UNIVERSIDAD NACIONAL DANIEL ALCIDES CARRIÓN

FACULTAD DE INGENIERIA

ESCUELA DE FORMACIÓN PROFESIONAL DE INGENIERIA GEOLOGICA

TESIS

Evaluación geomecánica del puente La Cultura

Uchumayo – Arequipa

Para optar el titulo profesional de:

Ingeniero Geólogo

- Autor: Bach. Nelia Raquel QUINTANA MISARI
- Asesor: Mg. Vidal Victor CALSINA COLQUI

Cerro de Pasco - Perù - 2019

UNIVERSIDAD NACIONAL DANIEL ALCIDES CARRIÓN

FACULTAD DE INGENIERIA

ESCUELA DE FORMACIÓN PROFESIONAL DE INGENIERIA GEOLOGICA

TESIS

Evaluación geomecánica para el puente La Cultura

Uchumayo – Arequipa

Sustentada y aprobada ante los miembros del jurado:

Mg. Arturo Luis LAZO PAGAN PRESIDENTE Mg. Ramiro Ernesto DE LA CRUZ FERRUZO MIEMBRO

Ing. Eder Guido ROBLES MORALES MIEMBRO

DEDICATORIA

A las personas que más amo en esta vida:

A mis padres, por su infinito amor

y dedicación que me motivan a seguir adelante cada día.

A mi familia en general por su apoyo y su cariño desde siempre y por siempre, en especial a mi hermana Maria Quintana por estar siempre presente en el transucros de mi carrera profesional.

A mis hijas, Milena y Valentina, ellas son el motivo para seguir adelante y a mi esposo por el apoyo, comprensión, su amor y cariño incondicional.

RECONOCIMIENTO

Primero que todo quiero agradecer a Dios por guiarme y acompañarme siempre en todo momento.

A mis padres Teódulo Quintana y Aydee Misari por su incansable esfuerzo, sacrificio y dedicación para mi formación como persona y profesionalmente. Quisiera también mencionar a toda mi familia por su apoyo incondicional en especial a mi hermana Maria Quintana.

A la Universidad Nacional Daniel Alcides Carrión, Facultad de Ingeniería Escuela de formación profesional de Geologia por brindarme invalorables conocimientos que fortalecieron mi formación Profesional y la obtención del título profesional de Ingeniero Geólogo.

A la empresa Amphos 21 por las oportunidades que me brindan para crecer profesionalmente y su apoyo incondicional durante la elaboración de la presente tesis.

RESUMEN

En el presente trabajo se ha realizado la "Evaluación Geomecánica del Puente de la Cultura", cuyo objetivo es evaluar en detalle la condición geomecánica del macizo rocoso para determinar el nivel de cimentación del Puente de la Cultura.

La zona del proyecto comprende las laderas y el cauce del río Chili. Se trata de un valle fluvial amplio que se encañona en la zona del proyecto y adopta la forma de ' III i zona en general es árida y desértica. El relieve de la margen derecha es plano y ligeramente inclinado hacia el suroeste, en la margen izquierda es agreste e irregular. En la margen izquierda se encuentra la línea férrea del ferrocarril Arequipa-Matarani, y el puente ha sido proyectado para pasar por encima de esta. El presente estudio ha evaluado dos alternativas de cimentación del puente, la primera alternativa corresponde a un puente en arco y la segunda alternativa a un puente de voladizos sucesivos. El proyecto considera la construcción de dos puentes paralelos, de aproximadamente 400 m de longitud. Como parte de la evaluación geomecánica y materia del presente informe, se realizaron investigaciones geotécnicas consistentes en perforaciones diamantinas en ambas márgenes del río Chili, ensayos de orientación de testigos, ensayos de permeabilidad, excavación de calicatas en el suelo superficial de la margen derecha y ensayos de laboratorio en mecánica de rocas y mecánica de suelos. A partir de los resultados de la evaluación geomecánica se determinaron los parámetros de resistencia, deformabilidad, permeabilidad y excavabilidad del macizo rocoso que servirá como terreno para la cimentación del puente. Además, se realizaron análisis de capacidad de carga, análisis de asentamientos y análisis de estabilidad de taludes, para verificar las condiciones apropiadas de cimentación de la estructura.

Palabras claves: Evaluación geomecánica; nivel de cimentación.

ABSTRACT

In this work, the "Geomechanics Evaluation of the Culture Bridge" has been carried out, whose objective is to evaluate in detail the geomechanics condition of the rock mass to determine the foundation level of the Culture Bridge.

The project area includes the slopes and the Chili riverbed. It is a wide river valley that is embedded in the project area and takes the form of "V". The area in general is arid and desert. The relief of the right bank is flat and slightly inclined towards the southwest, on the left bank it is rugged and irregular. On the left bank is the Arequipa-Matarani railway line, and the bridge has been projected to pass over it.

The present study has evaluated two alternatives of foundation of the bridge, the first alternative corresponds to an arch bridge and the second alternative to a bridge of successive overhangs. The project considers the construction of two parallel bridges, approximately 400 m long.

As part of the geomechanics and subject evaluation of this report, geotechnical investigations consisting of diamond drilling on both banks of the Chili River, witness orientation tests, permeability tests, digging of calicates in the surface soil of the right margin and Laboratory in rock mechanics and soil mechanics. From the results of the geomechanics evaluation, the parameters of resistance, deformability, permeability and excavability of the rock mass were determined, which will serve as the ground for the foundation of the bridge. In addition, check load capacity analysis, settlement analysis and slope stability analysis, to verify the selected foundation conditions of the structure. **Keywords:** Geomechanics evaluation; foundation level.

INTRODUCCIÓN

El puente de La Cultura forma parte del proyecto de la autopista Arequipa – La Joya y se construirá en la zona de Uchumayo, para cruzar el río Chili, en el distrito de Uchumayo, Provincia de Arequipa, Región Arequipa.

El diseño vial de la autopista ha considerado la rasante del puente en la cota 2003.70 msnm, a una altura del orden de los 134 m sobre el nivel del cauce del río Chili. Por las condiciones topográficas, es factible construir pilares intermedios, a distancia del orden de los 120 m entre ejes de pilares. Actualmente el proyecto ha evaluado dos alternativas de cimentación del puente, la primera alternativa corresponde a un puente en arco y la segunda alternativa a un puente de voladizos sucesivos. El proyecto considera la construcción de dos puentes paralelos, de aproximadamente 400 m de longitud.

En la alternativa del puente en arco los tramos de aproximación al puente se sostienen por columnas de concreto vaciadas in situ. Las cimentaciones que incluyen los estribos están compuestas de zapatas de concreto reforzado. Los apoyos centrales transmiten las fuerzas horizontales del arco a la roca.

En la alternativa de puente de voladizos sucesivos, la subestructura está compuesta por dos pilares de columnas gemelas de concreto soportadas en zapatas de concreto reforzado, un pilar a cada lado del río. Los estribos también están soportados por zapatas de concreto, y comprenden muros aleros integrados y losas de aproximación.

El apoyo central de la margen izquierda se encuentra casi en la misma posición en ambas alternativas, mientras que el apoyo central de la margen derecha en la alternativa del puente en arco se encuentra 50m más cerca del río que el pilar de la alternativa de puente de voladizos sucesivos. A partir de los resultados de la evaluación geomecánica se determinó los parámetros principales para definir el nivel de cimentación del puente. Además, se realizó análisis de capacidad de carga, análisis de asentamientos y análisis de estabilidad de taludes, para verificar las condiciones apropiadas de cimentación que garanticen la estabilidad de la estructura.

INDICE

DEDICATORIA

RECONOCIMIENTO

RESUEMEN

ABSTRACT

INTRODUCCION

INDICE

CAPI	TUL	O I	1
PROBL	EM	A DE INVESTIGACIÓN	1
1.1	Ider	ntificación y determinación del problema	1
1.2	Deli	imitación de la investigación	1
1.3	For	mulación del problema	1
1.3	.1	Problema general	1
1.3	.2	Problemas específicos	2
1.4	For	mulación de objetivos	2
1.4	.1	Objetivo general	2
1.4	.2	Objetivos Específicos	2
1.5	Just	ificación de la investigación	3
1.6	Lim	itaciones de la investigación	3
CAPI	TUL	О II	4
MARC	O TE	CORICO	4
2.1	Ant	ecedentes del estudio	4
2.2	Bas	es teóricas - científicas	6
2.2	.1	Geomecánica	6
2.2	.2	Análisis geotécnico	7
2.2	.3	Análisis de capacidad de carga admisible	7
2.2	.4	Capacidad portante en roca	8

2.2	5	Capacidad portante en suelos	14
2.2	.6	Análisis de asentamientos	16
2.2	.7	Análisis de estabilidad de taludes	17
2.3	Def	inición de términos básicos	17
2.4	For	mulación de hipótesis	19
2.4	.1	Hipótesis general:	19
2.4	.2	Hipótesis específicas:	19
2.5	Ide	ntificación de variables	19
2.5	.1	Variables independientes	19
2.5	.2	Variables dependientes	20
2.5	5.3	Variables intervinientes	20
2.6	Def	inición operacional de variables e indicadores	20
CAPI	TUL	.0 III	21
METO	LOG	JÁA Y TÉCNICAS DE INVESTIGACIÓN	21
3.1	Tip	o de investigación	21
3.2	Mé	todos de investigación	21
3.3	Dis	eño de la investigación	22
3.4	Pob	lación y muestra	22
3.4	.1	Población:	22
3.4	.2	Muestra:	22
3.5	Téc	nicas e instrumentos de recolección de datos	22
3.6	Téc	nicas de procesamiento y análisis de datos	23
3.7	Tra	tamiento estadístico	26
3.8	Sele	ección, validación y confiabilidad de los instrumentos de investigación.	26
3.9	Ori	entación ética	27
CAPI	TUL	.0 IV	28
RESUL	TAI	DOS Y DISCUSIÓN	28
4.1	Des	cripción de los trabajos de campo	28
4.1	.1	Generalidades	28
4.1	.2	Evaluación geológica	29
4.1	.3	Geomorfología y geodinámica externa	29

