	10,0	7,5	25,0		

Tabla N° 4.45: Balance Metalúrgico – Acumulada

	Daga		Leyes		Recuperación			
Productos	Peso	%		(ppm)	(%)			
	(%)	Cu	Fe	Mo	Cu	Fe	Mo	
Conc. Cu-Mo	1,01	26,57	28,49	14285	78,43	7,20	74,17	
Medios I	2,00	1,05	26,44	725	6,17	13,30	7,49	
Conc. Ro	3,01	9,58	27,13	5260	84,60	20,50	81,66	
Conc. Scv	2,23	1,21	8,89	1041	7,89	4,98	11,97	
Conc. Ro + Scv	5,23	6,02	19,36	3464	92,49	25,47	93,64	
Relave Scv	94,77	0,03	3,13	13	7,51	74,53	6,36	
Cab. Calculada	100,00	0,34	3,98	194	100,00	100,00	100,00	
Cabeza Ensayada		0.38	3.70	223				

- La recuperación de Cobre en el concentrado final es del orden de 78,43
 %, con una calidad que ensaya 26,57 %
- La recuperación de Molibdeno en el concentrado final es del orden de 74,17 %, con una calidad que ensaya 14285 ppm
- El hierro el principal contaminante se presenta en el orden de 7,20 % con una ley de 28,49 %
- Se obtuvo 3.01 Kg de concentrado final, el cual fue disgregado, homogenizado y repartido en 6 bolsas de aproximadamente 500 gr para pruebas de separación Cu/ Mo.

4.4. DISCUSIÓN DE RESULTADOS

4.4.1. Separación Cobre/Molibdeno

Conc. Cleaner

Bulk

Remolienda

Rougher

Scavenger

Riv. Final (Conc. Cu)

Conc. Rougher Mo

Conc. Scavenger Mo

Figura Nº 4.12: Esquema de flotación a nivel rougher/scavenger

Se realizaron pruebas de Flotación a nivel Rougher/Scavenger de separación, con y sin remolienda del concentrado Bulk acumulado, donde se evaluó la dosificación de colectores para Mo con el fin de obtener la máxima recuperación posible. Previo a las etapas de flotación se acondicionó la pulpa con carbón activado con la finalidad de absorber reactivos remanentes procedentes de la etapa Bulk.

En las siguientes tablas se presenta el resumen de las condiciones de flotación de cada prueba y los resultados metalúrgicos obtenidos.

Tabla N°4.46: Resumen de Condiciones a nivel Rougher/Scavenger

D	T74	Tiempo	TT			Consumo de	reactivos(g	/t)	
Prueba	Etapa	(min)	pН	C.A	NaSH	Diesel	Z-11	Na2SI03	MIBC
	Molienda	10,0	-	-	-	-	-	-	-
	Acond. 1	30,0	7,9	60,0	-	-	-	-	-
	Acond. 2	10,0	12,5	-	14000,0	-	-	-	-
P01	Acond. 3	5,0	12,5	-	-	15,0	-	100,0	25,0
	Flot. Ro. Mo	4,0	12,5	-	-	-	-	-	-
	Acond. 4	5,0	12,2	-	10,0	10,0	1	-	10,0
	Flot. Scv Mo	5,0	12,2	-	-	-	-	-	-
	Molienda	10,0	-	-	-	-	-	-	-
	Acond. 1	30,0	7,5	60,0	-	-	-	-	-
	Acond. 2	10,0	12,9	-	-	-	-	-	-
	Acond. 3	5,0	12,9	-	25,0	25,0	-	100,0	25,0
	Flot. Ro. Mo	6,0	12,9	-	-	-	-	-	-
	Acond. 4	5,0	12,1	-	10,0	10,0	2,0	-	10,0
	Flot. Scv Mo	5,0	12,1	-	-	-	-	-	-

Tabla Nº 4.47: Resumen - Resultados a nivel Rougher/Scavenger

- ·		Peso		Leyes		Recuperación			
Pruebas	Productos	Peso	%		(ppm)	ppm) (%)			
		(%)	Cu	Fe	Mo	Cu	Fe	Мо	
	Cc. Ro-Mo	9,67	19,85	20,64	12,01	7,75	6,98	81,18	
P01	Cc. Scv Mo	4,87	22,34	24,99	2,53	4,40	4,26	8,60	
	Cc. Ro + Scv	14,54	20,68	22,10	8,83	12,15	11,24	89,79	
	Cc. Ro-Mo	10,09	20,73	20,72	11,96	7,84	7,25	85,16	
P02	Cc. Scv Mo	4,72	25,59	27,50	2,40	4,52	4,49	7,98	
	Cc. Ro + Scv	14,80	22,28	22,88	8,92	12,36	11,74	93,13	

- ✓ Con remolienda del concentrado Cleaner Bulk (P80=23 µm), dosificación del colector Diesel (25 g/t) a nivel Rougher/Scavenger, Z-11(1 g/t) en la etapa Scavenger y 35 g/t de MIBC como espumante (a nivel Rougher/Scavenger), en la prueba P01 se obtuvo una recuperación de Mo a nivel rougher/scavenger de 89,79 %, con una calidad que ensaya 8,83 % con desplazamiento de 12,15 % y 11,24 % respecto al Cu y Fe.
- ✓ En la prueba P02 se incrementó la dosificación del colector (Diesel) a 25 g/t en la etapa Rougher y la adición de Z-11 (2 g/t) en la etapa Scavenger

manteniendo constantes los otros parámetros, los resultados obtenidos a nivel Rougher/Scavenger es de 93,13 % respecto al Mo, con una calidad que ensaya 8,92 %, reflejándose un notorio incremento en la recuperación comparado con la prueba P01 por el incremento del colector Diesel (Etapa Rougher) y Z-11(etapa Scavenger).

✓ Evaluando los resultados de ambas pruebas y en coordinación con el cliente se determinó incrementar el tiempo de flotación en la etapa Rougher de 5 a 6 minutos, mantener una dosificación del colector Diesel de 15 g/t a nivel Rougher y 2 g/t de Z-11 en la etapa Scavenger.

4.4.2. Evaluación a nivel Cleaner

Definidas las condiciones a nivel Rougher/Scavenger se realizaron pruebas de Flotación tipo Batch con 04 etapas de limpieza, con el fin de obtener concentrado de molibdeno con calidad comercial, también se incluyó una etapa Cleaner – scavenger para los medios I con la finalidad de evacuar la calcopirita/bornita/pirita e insolubles del sistema de acuerdo al siguiente esquema.

Cleaner Bulk

Remoliends

Rougher

Scavenger

RIV. Final (Conc. Cu)

Medios II

CI-II

Medios IV

CI-VI

Conc. Mo

Figura N^{o} 4.13: Esquema de flotación a nivel Cleaner

En las siguientes tablas se presenta el resumen de las condiciones de flotación de cada prueba y los resultados metalúrgicos obtenidos.