4	4.1.4	Unidades geomorfológicas	30
4	4.1.5	Clima y vegetación	32
4	4.1.6	Geodinámica externa	33
4	4.1.7	Geología regional	34
4	4.1.8	Geología local	34
4	4.1.9	Estratigrafía	35
4	4.1.10	Geología estructural	42
4	4.1.11	Patrón de drenaje	44
4	4.1.12	Rasgos hidrogeológicos	46
4	4.1.13	Mapeo de manantiales y filtraciones	46
4	4.1.14	Medida del flujo y calidad de agua in situ	48
4.2	Pres	sentación, análisis e interpretación de resultados	48
4	4.2.1	Evaluación geomecánica superficial	48
4	4.2.2	Investigación geomecánica superficial	49
4	4.2.3	Análisis cinemático	51
4	4.2.4	Ensayos de laboratorio	60
4	4.2.5	Evaluación geomecánica	62
4	4.2.6	Caracterización geotécnica	83
4	4.2.7	Análisis geotécnico	134
4	4.2.8	Condiciones de Cimentación para los Estribos y Pilares del Puente	136
4	4.2.9	Capacidad portante de la cimentación	137
4	4.2.10	Análisis de estabilidad de taludes	142
4.3	8 Prue	eba de hipótesis	152
4.4	Disc	cusión de resultados	152
4	4.4.1	Preparación del terreno de fundación	152
4	4.4.2	Anclaje en roca	160
4	4.4.3	Inyección de lechada en la roca	161
4	4.4.4	Taludes de corte	162
4	4.4.5	Parámetros de diseño para corrosión	163

CONCLUSIONES

RECOMENDACIONES

BIBLIOGRAFIA

ANEXOS

LISTA DE TABLAS

Tabla 3.1 Factores de Forma (USACE, 1994)11
Tabla 3.2 Definición operacional de variables e indicadores
Tabla 4.1: Inventario de Manantiales y Filtraciones 47
Tabla 4.2: Estaciones de Mapeo de Detalle en la Margen Izquierda del Río Chili50
Tabla 4.3: Estaciones de Mapeo de Detalle en la Margen Derecha del Río Chili51
Tabla 4.4: Familias de Estructuras Principales y Secundarias de la Margen Izquierda (Gabrodiorita)
Tabla 4.5: Familias de Estructuras Principales y Secundarias de la Margen Izquierda (Tonalita)
Tabla 4.6: Familias de Estructuras Principales y Secundarias de la Margen Derecha (Gabrodiorita)
Tabla 4.7: Familias de Estructuras Principales y Secundarias de la Margen Derecha (Toanlita)
Tabla 4.8: Familias de Estructuras Principales y Secundarias de la Margen Derecha (Tufo volcáinico)
Tabla 4.9: Ubicación y orientación de sondajes propuestos
Tabla 4.10: Dirección de e xcavación para pilares y estribos 56
Tabla 4.11: Resumen del análisis cinemático para la excavación en pilares y estribos. 58
Tabla 4.12: Resumen de los ensayos de carga puntual61
Tabla 4.13: Sistema de Clasificación RMR 63
Tabla 4.14: Sistema de Clasificación RMR, Margen Izquierda
Tabla 4.15: Sistema de Clasificación RMR, Margen Derecha
Tabla 4.16: Clasificación de la Dureza en Campo (ISRM)
Tabla 4.17: Dureza obtenida en campo según ISRM vs martillo Schmidt (Estaciones de la margen izquierda)69
Tabla 4.18: Dureza obtenida en campo según ISRM vs martillo Schmidt (Estaciones de la margen derecha)
Tabla 4.19: Clasificación del Macizo Rocoso Basado en los valores de Q (Barton et al.,1974)
Tabla 4.20: Clasificación del Macizo Rocoso Basado en los valores de Q (Barton et al., 1974)
Tabla 4.21: Relación entre el índice RMi y la estabilidad del talud

Tabla 4.22: Relación entre el índice SMR y la estabilidad del talud	81
Tabla 4.23: Direccciòn de excavación para pilares.	81
Tabla 4.24: Resumen de Clasificación SMR – Puente de la Cultura	.82
Tabla 4.25: Resumen de Calicatas	.84
Tabla 4.26 Resumen de Ubicación de Sondajes	.86
Tabla 4.27: Resumen de Ensayos de Permeabilidad Ejecutados al Interior de Perforaciones	las .89
Tabla 4.28: Resumen de Ensayos de Carga Puntual	.93
Tabla 4.29: Resumen de Propiedades Físicas de la Roca	.96
Tabla 4.30: Resistencia de la Roca a la Compresión No Confinada	.98
Tabla 4.31: Resumen de Ensayos de Compresión Triaxial en Roca Intacta1	00
Tabla 4.32: Resumen de Ensayos de Resistencia a la Tracción	.04
Tabla 4.33: Resumen de Ensayos de Corte Directo en Discontinuidades1	.06
Tabla 4.34: Resumen de Constantes Elásticas de la Roca Intacta1	.08
Tabla 4.35: Resumen de Ensayos de Clasificación de Suelos – Calicatas1	11
Tabla 4.36: Resumen de Ensayos de Compresión Triaxial 1	12
Tabla 4.37: Resultados de Ensayos de Corte Directo a Gran Escala 1	13
Tabla 4.38: Resumen de Ensayos Químicos de Suelos 1	14
Tabla 4.39: Familias de Estructuras Principales y Secundarias del Estribo Izquierdo Gabrodiorita Gnéisica 1	o - 23
Tabla 4.40: Familias de Estructuras Principales y Secundarias del Pilar Izquierdo Gabrodiorita Gnéisica 1	o - 24
Tabla 4.41: Familias de Estructuras Principales y Secundarias del Pilar Izquierde Tonalita Gnéisica 1	o - 24
Tabla 4.42: Familias de Estructuras Principales y Secundarias del Pilar Derecho Gabrodiorita Gnéisica 1	o - 25
Tabla 4.43: Familias de Estructuras Principales y Secundarias del Pilar Derecho Tonalita Gnéisica 1	o - 25
Tabla 4.44: Familias de Estructuras Principales y Secundarias del Estribo Derecho - To	oba 25
Tabla 4.45: Clasificación del Macizo Rocoso de Acuerdo al Sistema RMR (1989)1	30
Tabla 4.46: Parámetros de Resistencia del Macizo Rocoso 1	33

Cargas y Dimensiones Preliminares de la Cimentación, Buckland & Taylor 136
Cabla 4.49: Resumen de Capacidad de Carga Admisible – Roca 138
Cabla 4.50: Resumen de Análisis de Asentamientos Elásticos 140
Cabla 4.51: Dirección de Excavación de Taludes para Pilares y Estribos 142
Cabla 4.52: Resumen del Análisis Cinemático para la Excavación en Pilares y Estribos 145
Cabla 4.53: Resumen del Análisis de Fallas en los Taludes de Corte en Pilares – Puente en Arco
Cabla 4.54: Resumen del Análisis de Fallas en los Taludes de Corte en Pilares – Puentode Voladizos Sucesivos
Cabla 4.55: Condiciones de Ripabilidad y Maquinaria Recomendada 159

LISTA DE FIGURAS

Figura 2.1: Factores de caja de Serrano y Olalla (2001) 10
Figura 3.1: Especificaciones técnicas del martillo schmidt
Figura 4.1: Ubicación del área de proyecto
Figura 4.2: Columna estratigráfica realizado de la identificación de campo, adaptado al área de estudio en base a Vargas L. 1968 Garcia L. 1970 UNSA. Figura 4.3: Columna estratigráfica de detalle realizado de la identificación de campo 41
Figura 4.4: Patrón de drenaje del área de estudio45
Figura 4.5: Muestras del ensayo de carga puntual62
Figura 4.6: Formato de mapeo estructural por celdas
Figura 4.7: Formato de valoración del macizo rocoso RMR65
Figura 4.8: Estadistica entre los valores de R obtenidos de campo y el martillo Schmidt
Figura 4.9: Correlación entre grado de fracturamiento y RQD (Palmstrom 1974)72
Figura 4.10: Valores de GSI determinados para cada litología
Figura 4.11: Relación entre los valores de GSI y RMR (Hoek, 1995)75
Figura 4.12: Relación entre los valores de Q y RMR (Bieniawski, 1976)
Figura 4.13: Estadisticas de los valores del RMi80
Figura 4.14: Muestra algunas caliactas ejecutadas
Figura 4.15: Perfil estratigráfico de las calicatas
Figura 4.16: Vista panorámica de la plataforma AUS-PC-0187
Figura 4.17: Anàlisis estereográfico de los sondajes
Figura 4.18: Valoraciòn del RMR en sondajes 128
Figura 4.19: Esquema de cortes en roca y refuerzo de taludes - Pilar Margen Izquierdo (Alternativa Puente Arco)
Figura 4.20: Esquema de cortes en roca y refuerzo de taludes - Pilar Margen Derecha (Alternativa Puente Arco)
Figura 4.21: Esquema de cortes en roca y refuerzo de taludes - Pilar Margen Izquierdo (Alternativa Puente de Voladizos Sucesivos)
Figura 4.22: Esquema de cortes en roca y refuerzo de taludes - Pilar Margen Derecha (Alternativa Puente de Voladizos Sucesivos)

CAPITULO I

PROBLEMA DE INVESTIGACIÓN

1.1 Identificación y determinación del problema

Determinar la Evaluación Geomecánica para el puente la Cultura – Uchumayo Arequipa.

1.2 Delimitación de la investigación

La evaluación geoemcánica del macizo rocoso esta determinada por el área de influencia de la cimentación del puente asu vez esta definda por sus estribos y pilares. Además, la investigación se realizó entorno al área de 1 KM de nacho y 1.5 Km de largo en dirección al puente.

1.3 Formulación del problema

1.3.1 Problema general

¿La evaluación geomecánica del macizo rocoso influye en la construcción del puente La Cultura – Uchumayo - Arequipa?

1.3.2 Problemas específicos

- ¿Cuáles son las características litológicas y estructurales de la roca que influyen en la construción del puente?
- ¿Cuáles son las propiedades físicas de los distintos materiales que determinan la construcción del puente?
- ¿Cuáles son las condiciones de estabilidad de la roca que determinan la construcción del puente la Cultura?

1.4 Formulación de objetivos

1.4.1 Objetivo general

Realizar la evaluación geomecánica del macizo rocoso y determinar el nivel de cimentación del Puente la Cultura – Uchumayo - Arequipa.

1.4.2 Objetivos Específicos

- Identificar las características litológicas y estructurales de la roca mediante mapeos estructurales y sondeos diamantinos.
- Determinar las propiedades físicas de los distintos materiales que componen el terreno de cimentación para el puente, y evaluar las condiciones de estabilidad para los mismos.
- Determinar las condiciones de estabilidad de la roca para la cimentación del puente la Cultura.

1.5 Justificación de la investigación

Este proyecto es de interés regional que permitirá contribuir al desarrollo económico y social de Arequipa, específicamente de la zona de Uchumayo.

El puente de la cultura forma parte del proyecto de la Autopista Arequipa La Joya, y se construirá en la zona de Uchumayo, para cruzar el río Chili, en el distrito de Uchumayo, provincia de Arequipa, Región Arequipa.

El trazo de la autopista se inicia en el Parque Industrial de rio Seco, donde constituyen las principales vías de la ciudad de Arequipa. Esta autopista se integrará al tráfico regional y urbano de Arequipa.