Tabla N° 4.48: Resumen de Condiciones a nivel Cleaner

Dunaha	Etono	Tiempo	TT			Consur	no de rea	activos(g/t)		
Prueba	Etapa	(min)	pН	C.A	NaSH	Diesel	Z-11	Na2SI03	MIBC	NaCN
	Remolienda	10,0	-	1	ı	-	-	i	-	-
	Flot. Ro Mo	6,0	10,9	60,0	12000,0	15,0	-	100,0	25,0	-
	Flot. Scv Mo	5,0	10,5	-	2000,0	10,0	2,0	-	10,0	-
P03	Flot. CL01 Mo	9,0	9,2	-	-	-	-	-	10,0	70,0
P03	Flot. CL02 Mo	4,0	9,0	-	-	-	-	-	10,0	70,0
	Flot. CL03 Mo	3,0	8,9	-	-	-	-	-	10,0	30,0
	Flot. CL04 Mo	3,0	8,8	-	-	-	-	-	10,0	20,0
	Flot. CL/Scv Mo	4,0	9,1	-	-	10,0	-	-	10,0	-
P04	Remolienda	10,0	-	ı	ı	-	-	i	-	-
P04	Flot. Ro Mo	6,0	10,8	60,0	14000,0	15,0	-	100,0	25,0	-

	Flot. Scv Mo	6,0	10,5	-	1000,0	10,0	2,0	=	10,0	-
	Flot. CL01 Mo	9,0	10,3	-	-	5,0	-	-	10,0	80,0
	Flot. CL02 Mo	4,0	10,1	-	-	-	-	-	10,0	80,0
	Flot. CL03 Mo	3,0	9,8	_	-	-	_	-	10,0	35,0
	Flot. CL04 Mo	3,0	9,3	-	-	-	-	•	10,0	25,0
	Flot. CL/Scv Mo	4,0	10,3	-	•	10,0	-	•	10,0	-
	Remolienda	10,0	-	-	-	-	-	•	-	-
	Flot. Ro Mo	6,0	10,6	60,0	14000,0	15,0	-	100,0	25,0	-
	Flot. Scv Mo	5,0	10,4	-	1000,0	10,0	2,0	•	10,0	-
P05	Flot. CL01 Mo	10,0	10,2	-	-	5,0	-	-	10,0	80,0
F05	Flot. CL02 Mo	3,5	9,4	-	-	-	-	-	10,0	80,0
	Flot. CL03 Mo	2,5	9,2	-	-	-	-	-	10,0	35,0
	Flot. CL04 Mo	2,0	8,9	-	-	-	-	•	10,0	25,0
	Flot. CL/Scv Mo	4,0	10,2	-	-	10,0	-	•	10,0	-

Fuente. Elaboración propia

Tabla N° 4.49: Resumen – Resultados a nivel Cleaner

ъ		Peso		Leyes		R	ecuperacio	ón
Pruebas	Productos	Peso	%		(ppm)	(%)		
		(%)	Cu	Fe	Mo	Cu	Fe	Mo
	Cc. CL Mo	1,27	1,25	2,89	52,85	0,06	0,13	48,86
P03	Cc. Ro + Scv	15,38	22,46	24,84	8,52	12,85	13,16	95,27
	Cc. Cu Final	84,62	27,69	29,79	0,08	87,15	86,84	4,73
	Cc. CL Mo	1,44	4,91	5,83	47,24	0,27	0,30	50,90
P04	Cc. Ro + Scv	16,12	23,67	24,17	7,91	14,65	13,97	95,47
	Cc. Cu Final	83,88	26,48	28,59	0,07	85,35	86,03	4,53
P05	Cc. CL Mo	1,36	5,76	8,64	45,41	0,29	0,41	49,08
	Cc. Ro + Scv	17,47	24,39	25,77	6,91	15,77	15,53	95,62
	Cc. Cu Final	83,53	27,57	29,66	0,07	84,23	84,47	4,38

- ✓ En la prueba P03 as recuperación de Mo en el concentrado final es de 48,86 %, con una calidad que ensaya 52,85 %, el Cu y Fe principales contaminantes se presenta en el orden de 0,06 % y 0,13 %, con leyes de 1,25 % y 2,89 % respectivamente. Por lo consiguiente se llegó a una ley comercial con respecto al Mo, pero una baja recuperación en el concentrado Final respecto a los elementos valiosos.
- ✓ En prueba P04 como variante se adicionó 5 g/t de Diesel (colector de Mo) en el acondicionamiento Cleaner con la finalidad de poder colectar la

mayor cantidad de Molibdenita y de esta manera poder incrementar la recuperación en el concentrado final, las otras condiciones a nivel Rougher/Scavenger y Cleaner se mantuvieron constantes, los resultados muestran una recuperación de Mo en el concentrado final es de 50,90 %, con una calidad que ensaya 47,24 %, el Cu y Fe principales contaminantes se presenta en el orden de 0,27 % y 0,30 %, con leyes de 4,91 % y 5,83 % respectivamente.

- ✓ Por lo consiguiente se llegó a una recuperación en el concentrado final mayor en comparación con la prueba P03 debido a la adición del colector en la primera etapa de limpieza, siendo también notorio el incremento de Cu y Fe por desplazamiento en el concentrado final.
- ✓ En la prueba P05 se disminuyó los tiempos de flotación en las etapas de limpiezas, manteniendo constante la dosificación del colector Diesel a 5 g/t en el acondicionamiento Cleaner 01 con la finalidad de minimizar el desplazamiento de Cu y Fe y tener una recuperación aceptable en el concentrad final, los resultados muestran una recuperación de Mo en el concentra o finales de 49,08 % ,con una calidad que ensaya 45,41 % el Cu y Fe principales contaminantes se presenta en el orden de 0,29 % y 0,41 %, con leyes de 5,76 % y 8,64% respectivamente.
- ✓ Por lo tanto, de acuerdo a los resultados de las pruebas tipo Batch, se observa que la adición de diesel en la primera etapa Cleaner incrementa la recuperación de Molibdenita en el concentrado final, pero perjudica en la calidad con respecto a este debido al incremento de Cu y Fe por desplazamiento.

4.4.3. Caracterización Química de Concentrados

A partir de la mejor prueba de separación Cu/Mo, se procedió a caracterizar los productos finales, con el fin de cuantificar elementos contaminantes y penalizables, cuyos resultados se muestran en las siguientes tablas.

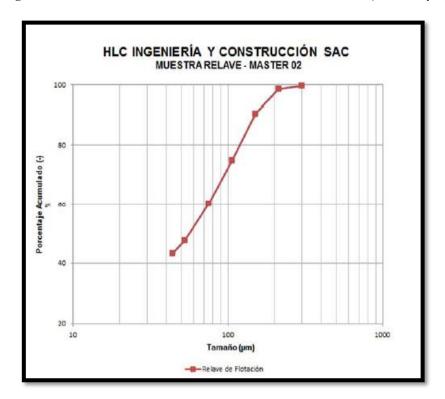
Tabla N° 4.50: Análisis Químico Tipo ICP – Productos Finales

Duo duoto o	Ag	Al	As	Ba	Be	Bi	Ca	Cd	Co
Productos	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm
Conc. Mo	15,10	0,24	145,00	61,00	<0,5	11,00	0,25	2,00	115,00
Conc. Cu	81,70	0,70	709,00	40,00	<0,5	<5	0,33	23,00	110,00
Productos	Cr	Cu	Fe	Ga	K	La	Li	Mg	Mn
Productos	ppm	ppm	%	ppm	%	ppm	ppm	%	ppm
Conc. Mo	189,00	>10000	2,76	<10	0,05	2,70	-	0,07	37,00
Conc. Cu	242,00	>10000	>15,00	<10	0,16	4,70	-	0,12	91,00
Duo dan atau	Mo	Na	Nb	Ni	P	Pb	S	Sb	Sc
Productos	ppm	%	ppm	ppm	%	ppm	%	ppm	ppm
Conc. Mo	>10000	0,03	33,00	27,00	0,01	66,00	>10,00	148,00	0,80
Conc. Cu	786,00	0,18	<1	105,00	<0,01	304,00	>10,00	294,00	4,10
Duo dar et e e	Sn	Sr	Ti	TL	V	W	Y	Zn	Zr
Productos	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm
Conc. Mo	23,00	14,20	0,05	<2	10,00	148,00	2,60	693,00	4,10
Conc. Cu	<10	23,60	0,03	<2	16,00	<10	3,40	3417,00	<0,5