La evaluación geomecánica del Puente La Cultura, permitirá conocer las características geotécnicas del macizo rocoso para determinar la cimentación del mismo, para su construcción definitiva. Importancia y Alcances de la Investigación

1.6 Limitaciones de la investigación

- El estudio se realizó en un área de 1km de ancho (transversal al puente) y 1.5 km de largo (en dirección al puente)
- El área de influencia de la cimentación del puente de la cultura fue definida por sus pilares y apoyos.
- Se tuvo como limitaciones no poder realizar un modelo en 3D.

CAPITULO II

MARCO TEORICO

2.1 Antecedentes del estudio

El puente de La Cultura forma parte del proyecto de la autopista Arequipa – La Joya, realizado en el 2011 como anteproyecto nivel pre-inversión "Puente la Cultura", y se construirá en la zona de Uchumayo, para cruzar el río Chili, en el distrito de Uchumayo, Provincia de Arequipa, Región Arequipa.

El trazo de la autopista se inicia en el parque industrial del Rìo Seco, donde confluyen las principales vías de la ciudad de Arequipa (Av. Aviación, via 54, carretera Yura y vía de evitamiento) y termina en la carretera Panamericana en el lugar conocido como Km 48. Esta autopista se integrará al trafico regional y urbano de Arequipa.

Ante proyecto: tipo de puente propuesto

El diseño vial de la autopista ha considerado la rasante del puente en la cota 2003.70 msnm, a una altura del orden de los 134 m sobre el nivel del cauce del río Chili. Para esa ubicación, se requiere un puente del orden de los 405 m de longitud. Por las condiciones

topográficas, es factible construir pilares intermedios, a distancia del orden de los 120 m entre ejes de pilares.

Para ese rango de luces, y dada la gran altura existente entre el fondo del cauce del río y la rasante del puente, lo adecuado es la construcción sin falso puente.

Dentro de las alternativas de construcción sin falso puente, en este caso se ha considerado el puente segmental, construido por volados sucesivos colados en sitio.

Para el rango de luces (120 m) y la configuración topográfica que se tiene, es el tipo de puente más adecuado y es el que se viene utilizando actualmente en caso similares, en diversos países del mundo.

Por las condiciones del sitio, para la parte adyacente a los estribos, se ha considerado la construcción con falso puente, mientras que, para los tramos interiores, por ser la altura considerable, la construcción de esos tramos tiene que ser sin falso puente.

Actualmente el proyecto ha evaluado dos alternativas de cimentación del puente, la primera alternativa corresponde a un puente en arco y la segunda alternativa a un puente de voladizos sucesivos. El proyecto considera la construcción de dos puentes paralelos, de aproximadamente 400 m de longitud.

En la alternativa del puente en arco los tramos de aproximación al puente se sostienen por columnas de concreto vaciadas in situ. Las cimentaciones que incluyen los estribos están compuestas de zapatas de concreto reforzado. Los apoyos centrales transmiten las fuerzas horizontales del arco a la roca.

En la alternativa de puente de voladizos sucesivos, la subestructura está compuesta por dos pilares de columnas gemelas de concreto soportadas en zapatas de concreto reforzado, un pilar a cada lado del río. Los estribos también están soportados por zapatas de concreto, y comprenden muros aleros integrados y losas de aproximación.

El apoyo central de la margen izquierda se encuentra casi en la misma posición en ambas alternativas, mientras que el apoyo central de la margen derecha en la alternativa del puente en arco se encuentra 50m más cerca del río que el pilar de la alternativa de puente de voladizos sucesivos.

El proyecto considera la construcción de dos puentes paralelos, de aproximadamente 400 m de longitud, que estarán apoyados en dos estribos y dos pilares de concreto armado. Los puentes no tendrán conexiones laterales superiores; sin embargo, compartirán la misma cimentación. Los pilares serán de sección variable, más anchos en la base (secciones entre 9,10 x 6,07 m y 7,26 x 5,45 m) y la altura variable entre 44 y 92 m.

La zona del proyecto comprende las laderas y el cauce mismo del río Chili. Se trata de un valle fluvial amplio que se encañona en la zona del proyecto y adopta la forma de "V". La zona en general es árida y desértica. El relieve de la margen derecha es plano y ligeramente inclinado hacia el suroeste, en cambio el relieve de la margen izquierda es agreste e irregular. En la margen izquierda se encuentra la línea férrea del ferrocarril Arequipa-Matarani, y el puente ha sido proyectado para pasar por encima de esta.

2.2 Bases teóricas - científicas

2.2.1 Geomecánica

La geomecanica es la disciplina que estudia las caracteristicas mecanicas de los materiales geológicos que conforman las rocas de formación. Esta disciplina esta basada en los conceptos y teorías de mecánica de rocas y mecánica de suelos, que relacionan el comportamiento de los materiales bajo esfuerzos producto de una estructura ingenieril.

2.2.2 Análisis geotécnico

Es un conjunto de actividades que nos permiten obtener la información de un determinado terreno superficial. Es una de las informaciones más importantes para la planificación, diseño y ejecución de un proyecto de construcción, y determinar el nivel de cimentación de una estructura.

Para el presente contexto el análisis geotécnico incluyó los análisis de capacidad de carga y asentamientos para la cimentación del Puente de la Cultura, así como el análisis de estabilidad de taludes por métodos cinemáticos.

2.2.3 Análisis de capacidad de carga admisible

Técnicamente es la máxima presión media de contacto entre la cimentación y el terreno tal que no se produzca un fallo por cortante del suelo o un asentamiento diferencial excesivo. Por tanto, la capacidad portante admisible debe estar basado en uno de los siguientes criterios:

- Si la función del terreno de cimentación es soportar una determinada tensión independientemente de la deformación, la capacidad portante se denominar carga de hundimiento.
- Si lo que busca es un equilibrio entre la tensión apliacada al terreno y la deformación sufrida por este, deberá calcularse la capacidad portante a partir de criterios de asientos admisibles.
- De manera análoga, la expresión capacidad portante se utiliza en las demás ramas de la ingeniería para referir a la capacidad de una estructura para soportar las cargas aplicadas sobre la misma.

En el presente contexto la capacidad de carga admisible sobre roca, además de las dimensiones y profundidad de desplante de la cimentación, y de las propiedades de resistencia del macizo rocoso es dependiente del espaciamiento de las juntas con respecto al ancho de la cimentación, la orientación de las juntas, y la condición de las juntas (abierta o cerrada). La capacidad de carga admisible se evaluó mediante tres criterios utilizados en la práctica de la ingeniería para cimentación en roca, que toman en cuenta los factores adicionales indicados.

La capacidad de carga ha sido estimada usando los criterios de USACE (1994), Bowles (1996) y Serrano y Olalla (2001). El criterio de USACE (1994) utiliza factores de capacidad de carga conservadores en la ecuación de Terzaghi, y recomienda que se utilice cohesión nula si el espaciamiento de las fracturas es menor que las dimensiones de la zapata, lo cual aplica en este caso. El criterio de Bowles (1996) utiliza factores de capacidad de carga menos conservadores, pero incluye un factor proporcional al cuadrado del RQD que toma en cuenta el fracturamiento de la roca. El criterio de Serrano y Olalla (2001) utiliza los parámetros de resistencia de la roca según el criterio de falla de Hoek y Brown extendido al macizo rocoso, y toma en cuenta la influencia de la inclinación del terreno adyacente a la plataforma de cimentación.

2.2.4 Capacidad portante en roca

La capacidad portante de las estructuras cimentadas sobre roca es dependiente del espaciamiento de las juntas con respecto al ancho de la cimentación, la orientación de las juntas, condición de las juntas (abierta o cerrada), y del tipo de roca. Los diferentes tipos de fallas han sido agrupadas en diferentes grupos de acuerdo a Sowers (1979) y Goodman (1980).

Las ecuaciones para este tipo de análisis representan las aproximaciones empíricas o semi-empíricas de la capacidad de carga final y dependen del modo de falla potencial, así como de las propiedades del material. Se deben tener en cuenta los modos de falla potenciales en la selección de una ecuación apropiada.

En ese sentido, se presentan a continuación diferentes correlaciones empíricas y semiempíricas para la obtención de la capacidad de carga en roca. Se presentan las ecuaciones correspondientes a cada formulación, indicando la aplicabilidad del método dependiendo del tipo de macizo rocoso identificado como material de fundación.

Criterio de Serrano y Olalla (2001)

De acuerdo a las formulaciones desarrolladas por Serrano y Olalla (2001), se puede obtener la carga que produce deformaciones plásticas en un macizo rocoso. La carga en mención recibe el nombre de carga de hundimiento y es obtenida a través de la siguiente ecuación:

 $P_h = \beta \left(N_\beta - \zeta \right)$

Donde:

 P_h : Carga de hundimiento.

 β y ζ : Parámetros definidos por Serrano y Olalla.

 N_{β} : Factor de carga.

El valor de N_{β} varía con el ángulo que forman la pendiente natural del terreno con la plataforma que recibe a la cimentación, y es también dependiente del ángulo de inclinación de la carga con la vertical.

La carga admisible se obtiene dividiendo la carga de hundimiento (Ph) por un coeficiente de seguridad global F, el cual puede expresarse como el producto de dos factores:

$$F = F_p F_m$$

Donde el factor Fp considera las variaciones estadísticas de los parámetros de la roca y su magnitud está también vinculada a la probabilidad de rotura del cimiento. En ese sentido, Serrano y Olalla propusieron una relación de Fp dependiente de la resistencia a la compresión no confinada y del valor de RMR para una probabilidad de falla de 10⁻⁴.

Respecto al factor Fm, este considera la posibilidad de que la rotura por fragilidad, de una parte, o de la totalidad del cimiento, no se ajuste al modelo de Hoek y Brown. Cuando la roca se encuentra muy fracturada y diaclasada, el comportamiento de las cimentaciones no es frágil y no existe motivo para adoptar un factor de seguridad parcial para Fm. La Figura 2.1 muestra factores de caja de Serrano y Olalla (2001)

Figura 2.1: Factores de caja de Serrano y Olalla (2001)

Criterio de la USACE (1994)

Para la obtención de la capacidad portante en roca, la USACE (1994) presenta las siguientes formulaciones a fin de evaluar la capacidad de carga última:

$$q_{ult} = 0.5\gamma B N_{\gamma} C_{\gamma} + c N_c C_c + \gamma D_f N_q$$

Donde:

 N_{ϕ} , N_{c} , N_{q} y N_{γ} : Factores de capacidad de carga.

 c y $^{\phi}$: Cohesión y ángulo de fricción del material de fundación.

B: Ancho de la cimentación (m).

 D_f : Profundidad de cimentación (m).

 γ : Peso específico del material de fundación (kN/m3).

 C_c y C_{γ} : Factores de forma de la cimentación (ver Tabla 2.1).