Fuente. Elaboración propia

Tabla N° 4.51: Análisis por Insolubles – Productos Finales Cu/Mo

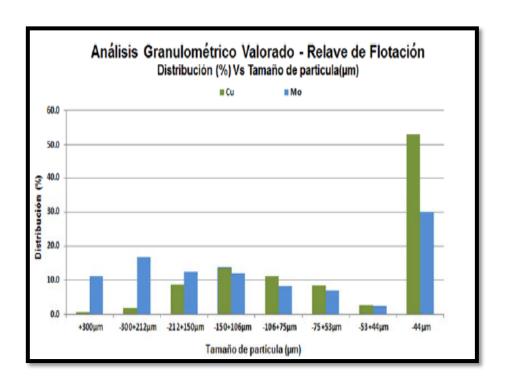
Productos	Insolubles
Productos	%
Conc. Mo	2,32
Conc. Cu	5,04


Fuente. Elaboración propia

4.4.4. Análisis de Malla Valoradas (muestra Relave – compósito Maestro 02)

El análisis de malla valorada del relave se realizó a una muestra representativa aforada a un kg de los dos últimos ciclos de la segunda prueba ciclo cerrado del composito Maestro 02 (las moliendas se realizaron a un P80 de 120 µm para dicha prueba). Seguidamente fue analizada

granulométricamente, la curva de distribución se presenta en la siguiente Figura:


Figura Nº 4.14: Análisis Granulométrico de relave – Maestro 02 (P80: 120 μm)

Fuente. Elaboración propia Tabla N°4.52: Análisis de Malla Valorada de relave – Maestro 02 (P80:120 $\mu m)$

M	alla	Peso	Ley	res	Distri	bución
IVI	ana	Peso	Cu	Mo	Cu	Mo
Tyler	(µm)	%	(%)	(ppm)	(%)	(%)
48	300	0,31	0,06	877	0,56	11,13
65	212	1,43	0,04	289	1,87	16,69
100	150	7,72	0,04	40	8,61	12,45
150	106	14,24	0,03	21	13,61	12,06
200	75	14,58	0,02	14	11,15	8,23
270	53	13,20	0,02	13	8,41	6,92
325	44	4,63	0,02	13	2,66	2,43
-325	-44	43,89	0,04	17	53,14	30,09
Relave (Relave Calculado		0,03	25	100,00	100,00
Relave Ensavado			0.03	25		

Figura Nº 4.15: Distribución del contenido metálico - Maestro 02

Fuente. Elaboración propia

Se observa que la distribución del contenido metálico en el relave para los elementos Cu y Mo se presenta en mayor proporción en la malla más fina.

Variabilidad

Se realizaron pruebas de variabilidad a partir de los compósitos Individuales y compósitos tramos, los que se detallan a continuación.

Compósitos Tramo

Se realizó una prueba de flotación Batch con una etapa de limpieza para cada compósito Tramo (08), a partir de las mejores condiciones de flotación obtenidas con el compósito Maestro 01, con el fin de evaluar la influencia de cada tramo en términos de recuperación y calidad de Cu, con respecto al compósito Maestro 02.

El resumen de las condiciones y resultados se muestran en las siguientes tablas

Tabla Nº 4.53: Condición de Flotación – Variabilidad de compósitos Tramo

Muestra:	Bloque 02/	Compós	itos Tramo			
Código de Prueba:	P01			Fecha:	18/08/20	18
Peso Alimento(g):	2000		Vo	ol. Celda(cc):	600	00
% Sólidos Molienda:	66,6		%	Sólidos Flot.:	32	
Grado de Molienda:	60% - m20	0	P ₈	₀ (μm):	120 aj	prox
T	Tiempo	**	(Consumo de r	eactivos(g	g/t)
Etapa	(min)	pН	P-3302	Diesel	MICB	-
Molienda	-	-	5,0	5,0	-	-
Acond. Ro	5,0	9,0	-	-	10,0	-
Flot. Ro Cu/Mo	8,0	9,0	-	-	-	-
Acond. Scv	2,0	9,0	2,5	-	10,0	-
Flot. Scv Cu/Mo	4,0	9,0	-	-	-	-
Total	-	-	7,5	5,0	20,0	-

Las condiciones se mantuvieron constantes para compósito Tramo, variando en el tiempo necesario para llegar a un grado de molienda de 60 % -m200 ya que cada compósito Tramo presenta su propio test de moliendabilidad.

El resumen de los resultados se presenta en la siguiente tabla.

Tabla N° 4.54: Balance Metalúrgico – compósitos Tram

a		Daga		Leyes		R	ecuperacio	ón
Compósitos	Productos	Peso		%	(ppm)		(%)	
		(%)	Cu	Fe	Mo	Cu	Fe	Mo
	Cc. CL Bulk	0,89	24,94	29,28	7639	62,08	7,27	57,90
Tramo 01	Cc. Ro Bulk	2,99	9,78	20,27	2778	81,67	16,88	70,62
	Cc. Ro + Scv	4,35	6,90	15,48	1958	83,71	18,74	72,35
	Cc. CL Bulk	0,80	26,74	27,50	14500	54,61	6,08	51,86
Tramo 02	Cc. Ro Bulk	2,64	11,71	22,19	6003	78,76	16,15	70,72
	Cc. Ro + Scv	4,84	6,76	15,39	3760	83,48	20,55	81,28
	Cc. CL Bulk	0,61	32,97	23,96	10556	55,56	4,37	52,96
Tramo 03	Cc. Ro Bulk	2,57	11,64	17,12	3708	82,62	13,15	78,38
	Cc. Ro + Scv	3,97	7,75	13,34	2510	84,90	15,80	81,86
	Cc. CL Bulk	0,53	32,30	23,66	32793	50,34	3,62	66,39
Tramo 04	Cc. Ro Bulk	2,51	11,19	16,34	9496	83,21	11,94	91,73
	Cc. Ro + Scv	3,90	7,41	12,39	62,31	85,75	14,09	93,71
	Cc. CL Bulk	0,81	29,00	27,35	15725	68,25	5,45	63,31
Tramo 05	Cc. Ro Bulk	2,14	14,82	18,31	8202	92,12	9,63	87,24
	Cc. Ro + Scv	3,52	9,18	13,00	5113	93,84	11,25	89,46
	Cc. CL Bulk	0,85	29,73	28,85	10770	71,29	5,93	45,09
Tramo 06	Cc. Ro Bulk	2,31	14,35	17,37	7204	93,88	9,75	8228
	Cc. Ro + Scv	3,71	9,03	12,54	4533	95,09	11,33	83,32
Tramo 07	Cc. CL Bulk	0,82	30,37	27,55	18598	70,99	5,90	66,42

	Cc. Ro Bulk	2,31	14,40	16,66	9230	94,60	10,03	92,66
	Cc. Ro + Scv	3,89	8,62	11,70	5532	95,62	11,88	93,73
	Cc. CL Bulk	0,69	31,49	28,79	19225	62,55	5,59	58,44
Tramo 08	Cc. Ro Bulk	1,97	17,07	19,15	10850	96,53	10,60	93,93
	Cc. Ro + Scv	3,55	9,55	12,75	6077	97,50	12,72	94,91

- ✓ Los compositos Tramo 01, 02, 03 y 04 tienen recuperaciones a nivel rougher/scavenger que fluctúan entre 83,48 % a 85,75 % para el Cu y 72,35 % a 93,71 % para el Mo.
- ✓ Los compositos Tramo 05, 06, 07 y 08 tienen influencia directa en la recuperación y calidad del composito Maestro 02 debido a que ellos aportan la mayor masa al composito Maestro 02, teniendo recuperaciones que fluctúan entre 93.84 % a 97.50 % para el Cu y de 83.32 % a 94.91% para el Mo.

Compósitos Individuales

Se realizó una prueba de flotación rougher/scavenger para cada compósito individual (65 compósitos), a partir de las mejores condiciones de flotación obtenidas con el compósito Maestro 01, con el fin de evaluar el comportamiento metalúrgico de las especies valiosas de Cu y Mo y su influencia en los resultados obtenidos en cada compósito Tramo y Maestro 2. El resumen de condiciones y resultados a nivel Rougher/Scavenger se muestra en las siguientes tablas.