Tabla 2.1 Factores de Forma (USACE, 1994)

Tipo de Cimentación	Cc	Сү	
Circular	1,20	0,70	
Cuadrada	1,25	0,85	
Rectangular (L/B)			
L/B = 2	1,12	0,90	
L/B = 5	1,05	0,95	
L/B = 10	1,00	1,00	

Abreviaturas:

L.: Largo de la cimentación.

B: Ancho de la cimentación.

Determinado el valor de la capacidad de carga última (q_{ult}), podemos hallar la capacidad

de carga admisible (q_{adm}) de la siguiente relación:

$$q_{adm} = \frac{q_{ult}}{FS}$$

Siendo FS el factor de seguridad equivalente a 5 para macizos rocosos.

Criterio de Bowles (1996)

Para la obtención de la capacidad portante en roca, Bowles (1996) presenta las siguientes formulaciones a fin de evaluar la capacidad de carga última:

$$q_{ult} = \gamma D_f N_q + c N_c S_c + 0.5 \gamma B N_\gamma S_\gamma$$

Donde:

 N_c , N_q y N_γ : Factores de capacidad de carga (Stagg & Zienkiewicz, 1968).

^c y ϕ : Cohesión y ángulo de fricción del macizo rocoso estimados con el valor de RMR (Bieniawski, 1988).

B: Ancho de la cimentación (m).

 D_f : Profundidad de cimentación (m).

 γ : Peso específico del material de fundación (kN/m3).

 S_c y S_{γ} : Factores de forma de la cimentación (ver Tabla 2.2).

Tabla 2.2 Factores de Forma (Bowles, 1996)

Tipo de Cimentación	Ce	Сү
Corrida	1,00.	1,00
Circular	1,30	0,60
Cuadrada	1,30	0,80

Determinado el valor de la capacidad de carga última (q_{ult}), podemos hallar la capacidad de carga admisible (q_{adm}) de la siguiente relación:

$$q_{adm} = \frac{q_{ult} (RQD)^2}{FS}$$

Siendo RQD (rock quality designation) parámetro del macizo rocoso y FS el factor de seguridad igual a 5 para roca. Debe verificarse también que el valor de q_{adm} sea menor al valor de la cimentación.

Verificación de Capacidad de Carga admisible en Roca

Puesto que la capacidad de carga admisible debe ser tal que produzca asentamientos menores a los permisibles para la cimentación y la estructura, se realiza un análisis de asentamientos a manera de acotar el valor de capacidad portante admisible obtenido a través de los métodos de USACE y Bowles.

El análisis de asentamientos se sustenta en considerar al macizo rocoso como un semiespacio elástico, isotrópico y homogéneo. De este modo, se determinan formulaciones como la sugerida por USACE (Rock Foundations, 1994) para cimentaciones flexibles:

$$S_c = \frac{1.12\Delta q B \left(1 - v^2\right)}{E} \sqrt{\frac{L}{B}}$$

Donde:

 S_c S_t: Asentamiento total en el centro de la cimentación.

 Δq : Carga aplicada en la cimentación por la estructura.

L y B: Largo y ancho de la cimentación.

^Uv: Módulo de Poisson.

E: Módulo de Young del macizo rocoso.

Del mismo modo, el asentamiento en la esquina de la cimentación fue calculado multiplicando el el valor de Sc por un factor variable en función de la relación L/B de la cimentación.

2.2.5 Capacidad portante en suelos

La capacidad portante en suelos se determinó considerando las formulaciones teóricas de Meyerhof (1963), la cual toma como base las hipótesis hechas por Terzagui respecto a la geometría que desarrolla la potencial superficie de falla en un análisis de cimentaciones. A diferencia de las expresiones planteadas por Terzagui, Meyerhof sugirió la aplicación de diversos factores que puedan representar más realísticamente las condiciones que se presentan en un análisis de cimentaciones. A continuación, se presenta un resumen de las expresiones sugeridas por Meyerhof para determinar la capacidad de carga última.

$$q_{ult} = 0.5\gamma B N_{\gamma} S_{\gamma} D_{\gamma} I_{\gamma} + C N_c S_c D_c I_c + q N_q S_q D_q I_q$$

Donde:

- *c C*: Cohesión del suelo.
- q q: Esfuerzo efectivo a nivel de desplante de la cimentación.
- γ : Peso específico del suelo
- *B* : Ancho de la cimentación
- $S_{q}N_{q}$, S_{c} y S_{γ} : Factores de forma

 $D_{q}N_{q}, D_{c} \neq D_{\gamma}D_{q}$: Factores de profundidad

 $I_{q}N_{q}$, I_{c} y I_{γ} : Factores de inclinación

Determinado el valor de la capacidad de carga última (q_{ult}), podemos hallar la capacidad de carga admisible (q_{adm}) considerando un FS igual a 3 en suelos.

$$q_{adm} = \frac{q_{ult}}{FS}$$

La capacidad de carga admisible debe ser tal que produzca asentamientos menores a los permisibles para la cimentación y la estructura. En ese sentido, se realizó un análisis de asentamientos a manera de acotar el valor de capacidad portante admisible.

El análisis de asentamientos se sustenta en considerar al suelo como un semiespacio elástico, isotrópico y homogéneo determinándose ecuaciones empíricas como la sugerida por Bowles (1987), que es la que se muestra a continuación:

$$S_t = \frac{\Delta q B \left(1 - v^2\right)}{E} I_s I_f$$

Donde:

 $S_t S_t$: Asentamiento total e inmediato.

 $\Delta q \Delta q$: Carga aplicada en la cimentación por la estructura.

B^{*B*} : Ancho de la cimentación.

Image: Módulo de Poisson.

EE: Módulo de Young.

 I_s y I_f : Factores de corrección.

2.2.6 Análisis de asentamientos

Para estimar la magnitud de los asentamientos totales y diferenciales en la cimentación del puente, se realizó un análisis de asentamientos elásticos que tomen en cuenta las cargas aplicadas por la superestructura, las dimensiones de la cimentación proyectada, y los parámetros elásticos de la roca al nivel de la cimentación. El análisis de asentamientos elásticos se sustenta en considerar al macizo rocoso como un semiespacio elástico, isotrópico y homogéneo. De este modo, se utilizan formulaciones como la sugerida por USACE (Rock Foundations, 1994) para cimentaciones flexibles.

$$S_c = \frac{1.12\Delta q B \left(1 - v^2\right)}{E} \sqrt{\frac{L}{B}}$$

Donde:

- S_c : Asentamiento total en el centro de la cimentación.
- Δq : Carga aplicada en la cimentación por la estructura.
- L y B: Largo y ancho de la cimentación.
- U: Relación de Poisson.
- E: Módulo elástico del macizo rocoso.

Del mismo modo, el asentamiento en la esquina de la cimentación fue calculado multiplicando el valor de S_c por un factor variable en función de la relación L/B de la cimentación.

2.2.7 Análisis de estabilidad de taludes

<u>Análisis cinemático</u>

El análisis cinemático fue realizado en la ubicación de cada apoyo del puente, con la finalidad de evaluar el potencial de ocurrencia de falla planar, en cuña y vuelco a través de las discontinuidades existentes, en las principales direcciones de los taludes de corte, debido a las excavaciones que serán realizadas para la cimentación del puente. Este análisis se realizó para los valores de dirección de buzamiento de los taludes resultantes de la excavación de 46°, 136°, 226° y 316°.

2.3 Definición de términos básicos

- Geomecánica: Se ocupa del estudio teórico y práctico de las propiedades y comportamientos mecánicos de los materiales rocosos. Básicamente este comportamiento geomecánico depende de los siguientes factores: Resistencia de la roca, grado de fracturación del macizo rocoso y la resistencia de las discontinuidades.
- Análisis cinemático: se realiza con la finalidad de evaluar el potencial de ocurrencia de falla planar, en cuña y vuelco a través de las discontinuidades existentes.
- Ángulo de fricción: Valor de convenio introducido para simplificar, se considera una constante, aunque no lo es.
- **Cimentación:** Se denomina cimentación al conjunto de elementos estructurales de una edificación cuya misión es transmitir sus cargas o elementos apoyados en ella al suelo, distribuyéndolas de forma que no superen su presión admisible ni produzcan cargas zonales. Debido a que la resistencia del suelo es, generalmente,

menor que la de los pilares o muros que soporta, el área de contacto entre el suelo y la cimentación debe ser proporcionalmente más grande que los elementos soportados, excepto en suelos rocosos muy coherentes.

La cimentación es importante porque es el grupo de elementos que soportan a la superestructura. La estabilidad de una edificación depende en gran medida del tipo de terreno sobre el que se asienta.

- Discontinuidad: Cambio abrupto en las propiedades físicas de materiales adyacentes en el interior de la Tierra, El término se refiere a superficies de debilidad, englobando diaclasas, fallas, grietas, fisuras, foliación y estratificación. (Salcedo, 1983).
- **Intemperismo:** Proceso de degradación y descomposición que sufren las rocas y los minerales debido a la corrosión atmosférica.
- Juntas o diaclasas: Quiebre o fractura de origen geológico que rompe con la continuidad de una roca, a lo largo de la cual no ha habido desplazamiento visible.
- Macizo rocoso: Conjunto de matriz rocosa y discontinuidades. Presenta carácter heterogéneo, comportamiento discontinuo y normalmente anisótropo, consecuencia de la naturaleza, frecuencia y orientación de los planos de discontinuidad, que condicionan su comportamiento geomecánico e hidráulico.
- **Roca:** Se define como un agregado sólido, formado por uno o varios minerales, que se encuentra ocupando grandes extensiones de la corteza terrestre.

- Suelos: Material formado por partículas sólidas y poros rellenos de agua o aire, sin cementación o poco cementado, sobre el que se desarrolla la mayor parte de la actividad humana y biológica.
- Suelos residuales: Material proveniente de proceso de meteorización de la roca in situ y que no haya sido transportado de su lugar de origen.
- **Talud:** Superficie inclinada respecto a la horizontal, que es adoptada en forma permanente.

2.4 Formulación de hipótesis

2.4.1 Hipótesis general:

La evaluación geomecánica del macizo rocoso si influye en la construcción del puente La Cultura - Arequipa

2.4.2 Hipótesis específicas:

- Las características litológicas y estructurales del macizo rocoso influyen para determinar los taludes de corte en la construcción del puente.
- Las propiedades físicas de los distintos materiales si determinan el nivel de la cimentación del puente.
- La condición de estabilidad de la roca garantiza la estabilidad de la construcción del puente la Cultura. Por lo tanto, se logrará una construcción segura.