Tabla N° 4.55: Condición de Flotación – Variabilidad de compósitos Individuales

Muestra:	Bloque 02/	Bloque 02/ Compósitos individuales								
Código de Prueba:	P01	•		Fecha:	05/09/20	18				
Peso Alimento(g):	2000	Vol. Celda(cc): 6000								
% Sólidos Molienda:	66,6		% Sólidos Flot.: 32							
Grado de Molienda:	60% - m20	0	P_8	₈₀ (µm):	120 a _j	prox				
Etono	Tiempo	»II		Consumo de r	eactivos(g	;/t)				
Etapa	(min)	pН	P-3302 Diesel MICB -							
Molienda	-	-	5,0 5,0							

Acond. Ro	5,0	9,0	-	-	10,0	-
Flot. Ro Cu/Mo	8,0	9,0	-	-	-	-
Acond. Scv	2,0	9,0	2,5	-	10,0	-
Flot. Scv Cu/Mo	4,0	9,0	-	-	ı	-
Total	-	-	7,5	5,0	20,0	-

Fuente. Elaboración propia

Tabla N° 4.56: Balance Metalúrgico – compósitos Individuales (1/2)

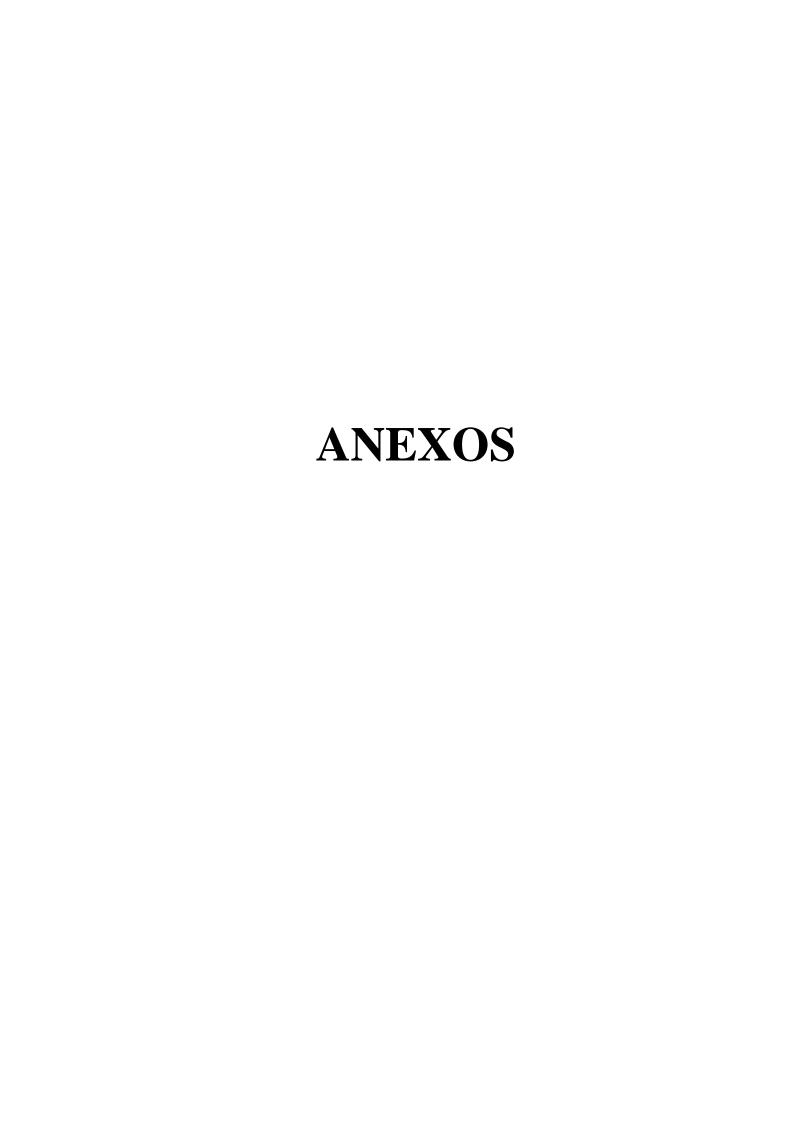
Código de		Peso Leyes				R	ecuperaci	ón
muestras	Etapa	Peso		%	(ppm)		(%)	
		(%)	Cu	Fe	Mo	Cu	Fe	Mo
Compósito 01	Cc. Ro+Scv	3,56	7,29	8,87	1959	67,08	9,27	42,45
Compósito 03	Cc. Ro+Scv	5,41	7,45	18,96	2245	88,93	28,20	92,77
Compósito 03	Cc. Ro+Scv	4,69	6,85	13,78	2078	85,53	20,78	78,50
Compósito 04	Cc. Ro+Scv	5,04	7,06	17,11	1815	78,11	20,81	40,41
Compósito 05	Cc. Ro+Scv	4,28	7,07	15,70	1813	83,60	18,05	72,32
Compósito 06	Cc. Ro+Scv	4,35	7,48	16,79	5254	91,15	19,74	89,17
Compósito 07	Cc. Ro+Scv	5,29	7,30	23,23	5794	82,08	30,83	96,14
Compósito 08	Cc. Ro+Scv	4,11	7,21	22,14	2874	84,65	22,42	84,85
Compósito 09	Cc. Ro+Scv	4,53	7,03	19,11	2181	8264	25,76	91,18
Compósito 10	Cc. Ro+Scv	4,64	6,63	26,56	2746	83,43	36,08	88,12
Compósito 11	Cc. Ro+Scv	4,37	8,03	20,87	2780	89,29	24,01	91,36
Compósito 12	Cc. Ro+Scv	4,71	7,10	21,18	3840	86,23	30,66	94,05
Compósito 13	Cc. Ro+Scv	4,07	7,15	10,41	8439	87,08	12,45	94,21
Compósito 14	Cc. Ro+Scv	3,69	9,21	13,08	8436	96,19	12,07	95,28
Compósito 15	Cc. Ro+Scv	3,67	9,11	13,77	5359	94,05	12,37	92,74
Compósito 16	Cc. Ro+Scv	3,75	9,25	12,32	5810	94,49	12,50	94,57
Compósito 17	Cc. Ro+Scv	3,73	8,59	11,46	7597	95,14	13,11	95,77
Compósito 18	Cc. Ro+Scv	4,77	8,98	11,47	3750	96,78	14,63	93,53
Compósito 19	Cc. Ro+Scv	3,66	8,69	12,62	4862	94,02	12,69	92,96
Compósito 20	Cc. Ro+Scv	3,70	8,82	12,03	3450	94,16	10,98	91,07
Compósito 21	Cc. Ro+Scv	3,44	9,27	12,00	5655	93,22	13,62	93,07
Compósito 22	Cc. Ro+Scv	4,03	9,03	12,54	2956	96,19	13,09	92,55
Compósito 23	Cc. Ro+Scv	3,78	8,45	11,85	2849	94,59	9,94	89,60
Compósito 24	Cc. Ro+Scv	4,04	8,81	12,16	2193	93,92	11,36	89,35
Compósito 25	Cc. Ro+Scv	3,99	9,32	12,25	3660	95,56	12,44	92,13
Compósito 26	Cc. Ro+Scv	3,67	9,94	12,07	3675	94,98	10,21	92,10
Compósito 27	Cc. Ro+Scv	4,33	8,70	12,24	3703	91,83	11,44	89,81
Compósito 28	Cc. Ro+Scv	3,22	9,58	13,98	4738	93,27	8,05	91,31
Compósito 29	Cc. Ro+Scv	3,95	8,96	12,01	3039	94,61	11,14	92,60
Compósito 30	Cc. Ro+Scv	4,27	8,69	12,14	2778	95,33	11,03	92,53

Los resultados obtenidos muestran que los compósitos individuales iniciales (compósitos 1 al 13) presentan la menor recuperación de Cu a nivel Rougher/Scavenger, mientras que los compósitos 13 al 62, son los que presentan mayor recuperación, corroborando así los resultados de las pruebas de variabilidad de los compósitos Tramo, ya que estos forman parte de los compósitos Tramos 05, 06, 07 y 08, y a su vez están presente en mayor proporción en el compósito Maestro 01.

CONCLUSIONES

En base a los análisis de las muestras y a los resultados obtenidos en las pruebas metalúrgicas a nivel Laboratorio, se ofrecen los siguientes comentarios:

- 1. El análisis químico de la muestra compósito Maestro 01 reporta valores valiosos de 1,10 g/t de Ag, 0,01 g/t en Au, 0,38 % en Cu y 223 ppm de Mo; mientras que el contaminante Fe reporta un valor de, 3,70 %.
- 2. La distribución del contenido metálico de los elementos valiosos en la cabeza a un grado (Maestro 01) de molienda de 120 μm de P80, indica que el mayor porcentaje se encuentra en las fracciones menores a 44 micras. (Cu; 53,28 %, Mo; 42,00 %).
- 3. La distribución del contenido metálico de los elementos valiosos en el relave (Maestro 01) a un grado de molienda de 120 µm de P80, indica también que el mayor porcentaje no recuperable se encuentra en las fracciones menores a 44 micras. (Cu; 53,14 %, Mo; 30,09 %).
- 4. El material necesita una molienda moderada; un grado de molienda de 120 μm de P80 se puede considerar adecuada y suficiente para su procesamiento en la etapa de flotación Rougher/Scavenger (60 % -m200 Ty).
- 5. De las pruebas de flotación se concluye que el mineral presenta un comportamiento dócil a la flotación.
- 6. Las condiciones propuestas con el que se desempeña mejor la muestra compósito Master 02, se compone del A-3302 como colector primario interactuando con el petróleo como colector del Mo; el espumante utilizado es el MIBC. El pH de flotación se encuentra en 9,0 para la etapa Rougher/Scavenger y 10,5 en las etapas de limpiezas.


- 7. Para las etapas de limpieza se consideró la Remolienda del Concentrado Rougher, a un grado de 55 µm de P80 con la finalidad de bajar la presencia de Mixtos.
- 8. De las pruebas de flotación de Ciclo Cerrado, la recuperación obtenida al trabajar con un esquema de circuito cerrado con etapa de Limpieza fue de 91,69 % de Cu y 88,38 % de Mo. Mientras que al trabajar en un circuito cerrado con dos etapas de Limpieza la recuperación de Cu fue de 91,01 % de Cu y 84,75 % de Mo. El grado de concentrado alcanzado al trabajar en circuito cerrado con una etapa de Limpieza fue de 21,39 % en Cu y 11844 ppm en Mo, mientras que con dos etapas de Limpieza considerando un circuito cerrado es de 29,70 % en Cu y 15774 ppm en Mo.
- 9. De las pruebas de separación Cu/Mo molibdeno se puede concluir que es factible obtener una ley comercial en el concentrado de Mo, pero también se recomienda realizar pruebas adicionales para poder mejorar la recuperación del Mo en el concentrado Final.

RECOMENDACIONES

- Las muestras entregadas por geología deben de ser clasificadas por códigos y fechas de recolección para agrupar en compósitos.
- 2. El análisis químico debe de ser reforzado con un análisis mineragráfico y microscópico para poder reconocer que partículas enriquecidas pasan a relave.
- La separación del cobre con el molibdeno se debe de seguir investigando para mejorar la recuperación.
- 4. Volcan Compañía Minera debe de implementar con otros equipos para seguir realizando investigaciones.
- 5. La UNDAC debe de implementar su laboratorio químico y metalúrgico para realizar investigaciones para hacer nuestras tesis.

BIBLIOGRAFÍA

- BUENO BULLON, Héctor. (2003). Técnica Experimental e Ingeniería Básica en Plantas Concentradoras, 1º Edición.
- QUIROZ NUÑEZ, Iván. (1986). Ingeniería Metalúrgica Operaciones Unitarias en Procesamiento de minerales. Perú.
- SUTULOV Alexander, (2005). Flotación de Minerales, Instituto de investigaciones Tecnológicas, Concepción.
- 4. TECSUP. (2010). Actualización en Procesos de Tratamiento de Minerales, Arequipa.
- 5. WILLS, Barry y Tim NAPIER-MUNN. Tecnología de procesamiento de mineral. Séptima edición. Estados Unidos de América: Elsevier Science & Technology Books. Pp.378-389.

MATRIZ DE CONSISTENC	'IA
TÍTH O	

"Evaluación metalúrgica a minerales de Cu y Mo para la determinación del proceso de flotación a nivel de laboratorio en Empresa Administradora Cerro S.A.C, Pasco - 2019"

PROBLEMA	OBJETIVO	HIPÓTESIS	VARIABLES	METODOLOGÍA
GENERAL	GENERAL	GENERAL	DEPENDIENTE	MÉTODO
¿Cómo realizar la evaluación metalúrgica a minerales de Cu y Molibdeno para la determinación del proceso de flotación a nivel de laboratorio en Empresa Administradora Cerro S.A.C? ESPECÍFICO 1. ¿Cuál es la granulometría que se debe ensayar para la obtención	de Cu y Mo para la determinación del proceso de flotación a nivel de laboratorio en Empresa Administradora Cerro SAC ESPECIFÍCO	Si evaluamos metalúrgicamente a los minerales de Cu y Mo entonces podemos determinar el proceso de flotación a nivel de laboratorio en Empresa Administradora Cerro SAC. ESPECÍFICO 1. Si determinamos la granulometría que se debe ensayar entonces podemos obtener el	Determinación del proceso de flotación nivel de laboratorio en Empresa Administradora Cerro S.A.C. INDEPENDIENTE Evaluación metalúrgica a minerales de Cu y Mo.	Científico: Aplicada DISEÑO Experimental
de cobre - molibdeno a nivel de laboratorio? 1. ¿Con qué método se podrá obtener mejor recuperación para	cobre - molibdeno a nivel de laboratorio.	cobre - molibdeno a nivel de laboratorio. 2. Si determinamos el método en que se podrá obtener mejor recuperación entonces	INTERVINIENTES	TIPO
la obtención de cobre - molibdeno a nivel de laboratorio?		podemos obtener el cobre - molibdeno a nivel de laboratorio.	Granulometría pH Reactivos de flotación	Cuasiexperimental, Observación.

RESULTADOS PRUEBAS DE USO DE NASH EN VARIACIÓN DE ORP Y PRECIPITACIÓN DE METALES

TABLA 56: VARIACIÓN DE pH/ORP EN EL TIEMPO DE UNA SOLUCIÓN MINERAL FILTRADA AGREGANDO UN TOTAL DE 40 [ML] DE NaSH (40 [ML] INICIALMENTE)

t [s]	pН	ORP	t [s]	pН	ORP	t[s]	pН	ORP	t [s]	pН	ORP
	_	[mV]		_	[mV]		_	[mV]		_	[mV]
0	6,41	-265	11	10,55	-539	22	10,56	-542	33	10,57	-552
1	6,43	-351	12	10,55	-540	23	10,59	-551	34	10,6	-552
2	7,34	-412	13	10,53	-546	24	10,57	-551	35	10,58	-552
3	9,04	-451	14	10,57	-547	25	10,56	-549	36	10,57	-550
4	9,72	-462	15	10,53	-545	26	10,59	-551	37	10,57	-553
5	9,96	-477	16	10,55	-545	27	10,58	-552	38	10,57	-553
6	10,24	-491	17	10,58	-548	28	10,58	-553	39	10,59	-553
7	10,46	-512	18	10,57	-550	29	10,57	-552	40	10,59	-553
8	10,47	-532	19	10,55	-547	30	10,58	-550	41	10,59	-549
9	10,47	-533	20	10,59	-547	31	10,57	-551	42	10,57	-552
10	10,4	7	-532	21	10,5	7	-549	32	10,	58 -	549