2.5 Identificación de variables

2.5.1 Variables independientes

La evaluación geomecánica del macizo rocoso
2.5.2 Variables dependientes

Construcción del Puente La Cultura - Arequipa

2.5.3 Variables intervinientes

- Caracteristicas litológicas del macizo rocoso
- Propiedades físicas de los materiales
- Profundidad de cimentación
- Estabilidad del macizo rocoso

2.6 Definición operacional de variables e indicadores

Variable	Definición operacional	Inidcadores	Técnicas e instrumentos
	Estudio teórico y práctico de las propiedades y comportamientos mecánicos de los materiales rocosos. Básicamente este comportamiento geomecánico tambien se relaciona con el comportamiento geotecnico de los diferentes materiales.	Resistencia de la roca intacta	Laboratorio, martillo Schmitd
		Grado de fracturación del macizo rocoso	Observación directa
		La resistencia de las discontinuidades.	Laboratorio, observación directa
Evaluación Geomecánica		Capacidad de carga admisible	Laboratorio, análisis matemático
		Análisis de asentamiento	Laboratorio, análisis matemático

 Tabla 2.3 Definición operacional de variables e indicadores

CAPITULO III

METODOLOGÍA Y TÉCNICAS DE INVESTIGACIÓN

3.1 Tipo de investigación

La metodología que se utilizó en el presente contexto es descriptiva y exploratoria, basada en el reconocimiento de campo, trincheras, mapeo geológico, estaciones geomecánicas y sondajes diamantinos. Este método ha permitido interactuar de manera directa con el objetivo del estudio con observación y medición.

3.2 Métodos de investigación

Para realizar este proyecto se utilizó el método de investigación directa, es decir, que se tiene contacto directo con los elementos o caracteres de lo que se requiere investigar, a continuación, se muestra algunos de ellos:

- Reconocimiento de características geológicas in situ
- Auscultación superficial mediante trincheras
- Perforación diamantina, se realizó 9 puntos de perforación estratégicamente ubicados de acuerdo a la ubicación de los pilares.

- Análisis de laboratorio, se realizó muestreo en suelo y en roca
- Finalmente se integra toda la data de campo y se analiza los resultados llegando a conclusiones y recomendaciones.

3.3 Diseño de la investigación

El presente proyecto se realizó en base al diseño de la investigación no experimental, donde se plantea el problema, objetivos, hipótesis, obtención de datos, análisis y presentación de resultados.

3.4 Población y muestra

3.4.1 Población:

La población comprende el área de cimentación para el Puente la cultura, determinada por la profundidad de diseño.

3.4.2 Muestra:

- Las estaciones geomecánicas o celdas de detalle
- Las trincheras y puntos de muestreo en suelo
- Los puntos de perforación y los puntos de muestreo en roca

3.5 Técnicas e instrumentos de recolección de datos

 Instrumentos manuales: Son aquellos equipos, herramientas, útiles de escritorio y otros instrumentos que son utilizados en trabajos de geología, que sirven para la toma de datos. Formatos: Se presenta el formato o registro Geológico – Geotécnico para la toma de datos de discontinuidades, Formato de Mapeo para el cartografiado geológico y Modelos de tablas para la clasificación Geomecánica.

3.6 Técnicas de procesamiento y análisis de datos

- Mapeo geológico: Los trabajos de mapeo geológico se recopilarán, revisará y estudiará toda la información geológica, geofísica y geotécnica existente del lugar de estudio, también previamente realizará fotointerpretación, interpretación de imágenes satelitales u ortofotos, para luego complementar con un mapeo geológico in situ. posteriormente se realizará secciones longitudinales y transversales a la estructura.
- Levantamiento geomecánico de afloramientos: Las estaciones geomecánicas complementarán las investigaciones geotécnicas y permitirán cuantificar la calidad geomecánica del macizo rocoso. Se trabajarán en cortes naturales o artificiales del macizo rocoso, circundantes a los apoyos del puente, donde se prevé que se realizarán cortes importantes para los accesos y donde la información a recabar sea representativa para los fines del estudio. La evaluación se realizará mediante estaciones geomecánicas de 15x15 m.

Los resultados de la medición del buzamiento y dirección de buzamiento de las discontinuidades se presentarán gráficamente mediante redes estereográficas de Schmidt y rosetas de fracturas. Además, se estudiará la distribución de polos y se establecerán las familias principales y secundarias de discontinuidades por cada estación geomecánica. También se hará el estudio estereográfico con la información recopilada de todas las estaciones geomecánicas.

Geotecnia: La investigación geotécnica está contemplada realizarse mediante dos tipos: perforaciones diamantinas orientadas en cada apoyo del puente, y trincheras en las zonas donde se tiene presencia de suelos, particularmente el estribo derecho del puente. Se prevé realizar ensayos de permeabilidad Lefranc y tipo Lugeon en tramos de RQD muy mala a regular. Igualmente, las pruebas dilatométricas en la medida que sean aplicables. La perforación contará con medida de orientación de testigos con el empleo de un equipo orientador electrónico digital tipo Reflex ACT II o similar.

Las discontinuidades recibirán un tratamiento especial y se loguearán en un formato separado, se identificará una por una y se anotará su profundidad. En este caso la descripción incluirá la siguiente información:

- Inclinación del plano de la discontinuidad con respecto al eje de la perforación
 (α);
- Condición (abierta o cerrada), abertura, forma, rugosidad, material de relleno, dureza e intemperismo de las paredes; y
- Finalmente, se descartará la presencia de carbonatos en la roca con la prueba del ácido clorhídrico.
- Trabajos de laboratorio: Los ensayos de laboratorio tienen por finalidad estimar las propiedades físicas, químicas, mecánicas, hidráulicas de los materiales y así caracterizar geotécnicamente los diversos materiales encontrados. Las muestras para los ensayos serán seleccionadas en función de diversos criterios como representatividad, zonas críticas (cimentaciones) y estado de la roca.

Los ensayos de laboratorio considerados para el estudio se presentan a continuación:

a) Rocas:

- Clasificación visual del tipo de roca;
- o Gravedad específica;
- Densidad;
- o Porosidad;
- Carga puntual;
- Compresión no confinada (sólo testigos cilíndricos);
- Compresión triaxial;
- o Corte directo en discontinuidades; y

b) Suelos:

- En los depósitos de suelo, roca muy descompuesta, rocas blandas, suelo residual, rellenos de fallas geológicas importantes o rellenos antrópicos se realizarán los siguientes ensayos:
- o Granulometría por tamizado;
- o Límites de Atterberg;
- o Humedad;
- Contenido de sales solubles totales;
- Contenido de sulfatos;
- Contenido de cloruros;

- pH Triaxial CU (con medición de presión de poros) ($\varphi 2.8$ " ~ 4");
- Corte directo (cajas de $4"x4" \sim 12"x12"$);

Por condiciones propias de diseño o circunstancias especiales, puede ser necesario realizar los siguientes ensayos:

- o Granulometría por sedimentación;
- Proctor estándar;
- Proctor modificado;
- **Procesamiento de datos:** se utilizó software como; Microsoft Office, donde se utilizaron los programas Word, Excel y PowerPoint y Rocsience, CAD, Argis.

3.7 Tratamiento estadístico

Los datos obtenidos de la evaluación en este proyecto son considerados datos estadísticos originales por tratarse de un método de investigación directa. Sin embargo, es preciso mencionar que son cualitativos y cuantitativos.

Durante la elaboración del presente proyecto se han aplicado técnicas propias de la estadística descriptiva, como la elaboración de tablas diagramas y otros. Estas, además de facilitar la ordenación y comparación de los datos, nos permiten conocer los parámetros de las muestras con las que trabajamos.

3.8 Selección, validación y confiabilidad de los instrumentos de investigación

Los ensayos de mecánicas de suelos y rocas se realizaron en el laboratorio de la Universidad Nacional de Ingenieria. Además, en campo se uso el martillo schmidt cuyas especificacione stecnicas se muetsra a continuación.

7. Especificaciones téc	nicas Martillo Schmidt					
Rango de resistencia a la co	mpresión uniaxial (o libre)					
ISRM recomienda el uso de martillos de rebote para UCS dentro de un rango de 20 a 150 MPa. ASTM recomienda un límite superior de UCS de 100 MPa.						
Se han realizado otros estudio	s en rocas con UCS hasta 250 MPa.					
Con su experiencia en la elecut	ción de ensavos en hormigón, Proceg recomienda un límite inferior					
de alrededor de 10 MPa, y pre	star mayor atención por encima de 100 MPa debido al gradiente					
de la curva de correlación.						
Deles masíalasa						
Datos mecanicos						
Energia de impacto	(N) 2.207 Nm, (L) 0.735 Nm					
Masa del martillo	115 g					
Recorrido del muelle	75 mm (2.95")					
Radio del punzón	25 mm (0.96")					
Dimensiones de la caja	55 x 55 x 250 mm (2.16" x 2.16" x 9.84")					
Peso	570 g					
Datas da la mamaria						
Datos de la memoria						
Cant. de impactos en una serie	Máximo: 99					
Capacidad de memoria depen	de de la longitud de la series de ensayos					
Ejemplo	400 series con 10 valores por serie					
Ejemplo	200 series con 20 valores por serie					
Datos eléctricos						
Pantalla	17 x 71 pixeles, gráfica					
Duración del acumulador	> 5000 impactos entre cargas					
Coorrido del corrector	LICE ting D /s V (00 mÅ)					
Conexion dei cargador ; USB tipo B (5 V, 100 MA)						
Condiciones ambientales						
Temperatura de servicio	De 0 a 50°C					
Temperatura de almacena-	De -10 a 70°C					
1100100						

Figura 3.1: Especificaciones técnicas del martillo schmidt

3.9 Orientación ética

Para el presente contexto la ética se aplicó en todas las etapas del proyecto, desde la planificación y la realización hasta la evaluación de los resultados. Además, se tomó precauciones especiales con la participación de poblaciones aledañas. Por otro lado, los resultados de la evalución se brindan conforme a lo descrito y analizado en campo.

CAPITULO IV

RESULTADOS Y DISCUSIÓN

4.1 Descripción de los trabajos de campo

4.1.1 Generalidades

• <u>Ubicación y accesibilidad</u>

La zona del proyecto se encuentra ubicada en el pueblo de Mollebaya, distrito de Uchumayo, provincia y departamento de Arequipa, Perú. Esta estructura forma parte del proyecto Autopista Arequipa-La Joya y se localiza aproximadamente a 27 km de la Plaza de Armas de la ciudad de Arequipa. Geográficamente el puente se ubicará en el lugar con coordenadas 210825E y 8183083N (UTM WGS84 Zona 19 K). El sitio es accesible por la autopista Arequipa-La Joya, ya construida, que llega hasta el estribo derecho del puente proyectado, mientras que para el estribo izquierdo se ingresa por la carretera asfaltada hacia Mollendo, cruzando el poblado de Uchumayo y el rio Chili, a un desvío por trocha que llega a la zona del estribo izquierdo. La Figura 1 muestra la ubicación del proyecto.