TABLA 57: VARIACIÓN DE pH/ORP EN EL TIEMPO DE UNA SOLUCIÓN MINERAL FILTRADA AGREGANDO UN TOTAL DE 40 [ML] DE NaSH (40 [ML] INICIALMENTE). DUPLICADO.

t [s]	рН	ORP [mV]	t [s]	рН	ORP [mV]	t [s]	pН	ORP [mV]	t [s]	рН	ORP [mV]
0	5,81	-144	13	10,52	-538	26	10,54	-543	39	10,56	-542
1	5,81	-321	14	10,51	-537	27	10,55	-538	40	10,54	-542
2	9,49	-492	15	10,54	-536	28	10,54	-539	41	10,53	-538
3	10,17	-505	16	10,53	-537	29	10,54	-541	42	10,56	-539
4	10,38	-517	17	10,52	-540	30	10,53	-541	43	10,54	-540
5	10,42	-527	18	10,55	-542	31	10,56	-543	44	10,53	-541
6	10,42	-529	19	10,54	-540	32	10,54	-541	45	10,56	-541
7	10,41	-532	20	10,52	-541	33	10,53	-539	46	10,55	-541
8	10,48	-532	21	10,55	-539	34	10,55	-542	47	10,55	-537
9	10,5	-532	22	10,54	-540	35	10,53	-542	48	10,55	-538
10	10,49	-534	23	10,52	-540	36	10,54	-541	49	10,53	-540
11	10,49	-535	24	10,55	-542	37	10,54	-539	50	10,55	-540
12	10,5	4	-537	25	10,5	54	-542	38	10,	52 -	538

TABLA 58: VARIACIÓN DE pH/ORP EN EL TIEMPO DE UNA SOLUCIÓN MINERAL FILTRADA AGREGANDO UN TOTAL DE 40 [ML] DE NaSH (20 [ML] INICIALMENTE Y 20 [ML] A LOS 60 [S])

t [s]	рН	ORP [mV]	t [s]	pН	ORP [mV]	t [s]	pН	ORP [mV]	t [s]	pН	ORP [mV]
0	6,07	-118	23	10,22	-519	46	10,21	-523	69	10,6	-553
1	6,05	-348	24	10,22	-522	47	10,21	-523	70	10,58	-550
2	9,19	-452	25	10,2	-524	48	10,24	-522	71	10,59	-550
3	9,9	-475	26	10,22	-520	49	10,22	-524	72	10,58	-553
4	9,9	-484	27	10,22	-520	50	10,21	-524	73	10,57	-549
5	10,11	-496	28	10,2	-522	51	10,25	-524	74	10,59	-552
6	10,1	-500	29	10,2	-525	52	10,23	-522	75	10,57	-552
7	10,09	-502	30	10,21	-525	53	10,21	-523	76	10,6	-553
8	10,14	-504	31	10,19	-524	54	10,24	-524	77	10,58	-553
9	10,14	-507	32	10,22	-521	55	10,24	-526	78	10,58	-553
10	10,13	-512	33	10,21	-523	56	10,24	-524	79	10,59	-550
11	10,12	-513	34	10,2	-525	57	10,22	-521	80	10,57	-550
12	10,18	-512	35	10,24	-524	58	10,24	-523	81	10,59	-553
13	10,16	-513	36	10,22	-522	59	10,24	-523	82	10,58	-553
14	10,16	-517	37	10,21	-523	60	10,22	-525	83	10,57	-550
15	10,18	-517	38	10,21	-523	61	10,26	-523	84	10,57	-550

16	10,16	-516	39	10,21	-522	62	10,44	-534	85	10,6	-550
17	10,2	-517	40	10,21	-525	63	10,54	-541	86	10,58	-553
18	10,19	-520	41	10,21	-522	64	10,53	-547	87	10,58	-550
19	10,17	-521	42	10,21	-522	65	10,6	-551	88	10,6	-550
20	10,22	-521	43	10,2	-525	66	10,59	-549	89	10,58	-549
21	10,2	-519	44	10,22	-525	67	10,58	-548	90	10,57	-553
22	10,1	9	-519	45	10,	22	-523	68	10,6		-551

TABLA 59: VARIACIÓN DE PH/ORP EN EL TIEMPO DE UNA SOLUCIÓN MINERAL FILTRADA AGREGANDO UN TOTAL DE 40 [ML] DE NASH (20 [ML] INICIALMENTE Y 20 [ML] A LOS 60 [S]). DUPLICADO

t [s]	pН	ORP [mV]	t [s]	рН	ORP [mV]	t [s]	pН	ORP [mV]	t [s]	рН	ORP [mV]
0	6,39	-130	23	10,22	-514	46	10,22	-520	69	10,59	-546
1	6,38	-133	24	10,2	-515	47	10,21	-521	70	10,58	-546
2	8,4	-431	25	10,2	-513	48	10,26	-520	71	10,59	-547
3	9,78	-455	26	10,22	-514	49	10,24	-521	72	10,61	-549
4	9,9	-474	27	10,22	-513	50	10,22	-519	73	10,6	-550
5	9,98	-483	28	10,2	-514	51	10,26	-518	74	10,58	-550
6	10,09	-487	29	10,24	-516	52	10,24	-518	75	10,59	-548
7	10,09	-491	30	10,22	-518	53	10,23	-518	76	10,59	-547
8	10,1	-493	31	10,21	-516	54	10,26	-520	77	10,57	-547
9	10,1	-494	32	10,25	-514	55	10,24	-521	78	10,57	-547
10	10,17	-500	33	10,22	-516	56	10,24	-520	79	10,61	-547
11	10,15	-502	34	10,22	-518	57	10,23	-518	80	10,59	-549
12	10,15	-502	35	10,24	-519	58	10,25	-518	81	10,57	-550
13	10,2	-501	36	10,22	-519	59	10,23	-520	82	10,59	-550
14	10,18	-502	37	10,22	-517	60	10,24	-521	83	10,59	-549
15	10,17	-506	38	10,22	-516	61	10,24	-519	84	10,57	-547
16	10,22	-508	39	10,2	-517	62	10,42	-534	85	10,57	-546
17	10,2	-509	40	10,2	-519	63	10,51	-539	86	10,57	-547
18	10,19	-508	41	10,23	-520	64	10,58	-544	87	10,59	-549
19	10,23	-507	42	10,21	-517	65	10,59	-546	88	10,57	-550
20	10,21	-508	43	10,22	-519	66	10,57	-547	89	10,57	-550
21	10,2	-509	44	10,24	-521	67	10,57	-546	90	10,6	-551
22	10,23	-511	45	10,22	-520	68	10,61	-545	91	10,59	-549

TABLA 60: VARIACIÓN DE pH/ORP EN EL TIEMPO DE UNA SOLUCIÓN MINERAL FILTRADA AGREGANDO UN TOTAL DE 40 [ML] DE NaSH (5 [ML] INICIALMENTE Y 5 [ML] CADA 15 [S])

t [s]	рН	ORP [mV]	t [s]	рН	ORP [mV]	t [s]	рН	ORP [mV]	t [s]	рН	ORP [mV]
0	5,92	-128	33	9,84	-490	66	10,38	-530	99	10,56	-541
1	5,91	-132	34	9,83	-490	67	10,36	-532	100	10,55	-539
2	5,89	-353	35	9,93	-492	68	10,39	-530	101	10,58	-539
3	8,91	-422	36	9,92	-492	69	10,39	-531	102	10,57	-539
4	9,08	-423	37	9,9	-494	70	10,37	-530	103	10,55	-541
5	9,07	-429	38	9,94	-497	71	10,36	-529	104	10,58	-542
6	9,06	-431	39	9,93	-498	72	10,41	-532	105	10,57	-543
7	9,11	-432	40	9,92	-497	73	10,39	-533	106	10,56	-541
8	9,11	-435	41	9,94	-496	74	10,39	-533	107	10,59	-543
9	9,09	-437	42	9,94	-497	75	10,37	-532	108	10,63	-545
10	9,09	-437	43	9,92	-500	76	10,41	-530	109	10,63	-545
11	9,13	-438	44	9,92	-499	77	10,4	-533	110	10,6	-547
12	9,11	-434	45	9,94	-502	78	10,42	-536	111	10,61	-546
13	9,11	-434	46	9,95	-502	79	10,49	-538	112	10,62	-546
14	9,1	-435	47	9,93	-503	80	10,48	-538	113	10,6	-547
15	9,13	-437	48	10,13	-515	81	10,47	-535	114	10,6	-546
16	9,09	-439	49	10,17	-514	82	10,5	-538	115	10,63	-547

17 18	9,11 9,12	-440 -448	50 51	10,15 10,18	-515 -519	83 84	10,48 10.48	-539 -537	116 117	10,6 10,6	-547 -545
19	9,12	-440 -462	52	10,18	-519 -519	85	10,48	-537 -537	118	10,63	-546
20	9,46	-465	53	10,19	-517	86	10,47	-537	119	10,61	-546
21	9,56	-465	54	10,2	-518	87	10,49	-535	120	10,6	-544
22	9,55	-467	55	10,22	-518	88	10,47	-537	121	10,63	-543
23	9,54	-467	56	10,2	-518	89	10,47	-536	122	10,63	-543
24	9,56	-467	57	10,22	-520	90	10,49	-538	123	10,62	-542
25	9,56	-469	58	10,22	-522	91	10,49	-538	124	10,6	-544
26	9,55	-469	59	10,22	-522	92	10,48	-538	125	10,63	-546
27	9,55	-470	60	10,22	-519	93	10,57	-538	126	10,62	-546
28	9,55	-470	61	10,22	-519	94	10,57	-539	127	10,6	-542
29	9,59	-467	62	10,24	-524	95	10,55	-541	128	10,63	-542
30	9,57	-467	63	10,29	-530	96	10,55	-542	129	10,62	-544
31	9,56		-469	64	10,	32	-529	97	10,5	55 -	543
32	9,71		-480	65	10,	4	-532	98	10,5	58 -	542

TABLA 61: VARIACIÓN DE pH/ORP EN EL TIEMPO DE UNA SOLUCIÓN MINERAL FILTRADA AGREGANDO UN TOTAL DE 40 [ML] DE NaSH (5 [ML] INICIALMENTE Y 5 [ML] CADA 15 [S]). DUPLICADO

t [s]	рН	ORP [mV]	t [s]	рН	ORP [mV]	t [s]	рН	ORP [mV]	t [s]	рН	ORP [mV]
0	6,44	-140	32	9,86	-480	64	10,36	-527	96	10,54	-540
1	6,43	-147	33	9,85	-481	65	10,36	-528	97	10,56	-542
2	6,43	-327	34	9,88	-485	66	10,34	-527	98	10,56	-543
3	8,71	-410	35	9,94	-487	67	10,38	-525	99	10,54	-541
4	8,94	-412	36	9,92	-486	68	10,37	-525	100	10,54	-539
5	9,05	-411	37	9,91	-486	69	10,35	-526	101	10,58	-538
6	9,04	-415	38	9,95	-492	70	10,38	-529	102	10,56	-540
7	9,1	-417	39	9,93	-492	71	10,38	-529	103	10,54	-542
8	9,1	-419	40	9,93	-492	72	10,36	-525	104	10,54	-542
9	9,1	-419	41	9,93	-493	73	10,36	-527	105	10,57	-542
10	9,1	-423	42	9,92	-494	74	10,39	-525	106	10,59	-546
11	9,1	-424	43	9,92	-496	75	10,38	-529	107	10,58	-544
12	9,13	-423	44	9,96	-496	76	10,42	-535	108	10,63	-543
13	9,1	-422	45	9,94	-496	77	10,49	-535	109	10,62	-543
14	9,1	-420	46	9,98	-501	78	10,48	-533	110	10,6	-545
15	9,11	-426	47	10,13	-504	79	10,46	-532	111	10,6	-547
16	9,14	-433	48	10,12	-509	80	10,5	-532	112	10,63	-547
17	9,46	-449	49	10,14	-511	81	10,48	-534	113	10,61	-547
18	9,48	-451	50	10,19	-512	82	10,46	-536	114	10,6	-546
19	9,54	-453	51	10,17	-511	83	10,5	-536	115	10,63	-543
20	9,52	-455	52	10,2	-511	84	10,49	-534	116	10,61	-543
21	9,56	-457	53	10,2	-516	85	10,47	-535	117	10,6	-545
22	9,57	-455	54	1018	-516	86	10,5	-533	118	10,63	-547
23	9,55	-459	55	10,23	-513	87	10,5	-533	119	10,62	-547
24	9,57	-456	56	10,23	-514	88	10,47	-537	120	10,62	-546
25	9,57	-459	57	10,21	-514	89	10,47	-537	121	10,59	-547
26	9,58	-461	58	10,2	-517	90	10,49	-537	122	10,6	-545
27	9,56	-461	59	10,21	-516	91	10,52	-539	123	10,61	-544
28	9,57	-458	60	10,21	-517	92	10,51	-537	124	10,59	-546
29	9,6	-459	61	10,35	-523	93	10,52	-537	125	10,59	-544
30	9,58	-458	62	10,36	-523	94	10,58	-539	126	10,63	-543
31	9,57	-	-461	63	10,3	35	-524	95	10,	56 -	538

TABLA 62: VARIACIÓN DE pH/ORP EN EL TIEMPO DE AGUA DESTILADA AGREGANDO UN TOTAL DE 40 [ML] DE NaSH (40 [ML] INICIALMENTE)

t [s]	pН	ORP [mV]	t [s]	рН	ORP [mV]	t [s]	рН	ORP [mV]	t [s]	рН	ORP [mV]
0	6,19	-206	18	11,21	-562	35	11,25	-566	53	11,26	-567
1	6,19	-326	19	11,25	-564	36	11,25	-566	54	11,25	-566
2	9,92	-399	20	11,23	-564	37	11,23	-566	55	11,27	-565
3	10,32	-450	21	11,23	-563	38	11,23	-567	56	11,26	-565
4	10,94	-487	22	11,23	-565	39	11,23	-567	57	11,26	-567
5	11	-505	23	11,22	-566	40	11,25	-564	58	11,25	-568
6	11,1	-515	24	11,26	-565	41	11,25	-565	59	11,29	-567
7	11,18	-527	25	11,24	-564	42	11,27	-564	60	11,27	-566
8	11,18	-537	26	11,24	-565	43	11,26	-565	61	11,26	-566
9	11,17	-543	27	11,24	-566	44	11,25	-567	62	11,26	-568
10	11,17	-546	28	11,23	-565	45	11,25	-566	63	11,25	-568
11	11,21	-549	29	11,26	-566	46	11,28	-567	64	11,28	-568
12	11,19	-551	30	11,26	-566	47	11,26	-566	65	11,27	-566
13	11,19	-554	31	11,25	-565	48	11,25	-567	66	11,26	-566
14	11,22	-557	32	11,24	-567	49	11,27	-566	67	11,28	-566
15	11,2	-557	33	11,26	-568	50	11,27	-565	68	11,27	-566
16	11,2	3	-559	34	11,2	25	-567	51	11,2	25 -	567
17	11,2	3	-559	35	11,2	25	-566	52	11,2	25 -	567