Figura 4.1: Ubicación del área de proyecto.

4.1.2 Evaluación geológica

4.1.3 Geomorfología y geodinámica externa

Teniendo como marco las unidades descritas en la geomorfología regional, en el área de estudio, se han diferenciado diversas geoformas, cuya distribución se describe lineas abajo.

Asimismo, se han identificado los principales procesos de geodinámica externa, y riesgos geológicos inherentes a los mismos.

• <u>Relieve y paisaje</u>

Como parte del relieve que caracteriza el área de estudio, se aprecian un conjunto de elementos geográficos constituidos por montañas, laderas, valles y quebradas, terrazas, penillanuras y planicies; que en conjunto definen un paisaje natural, poco disturbado por la actividad antrópica.

De acuerdo con los diversos procesos modeladores del relieve, se puede asumir un predominio de los procesos internos (vulcanismo, diastrofismo, orogenia), seguidos de ciclos de intensos procesos erosivos, evidenciados por la discordancia erosional entre las rocas intrusivas Jurásico-Cretácicas y los tufos del Pliopleistoceno (Sencca); que culminaron en el paisaje de planicie aluvial, ligeramente ondulada e inclinada al SO, que conforma el área de estudio. Actualmente, en gran parte del área de estudio, predominan los procesos de erosión, acompañados de levantamiento de este sector, como parte del levantamiento general de la Cordillera de los Andes.

4.1.4 Unidades geomorfológicas

Valle encañonado del río Chili

Producto de la interacción del río Chili y su evolución, en su ámbito de influencia con el paisaje prexistente, se ha generado diferentes geoformas entre las que destacan terrazas antiguas y recientes, laderas coluviales de fuerte pendiente, y laderas rocosas de fuerte pendiente. *Terrazas.* - Se presentan en varios sectores de ambas márgenes del río Chili, están conformadas por material aluvial acumulado por el rio durante su evolución. Adyacente al cauce actual se presentan superficies subhorizontales (Terrazas T3), que viene a ser las áreas sujetas a potencial inundación en eventuales avenidas del rio. Sobre este nivel, en algunos sectores se presenta superficies escalonadas que indican la presencia de terrazas relativamente más antiguas con desniveles marcados con relación al cauce del río (Terrazas T2), en tanto que, en otros sectores, estas formas han sido disturbadas por erosión pluvial, conformando taludes continuos desde la cabecera de la ladera; sin embargo, la presencia de depósitos aluviales similares indica que eran el curso antiguo del río Chili (Terraza T1). Fotos 4, 5 y 6 del Anexo A.1.

- Laderas Coluviales de Fuerte Pendiente. Geoforma que se presenta en ambos flancos del río Chili. Están conformados por laderas con una cobertura de material coluvial y escombros rocosos, producto de la erosión y meteorización de las rocas volcánicas del Sencca y las rocas intrusivas. En general son zonas potencialmente inestables. Foto 5 del Anexo A.1.
- Laderas Rocosas de Fuerte Pendiente. Se le ha diferenciado por estar constituido mayormente por afloramientos rocosos, en general moderada a fuertemente fracturados, ligera a moderadamente alterados, con escasa presencia de suelo coluvial; pudiéndose presentar eventuales caídas de roca.

Penillanura de Arequipa

La Penillanura de Arequipa se distingue por su superficie de relieve suave, disectada por una densa e incipiente red de drenaje de recorrido corto y quebradas principales que discurren con rumbo NE-SO hasta confluir en el río Chili. Estas formas están configuradas en depósitos volcánicos y aluviales poco compactos. Fotos 1 y 2 del Anexo A.1.

- *Quebradas encañonadas.* Vienen a ser las quebradas principales que disectan la penillanura, se extienden con dirección predominante NE-SO, son de flancos de fuerte pendiente y fondo angosto, con desniveles de 20 m en sus cabeceras a 120 m en su confluencia con el río Chili.
- Llanura y Ladera Aluvial Antigua. Estas geoformas se caracterizan por configurar superficies subhorizontales a muy suavemente inclinadas, que se ubican en ambas márgenes del río Chili; estando cubiertas en algunos casos con arenas aluviales y lentes de gravas redondeadas gris negruzcas; que sugieren que

antiguamente correspondían a zonas marginales del río, o eventuales cursos de un río meándrico. La predominancia de arenas sobre gravas sugiere un rio de moderada energía, en un cauce relativamente suave. En algunos casos la llanura se presenta suavemente disectada, donde los materiales aluviales han sido prácticamente removidos.

<u>Cordillera de laderas</u>

- Alineamiento de Colinas Rocosas. Prolongación distal de las colinas y cerros bajos, que hacia el Sur conforma la Montaña Caldera y al Noreste el alineamiento de cerros altos. Están constituidos mayormente por afloramientos rocosos intrusivos.
- Colinas y Lomadas. Geoformas que se ubican en el sector suroeste del área de estudio. Se caracterizan por sus formas suaves y alargadas, que rompen la continuidad del relieve con respecto a las colinas rocosas. Están configuradas en materiales del Sencca, con una delgada cobertura de materiales eólicos y cenizas.
- Quebradas. Viene a ser la red de drenaje que disecta este sector. En general presentan fondo amplio, de pendiente suave, cubiertos por depósitos aluviales recientes y capas delgadas de arenas eólicas y cenizas.

4.1.5 Clima y vegetación

El clima de la meseta de Arequipa es semiárido, variando a un clima caliente, netamente desértico hacia La Joya. Las precipitaciones son estacionales, éstas se producen en los meses de verano entre enero y marzo. Las tasas de precipitación anuales durante el período de registro varían entre 9 y 70 mm/año, con un promedio de 36,7 mm/año. La

evaporación promedio mensual varía entre 140 mm y 223 mm, siendo más altas en los meses de invierno, entre agosto y noviembre, (EIA SMCV, Knight Piesold, 2006).

La vegetación se presenta muy esparcida distinguiéndose algunas especies como Nolanas, ambrosia fruticosa, Haageocereus, y Corrycactus peruvianus, en la penillanura, Céreus sobre los cerros de la caldera, mientras que la parte baja es una estepa con cactus. La zona de la meseta de Arequipa presenta zonas irrigadas con las aguas del río Chili donde se cultivan varios productos, principalmente cebollas y ajos.

4.1.6 Geodinámica externa

Los procesos de geodinámica externa identificados en el área de estudio están constituidos por caída de rocas y vuelco, erosión de riberas y eventualmente flujo de detritos. Cabe añadir sin embargo que estos eventos no afectarán la estructura proyectada.

- *Caída de Rocas y Vuelco.* Proceso geodinámico con potencial de ocurrencia en laderas coluviales de fuerte pendiente, y eventualmente en laderas rocosas de fuerte pendiente. Foto 6 del Anexo A.1
- Derrumbes. Ocurren en sectores de laderas coluviales de fuerte pendiente, con acumulación de escombros rocosos, o material coluvial suelto, si bien puede iniciarse el fenómeno de caída de rocas o vuelco, este puede pasar a derrumbes, pudiendo afectar algunos accesos y áreas de cultivo existentes en las terrazas del río Chili.
- Erosión de Riberas e Inundación. De potencial ocurrencia en ambas márgenes del río Chili, en los tramos con presencia de terrazas aluviales. En épocas de crecida del río este fenómeno puede afectar a la actividad agrícola desarrollada en las mismas.

Flujo de Detritos. - En el flanco derecho de la nueva carretera Arequipa - La Joya,
 a 200 m aproximadamente del puente proyectado, se aprecia en la imagen satelital, huellas de flujo relativamente reciente en el cauce de una quebrada de aproximadamente 1.5 km de longitud. Si bien la carretera cuenta con cunetas y alcantarilla, un eventual colapso de la misma por colmatación o erosión podría derivar estas aguas abajo hacia el puente y por ende deteriorar la estructura proyectada.

4.1.7 Geología regional

De acuerdo con la revisión de la geología de las hojas de Arequipa, y Joya (García, W. 1968; Vargas, L. 1970, UNAS, 2000), la secuencia estratigráfica regional está conformada por unidades litológicas sedimentarias e ígneas, cuyas edades van desde Jurásico inferior hasta el Cuaternario reciente. Las rocas más antiguas son los volcánicos Chocolate y calizas y lutitas del Socosani y Yura, cuyos remanentes sobresalen a manera de techos colgantes, sobre cuerpos intrusivos Jurásicos y Cretácicos. Sobre los intrusivos en discordancia, se presentan rocas piroclásticas del volcánico Sencca, y sedimentitas de la Formación Millo; le siguen depósitos aluviales del Pleistoceno y Holoceno, y depósitos recientes coluviales, eólicos y aluviales. El plano 1 muestra la geología regional.

4.1.8 Geología local

El área de estudio local abarca una superficie de 4 km2, teniendo como punto central, el eje del puente proyectado de coordenadas UTM 2100787E y 8183118N, con elevaciones que van de 1 840 a 2 070 msnm. Su ubicación se muestra en el Plano 3 del Anexo F. A continuación, se describen las principales características geomorfológicas, litoestratigráficas y estructurales del área de interés.

4.1.9 Estratigrafía

De acuerdo con la revisión de información y el reconocimiento de campo, la estratigrafía local está conformada por rocas piroclásticas y sedimentos del Plio-pleistoceno al Cuaternario reciente. Los volcánicos Sencca descansan en discordancia erosional sobre cuerpos intrusivos Jurásicos y Cretácicos; cubiertos en parte por depósitos coluviales, eólicos y aluviales recientes.

A continuación, se describen las unidades litológicas presentes en el área de estudios, cuya posición en la columna estratigráfica se aprecia en la Figura 4.2 y 4.3, y su distribución y relaciones espaciales se muestran en los planos; 4, 6, 7 y 8 Secciones Geológicas.

Unidades estratigráficas

Volcánico Sencca (Qpl-vse)

Se extiende ampliamente en el sector septentrional del área de estudio, configurando la Penillanura de Arequipa, que se proyecta a la margen izquierda del río Chili, donde confluyen las quebradas El Ataque y Tinajones, y donde conforman antiguas planicies aluviales o rellenan parcialmente estas quebradas.

El Volcánico Sencca de acuerdo con secciones medidas en el área de estudio, consiste de un nivel inferior de color rosado, pardo a marrón claro, conformado por una intercalación de arenas y gravas con lentes de tufos retrabajados, bancos de tufos compactos y niveles de tufos retrabajados de hasta 2" de diámetro. Le sobreyace un horizonte de conglomerados con clastos de tamaño variado, bolones, y bloques aislados, grises oscuros, angulosos, polimícticos, englobados en una matriz arenosa, muy compacto. También se presentan tufos redepositados, y arenas aluviales de grano fino a grueso, poco compactos, y tufos en bancos masivos rosados, marrón claro a blanquecinos, con tonos rosados por alteración superficial, compactos, subhorizontales, con diaclasamiento que origina bloques columnares cortados por planos horizontales. Y finalmente arenas de grano fino a medio, rosadas a blanquecinas, poco consolidadas, con clastos de pómez y líticos aislados. El espesor estimado es de aproximadamente 150 m.