TABLA 63: VARIACIÓN DE PH/ORP EN EL TIEMPO DE AGUA DESTILADA AGREGANDO UN TOTAL DE 40 [ML] DE NASH (20 [ML] INICIALMENTE Y 20 [ML] A LOS 60 [S])

t [s]	рН	ORP [mV]									
0	6,09	-250	31	10,98	-544	62	11,18	-586	93	11,22	-576
1	6,15	-252	32	10,97	-545	63	11,16	-578	94	11,26	-577
2	6,12	-471	33	11	-544	64	11,16	-571	95	11,23	-575
3	9,67	-500	34	10,98	-545	65	11,16	-573	96	11,23	-575
4	10,75	-501	35	10,97	-546	66	11,17	-573	97	11,24	-577
5	10,84	-515	36	11	-546	67	11,23	-572	98	11,24	-576
6	10,83	-521	37	10,98	-547	68	11,22	-572	99	11,23	-576
7	10,93	-522	38	10,97	-545	69	11,2	-572	100	11,25	-576
8	10,93	-523	39	10,97	-545	70	11,2	-573	101	11,22	-576
9	10,92	-525	40	11	-545	71	11,23	-574	102	11,26	-577
10	10,9	-529	41	10,98	-547	72	11,21	-574	103	11,24	-577
11	10,96	-532	42	10,98	-547	73	11,2	-575	104	11,23	-575
12	10,94	-533	43	10,99	-547	74	11,24	-574	105	11,26	-575
13	10,93	-534	44	10,97	-545	75	11,23	-574	106	11,24	-575
14	10,96	-534	45	10,98	-546	76	11,21	-573	107	11,23	-577
15	10,93	-537	46	10,98	-548	77	11,25	-574	108	11,27	-577
16	10,97	-538	47	10,97	-548	78	11,23	-575	109	11,25	-577
17	10,96	-538	48	11	-547	79	11,21	-576	110	11,23	-575
18	10,95	-538	49	10,99	-546	80	11,25	-575	111	11,27	-575
19	10,97	-539	50	10,97	-546	81	11,23	-574	112	11,25	-575
20	10,95	-541	51	11,01	-546	82	11,23	-574	113	11,25	-576
21	10,98	-542	52	11	-546	83	11,22	-574	114	11,23	-577
22	10,97	-542	53	10,98	-548	84	11,25	-576	115	11,27	-576
23	10,96	-541	54	11,01	-547	85	11,22	-577	116	11,25	-577
24	10,96	-542	55	11	-546	86	11,23	-574	117	11,23	-576
25	10,99	-544	56	10,98	-546	87	11,22	-574	118	11,26	-575
26	10,98	-542	57	10,98	-546	88	11,21	-576	119	11,25	-575
27	10,98	-542	58	11,01	-547	89	11,26	-577	120	11,23	-575
28	10,97	-543	59	11	-548	90	11,23	-577	121	11,25	-576
29	10,96	-545	60	10,98	-548	91	11,23	-575	122	11,25	-577
30	11	-545	61	11.02	-548	92	11.23	-575	123	11.23	-577

 ${\bf TABLA~64:~ VARIACIÓN~ DE~pH/ORP~ EN~ EL~ TIEMPO~ DE~ AGUA~ DESTILADA~ AGREGANDO~ UN~ TOTAL~ DE~ 40~ [ML]~ DE~ NaSH~ (5~ [ML]~ INICIALMENTE~Y~ 5~ [ML]~ CADA~ 15~ [S]) }$

t [s]	рН	ORP [mV]									
0	6,09	-242	33	10,85	-507	66	11,01	-549	99	11,12	-566
1	6,09	-249	34	10,83	-509	67	11,01	-548	100	11,16	-565
2	6,07	-455	35	10,81	-512	68	11,04	-547	101	11,14	-566
3	9,94	-449	36	10,85	-513	69	11,02	-549	102	11,12	-565
4	9,97	-444	37	10,82	-512	70	11,01	-551	103	11,15	-564
5	10,04	-441	38	10,82	-512	71	11,04	-551	104	11,15	-564
6	10,22	-447	39	10,85	-515	72	11,01	-549	105	11,13	-563
7	10,28	-448	40	10,82	-515	73	11,02	-549	106	11,13	-568
8	10,26	-448	41	10,82	-517	74	11,02	-549	107	11,21	-571
9	10,25	-447	42	10,85	-517	75	11	-554	108	11,19	-571
10	10,32	-447	43	10,82	-516	76	11,07	-556	109	11,17	-570
11	10,3	-449	44	10,82	-516	77	11,07	-556	110	11,2	-569
12	10,28	-451	45	10,86	-518	78	11,05	-556	111	11,2	-569
13	10,3	-451	46	10,86	-525	79	11,01	-556	112	11,19	-570
14	10,32	-450	47	10,88	-528	80	11,11	-558	113	11,17	-572
15	10,29	-449	48	10,88	-531	81	11,09	-559	114	11,2	-571
16	10,48	-481	49	10,95	-532	82	11,07	-559	115	11,19	-570
17	10,84	-480	50	10,93	-532	83	11,11	-557	116	11,17	-571
18	10,51	-482	51	10,92	-533	84	11,09	-556	117	11,2	-572
19	10,59	-484	52	10,96	-535	85	11,08	-558	118	11,19	-573
20	10,66	-484	53	10,94	-537	86	11,11	-559	119	11,17	-572
21	10,65	-483	54	10,93	-537	87	11,09	-559	120	11,19	-571
22	10,63	-484	55	10,96	-537	88	11,08	-557	121	11,19	-571
23	10,65	-484	56	10,95	-535	89	11,11	-558	122	11,17	-570
24	10,66	-484	57	10,93	-537	90	11,09	-561	123	11,2	-572
25	10,64	-486	58	10,97	-537	91	11,08	-565	124	11,19	-573
26	10,64	-488	59	10,95	-539	92	11,16	-565	125	11,17	-572
27	10,68	-488	60	10,94	-539	93	11,14	-564	126	11,17	-573
28	10,66	-486	61	11	-544	94	11,12	-564	127	11,21	-570
29	10,66	-486	62	11	-547	95	11,12	-563	128	11,2	-571
30	10,7	-485	63	10,98	-547	96	11,16	-564	129	11,18	-572
31	10,7	-511	64	10,98	-548	97	11,12	-565	130	11,22	-573
32	10,7		-506	65	11,0)4	-549	98	11,	12 -	565

RESULTADOS PRUEBAS DE FLOTACIÓN

TABLA: CONSUMOS Y TRAZABILIDAD DE pH/ORP EN PRUEBA P-1

Tiempo [min]	H₂SO₄ [ml]	NaSH [ml]	N2 [l/min]	рН	ORP [mV]
Inicial	-	-	-	6,51	-32,1
c/ H ₂ SO ₄	-	-	-	-	-
c/ NaSH	-	40	-	-	-
0	-	-	-	10,09	-536,7
1	-	-	4	10,06	-538,3
2	-	-	4	10,06	-538,7
3	-	-	4	10,07	-539,3
4	-	-	4	10,08	-539,9
5	-	-	5	10,10	-539,2
6	-	-	5	10,12	-539,3
7	-	-	6	10,13	-539,4
8	-	-	6	10,14	-539,5
9	-	-	6	10,14	-539,3
10	-	-	6	10,15	-539,3
11	-	-	7	10,16	-540,2
12	-	-	7	10,16	-540,1
13	-	-	7	10,17	-539,9
14	-	-	7	10,18	-539,9

-	-	8	10,19	-539,8
-	-	8	10,19	-539,8
-	-	8	10,20	-540,7
-	-	8	10,21	-540,6
-	-	8	10,21	-540,2
-	-	9	10,22	-540,3
-	-	9	10,23	-540,2
-	-	9	10,24	-539,7
-	-	9	10,24	-540,0
-	-	9	10,25	-539,8
-	-	9	10,26	-539,3
	- - - - - - - - -		8 8 8 8 9 9 9 - 9	8 10,19 8 10,20 8 10,21 8 10,21 8 10,21 9 10,22 9 10,23 9 10,24 9 10,25