En el área de interés, el volcánico Sencca yace en discordancia erosional sobre los intrusivos gabrodioríticos y tonaliticos del complejo La Caldera e infrayace en discordancia erosional a los aluviales pleistocénicos de la Formación Cuico (UNSA), y depósitos cuaternarios recientes.

Aluvial Pleistocénico Superior (Qpl-cu)

Estos depósitos se restringen al extremo norte del área de estudio. Consisten en una intercalación de arenas limosas - arenas gruesas, gris oscuras a pardas, compactas, con lentes de grava de tamaño variado en matriz arenosa, estructura estratificada, clastos subredondeados; seguido de arenas limosas, arenas con gravas y bloques redondeados, arenas limosas con gravas aisladas, de tamaño variado, con clastos líticos de hasta 2" de diámetro, con horizontes de gravillas y arenas limosas de estructura laminar. Presenta un espesor aproximado de 30 m en el sector registrado.

Depósitos Recientes

Depósitos aluviales.- Se distribuyen en ambos flancos y el lecho del río Chili, rellenando el cauce y laderas de la mayor parte de quebradas que disectan la cordillera de laderas. De acuerdo a su distribución y posición estratigráfica se pueden diferenciar en:

• <u>Depósitos Aluviales Antiguos</u>.- En el área de influencia del río Chili, el material consiste de gravas de tamaño variado en una matriz de arenas, gris oscuro,

redondeadas, sueltas a moderadamente compactas, poco consolidadas, que conforman terrazas escalonadas, y con una mayor presencia de finos en la superficie de inundación actual que sugieren en conjunto periodos relativamente marcados de actividad fluvial, ver Foto 6 del Anexo A.1

- Depósitos Aluviales Recientes.- Se encuentran ocupando el lecho y laderas del río Chili y las diferentes quebradas que confluyen por la margen izquierda y disectan la cordillera de laderas. Estos depósitos configuran terrazas bajas de pequeña extensión a lo largo del Chili, y el material consiste principalmente de gravas sueltas en matriz de arenas y limos. Asimismo, conforman el relleno de las llanuras aluviales de las principales quebradas que disectan la cordillera de laderas y algunos abanicos de deyección depositados por sus tributarios; el material aluvial es gris con tonos pardos, clastos de tamaño variado en matriz areno-limosa, en general subangulosas, dada la poca distancia de transporte. En general el espesor de estos materiales es variable, y conforman la zona de inundación en eventuales avenidas aluviales.
- <u>Depósitos Coluviales</u>.- Son depósitos que se distribuyen en las laderas de los cerros, distinguible por su morfología suave en contraste con el relieve rocoso.
 En general se presentan asociados a afloramientos rocosos.
- <u>Depósitos Eólicos</u>.- Son acumulaciones de arena suelta y ceniza volcánica en forma de montículos o mantos delgados localizados de manera dispersa cerca de las cumbres y las depresiones, configurando en algunos casos dunas o pequeños campos de dunas de espesor variable; y eventualmente las cenizas se presentan en capas intercaladas con materiales aluviales. Estos depósitos están emplazados en laderas o quebradas, presentándose en general poco compactos a sueltos.

Rocas Intrusivas

En el área de emplazamiento del puente proyectado, se presentan afloramientos de gabrodioritas y tonalita, que son afectadas en conjunto por pequeños diques de cuarzo, aplitas y epidotas.

• Grupo Gabrodioritas (Js-gbd)

Los afloramientos de esta unidad se presentan mayormente en el estribo izquierdo del puente proyectado, prolongándose hacia el sector oeste del estribo derecho, donde es cubierto mayormente por las rocas del volcánico Sencca. Pequeños afloramientos se presentan en el sector este del estribo derecho.

En muestras de mano, las rocas se presentan de color gris oscuro a gris verdoso, con tonos rojizos en superficie por alteración de los minerales ferromagnesianos por meteorización; holocristalinas con textura porfirítica, en general de grano medio a grueso, con sectores de grano fino. Las muestras contienen principalmente plagioclasas, algo de feldespatos, hornblenda, cuarzo, biotita y algunos cristales de clinopiroxeno. En algunas muestras se observan venillas de epídota, y en algunas zonas presenta cierta orientación de los cristales que le da una textura foliada.

En campo se observan bloques tabulares por el tipo de fracturamiento, el cual a su vez está determinado por la orientación de los minerales constituyentes de estas rocas. En algunos sectores, las rocas se presentan fuertemente fracturadas y cizalladas, producto del tectonismo. El emplazamiento de diques de epidota y cuarzo probablemente se deba al mismo proceso.

No se presenta un contacto marcado entre las dioritas y gabros, debido a su relación transicional, por lo que se les ha agrupado como gabrodioritas.

• Tonalita de Laderas (Ki-to/di)

Rocas tonalíticas se presentan en ambos estribos del puente proyectado, a manera de una faja alargada, que en parte bordea a las gabrodioritas. Conforman relieves suaves a moderados.

En muestras de mano, presentan grano medio a grueso, color gris blanquecino con tonos rosáceo y verdoso, y rojizo por oxidación de los minerales máficos, holocristalinos, con textura fanerítica, con alto porcentaje de plagioclasas y ortosa, también presenta cuarzo; los minerales máficos están constituidos principalmente por biotita, alterada parcialmente a clorita, con presencia de venillas de epidota, clorita y sericita, en sectores presenta cloritización y epidotización. En algunos sectores los cristales presentan orientación casi paralela que le dan un aspecto foliado. Garcia, W. (1968).

En campo se observan bloques tabulares por el tipo de fracturamiento, el cual a su vez está determinado por la orientación de los minerales constituyentes de estas rocas. En algunos sectores, asociados a zonas de fallas, las rocas se presentan fuertemente fracturadas y cizallados, producto del tectonismo. El emplazamiento de vetas de epidota y cuarzo probablemente se deba al mismo proceso.

• Granodiorita Tiabaya (Ki-gd)

Son rocas holocristalinas de textura fanerítica, inequigranular, de grano fino a grueso. Las muestras contienen cuarzo, piroxenos, hornblenda, biotita, plagioclasas, ortosa, el color varía de una tonalidad gris claro con una textura de grano grueso en la parte central del Cerro Calderas, hasta un color más oscuro y de grano fino con una ligera tonalidad rosácea por la presencia de feldespatos hacia las zonas de contacto con las rocas gabrodioríticas, este tipo de rocas en algunas partes presentan un cierto alineamiento subparalelo de los minerales ferromagnesianos. Estas rocas presentan una gradación hacia tonalitas.

Por oxidación de los ferromagnesianos por la meteorización, en la superficie estas rocas presentan un color rojizo, morfológicamente se observa en los afloramientos rocosos de este tipo formas redondeadas y exfoliación esferoidal de bloques caídos, en la zona de estudio estas rocas se presentan en el Cerro Calderas (Foto 8 del Anexo A.1).

• Diques

En general no se ha evidenciado presencia de diques en los travers realizados, sin embargo, estos pudieran estar soterrados por cobertura coluvial y/o eólica, dado que, en sectores cercanos al puente proyectado, se ha registrado presencia de diques aplíticos, de epidota y cuarzo, y andesíticos, en algunos casos con evidencia de desplazamiento (Foto 9 y 10 del Anexo A.1).

Figura 4.2: Columna estratigráfica realizado de la identificación de campo, adaptado al área de estudio en base a Vargas L. 1968 Garcia L. 1970 UNSA.

Figura 4.3: Columna estratigráfica de detalle realizado de la identificación de campo.

4.1.10 Geología estructural

De acuerdo con el mapeo geológico y reconocimiento estructural de campo se han distinguido dos sistemas principales de fallamiento NO-SE y NNE-SSO, que están relacionadas a la geología local del área de estudio, diques de diferente composición, contactos litológicos poco definidos y sistemas de fracturamiento principal que en general están orientados al NO-SE y NE-SO.

• <u>Fallas</u>

Los sistemas de fallas en la zona de estudio están orientados principalmente al NO-SE, presentan en general un buzamiento orientado al SO y al NE afectando rocas gabrodioritas y tonalitas, lo que indica, por lo similar de la orientación y buzamiento de estas estructuras, que afectaron por igual en ambos cuerpos intrusivos.

Estribo Derecho.- En el sector SE del estribo derecho del puente proyectado se tiene una falla inversa de alto ángulo con una potencia medida de 4.5 m, con buzamiento orientado al SO, asociado a la presencia del dique aplítico de 30 metros aproximado de potencia, ubicado sobre el techo de la falla. Esta falla presenta relleno de roca muy fracturada a molida con presencia aislada de minerales de hierro oxidada, que probablemente sea la continuación de la estructura por donde el río tiene su curso actual. Fotos 19 y 20 del Anexo A.1.

En el sector NO del estribo derecho se tiene dos sistemas de fallamiento con rumbo NE-SO con orientación de buzamiento al SO y NO, y rumbo NNO-SSE con orientación de buzamiento SE y SO. Las fallas NE-SO no presentan relleno. Las fallas NNO-SSE están asociadas a roca muy fracturada, alterada y con zona de falla de 1.5 m a 2.5 m de potencia. *Estribo Izquierdo.*- En el sector NO del estribo izquierdo se presentan dos sistemas de fallamiento con rumbos E-O y NO-SE. Estas estructuras presentan generalmente una orientación de buzamiento al S. Las fallas con rumbo E-O presentan un relleno con potencia que va de 0.60 a 0.20 m de relleno compuesto por roca alterada con minerales micáceos como muscovita.

En el sector SE del estribo Izquierdo se tiene tres sistemas de fallamiento con rumbos NNO-SSE, E-O y NE-SO, las dos primeras fallas presentan un buzamiento de 35° y 50° , orientados al NO y SO, respectivamente y la última presenta un buzamiento de 70° al NE.

La falla con rumbo NNO-SSE, se presenta en la margen izquierda del río Chili adyacente a la vía del tren (Foto 16 del Anexo A.1). Presenta un buzamiento de 35°, y está orientada al NO. Presenta una potencia de 1.5 m, con relleno de roca molida y estrías orientadas al Oeste en la caja piso, lo que indica el tipo de movimiento inverso de la falla.

• <u>Fracturas</u>

Durante el mapeo geológico se han registrado sistemas de diaclasamiento principal presentes en los afloramientos rocosos del área de estudio.

Para los afloramientos de gabrodioritas se ha registrado dirección predominante NO-SE con buzamiento de 40° a 84° al SO, y asimismo fracturas de rumbo NE-SO con buzamientos de 50° a 85° al SE.

En los afloramientos de tonalita se presentan 2 familias de estructuras predominantes que tienen como dirección principal NE-SO, con buzamiento de 34° a 82° SE; y NO-

SE, en general sub-verticales con ángulos de 50° a 85° al NE. El Plano 2 y 7 del Anexo F muestra la distribución estructural del área del proyeccto.

4.1.11 Patrón de drenaje

De acuerdo con el marco regional, el patrón de drenaje local está marcadamente diferenciado; en el sector septentrional penillanura de Arequipa, presenta un drenaje paralelo, en tanto que, en el sector meridional, con presencia de rocas intrusivas, el sistema de drenaje es esencialmente dentrítico con pequeños tramos subparalelos; denotando que el control del drenaje es esencialmente litológico. Cabe indicar, asimismo, que el curso del río Chili, en el flanco este del área de estudio presenta fuertes flexiones con cambios bruscos de orientación que sugieren principalmente un control estructural.

Figura 4.4: Patrón de drenaje del área de estudio

4.1.12 Rasgos hidrogeológicos

El área de estudio está comprendida dentro de la cuenca del rio Chili, los acuíferos existentes son los provenientes de la zona de llanura o terrazas aluviales antiguas aledañas a la ciudad de Arequipa, al noreste del área de estudio, y la proveniente del lado sureste de Arequipa, Socabaya, Sabandía y Yarabamba (INRENA, 2003), tienen como fuente principal de recarga la zona de elevaciones de la cadena volcánica montañosa del Pichu Pichu a 5318 msnm, ubicada hacia el lado oriental del área de estudio. Los estudios hidrogeológicos del valle del rio Chili realizados en las áreas aledañas de su curso medio, que comprenden en su margen izquierda a los distritos de Arequipa, Miraflores, Sabandía y Socabaya entre otros, y en su margen derecha a Cayma, Cerro Colorado, Tiabaya etc., han permitido interpretar las características del agua subterránea y su entorno hidrogeológico extendido hacia la zona de estudio. De esta manera, de acuerdo al inventario de manantiales y filtraciones de agua en el área de estudio, y a los rasgos geológicos de los afloramientos rocosos presentes, se puede concluir que la unidad hidrogeológica de roca ígnea intrusiva corresponde a un acuífero fisurado, mientras que el tufo volcánico podría ser clasificado como acuitardo volcánico o acuífero multicapa, de acuerdo a ello el nivel freático del acuífero se encontraría al nivel del lecho del rio o por debajo de este.

4.1.13 Mapeo de manantiales y filtraciones

A fin de recolectar y complementar la información existente obtenida para el área de estudio, se llevo a cabo la investigación de campo que ha consistido en el mapeo hidrogeológico referente a los siguientes puntos:

- Mapeo de afloramientos de agua subterránea, como manantiales y filtraciones de agua.
- Medida de la calidad y estimación del caudal de agua in situ.
- Inventario y registro de pozos de agua existentes en el área de estudio.

El trabajo de campo realizado como parte de la campaña de investigación de campo geológico, ha permitido identificar 04 manantiales que se muestran en la Tabla 4.1. Cabe indicar que los manantiales identificados corresponden únicamente a la margen derecha del rio Chili, pues en la otra margen dominada por la roca ígnea intrusiva, no se ha encontrado surgencia de agua en superficie ni en la ladera al valle correspondiente. Dos manantiales, MN-01 y MN-03 (Foto 12 del Anexo A.1), ubicados a un kilómetro aproximadamente del borde del cañón del río han generado una pequeña quebrada con riachuelo, denominadas Apacheta y Culebrillas respectivamente, las que desembocan en el río Chili. Los otros tres manantiales MN-02, MN-04 y MN-05 se ubican al pie de la ladera de la margen derecha y casi al nivel del rio, los resultados de la calidad de agua tomada in situ, se muestran en la Tabla 4.1.

Nombre Estación	Tipo	Este (m)	Norte (m)	Cota (m)	Flujo (l/s)	CE	рН	Temp (°)	TDS (ppm)
MN-01	Manantial	8184834	209866	1959	30(*)	1345	7.94	21.2	947.2
MN-02	Filtración	8184015	209613	1864	3(*)	1372	7.46	21.6	967.5
MN-03	Manantial	8184018	210924	1958	$15^{(*)}$	1153	7.6	22.1	808.6
MN-04	Manantial	8184077	209450	1860	10 ^(*)	(**)	-	_	_
MN-05	Manantial	8183097	211030	1898	15 ^(*)	(**)	-	-	-

 Tabla 4.1: Inventario de Manantiales y Filtraciones

^(*)Caudal estimado

(**) Falta de accesibilidad para registrar los parámetros

CE = Conductividad eléctrica

4.1.14 Medida del flujo y calidad de agua in situ

Durante el mapeo de campo se estimó el caudal del flujo en cada manantial encontrado. Asimismo, se registró los parámetros fisicoquímicos del agua mediante el empleo de un multitester (excepto uno de los manantiales por falta de acceso). Previo a la lectura de los parámetros fisicoquímicos el equipo fue previamente calibrado como parte de los estándares de calidad. Los parámetros que fueron registrados fueron: temperatura (°C), pH, Conductividad eléctrica (µs/cm), TDS (ppm) y ORP (mv). Al mismo tiempo se tomaron registros de las coordenadas mediante el empleo de un GPS navegador.

La descarga de flujo de los manantiales inventariados varía entre 3 a 30 l/s. Las aguas de estos manantiales no son utilizadas actualmente y se descargan al rio Chili. Por otra parte, de los parámetros físico-químicos medidos en campo el pH registrado tiene un valor de neutro, los valores de conductividad eléctrica, y contenido total de solidos son moderados, lo que indicaría un contenido moderado de sales disueltas.

Cabe resaltar que, en el área de estudio, debido al encañonamiento del río Chili en la zona, no se ha encontrado pozos de agua habilitados que permitan conocer exactamente la profundidad de la napa freática existente.

4.2 Presentación, análisis e interpretación de resultados

4.2.1 Evaluación geomecánica superficial

El objetivo de este levantamiento geomecánico fue la evaluación de la calidad del macizo rocoso en superficie, en cada margen del río, y la definición de los principales sistemas de discontinuidades presentes en el macizo rocoso, para proponer la orientación e inclinación de las perforaciones diamantinas a ser realizadas en los cuatro apoyos proyectados del puente.

4.2.2 Investigación geomecánica superficial

El trabajo de investigación de campo consistió en realizar el mapeo geológico-estructural de la zona de estudio mediante celdas de detalle en afloramientos y cortes de accesos en la zona de estudio. También se realizaron ensayos in-situ para determinar la dureza de la roca intacta utilizando el martillo Schmidt. Como parte de la investigación de campo también se recolectaron muestras de bloque para realizar diversos ensayos en el laboratorio de mecánica de rocas.

A partir del levantamiento geológico y geomecánico en las estaciones de mapeo superficial se diferencian las márgenes del lado derecho e izquierdo del rio Chili. En la margen izquierda predomina la gabrodiorita y en algunas zonas se encontró la presencia de tonalita. En la margen derecha se encuentra principalmente tonalita y en menor proporción gabrodiorita, además se encontraron zonas de tufo volcánico en donde estaría apoyado el estribo derecho y vecindades.

4.2.2.1 Mapeo estructural por celdas

Con la finalidad de obtener información estructural de superficie, así como las características geomecánicas de las discontinuidades, se realizó el mapeo de celdas en 46 estaciones, en afloramientos de roca y accesos del área de estudio, 24 en la margen izquierda y 22 en la margen derecha. En estos mapeos se tomaron datos de las discontinuidades, incluyendo su rugosidad, apertura, separación, relleno, persistencia, entre otros. También se tomaron datos de su orientación espacial en términos de buzamiento y dirección de buzamiento. El Anexo A contiene los registros fotográficos del mapeo superficial de cada una de estas estaciones. La ubicación de las estaciones de mapeo se presenta en el Plano 4. A continuación, se muestran las Tablas 4.2 y 4.3 que resumen las estaciones de mapeo.

_	Estación	Coordenadas		Cota	I italagía	\mathbf{A} rimput (°)
Zona	Estacion	Norte	Este	(msnm)	Litologia	Azimut ()
	E-01	8 183 183	210 709	1 891	Gabrodiorita	N155°
	E-02	8 183 173	210 657	1 928	Gabrodiorita	N230°
	E-03	8 183 141	210 618	1 932	Gabrodiorita	N125°
	E-04	8 183 118	210 580	1 945	Gabrodiorita	N200°
	E-05	8 183 077	210 539	1 940	Gabrodiorita	N230°
	E-06	8 183 031	210 587	1 970	Gabrodiorita	N240°
	E-07	8 183 046	210 659	1 970	Gabrodiorita	N108°
	E-08	8 183 110	210 684	1 958	Gabrodiorita	N245°
	E-09	8 183 120	210 712	1 941	Gabrodiorita	N108°
	E-10	8 183 135	210 747	1 894	Gabrodiorita	N140°
erda	E-11	8 183 111	210 775	1 904	Tonalita	N150°
zqui	E-12	8 183 090	210 749	1 934	Gabrodiorita	N140°
gen I	E-13	8 183 075	210 730	1 955	Gabrodiorita	N155°
Marg	E-14	8 183 020	210 710	1 971	Gabrodiorita	N128°
	E-15	8 182 963	210 519	1 970	Gabrodiorita	N250°
	E-16	8 182 961	210 670	2 006	Gabrodiorita	N140°
	E-17	8 182 961	210 740	1 972	Gabrodiorita	N165°
	E-19	8 183 049	210 786	1 925	Tonalita	N215°
	E-21	8 183 056	210 825	1 913	Tonalita	N130°
	E-22	8 183 007	210 819	1 947	Tonalita	N220°
	E-23	8 182 961	210 776	1 952	Gabrodiorita	N140°
	E-24	8 182 893	210 780	1 972	Gabrodiorita	N125°
	E-25	8 182 910	210 670	2 019	Gabrodiorita	N140°
	E-42	8 183 216	210 713	1 866	Gabrodiorita	N120°

Tabla 4.2: Estaciones de Mapeo de Detalle en la Margen Izquierda del Río Chili

7	Ectorión	Coordenada	as	Cota	Litalagía	Azimut/
Zona	Estacion	Norte	Este	(msnm)	Litologia	Buz. (°)
	E-26	8 183 254	211 107	1 987	Tufo	N150°
	E-27	8 183 195	211 173	1 989	Tufo	N150°
	E-28	8 183 159	210 965	1 895	Gabrodiorita	N240°
	E-29	8 183 321	210 956	1 985	Tufo	N150°
	E-30	8 183 161	210 879	1 947	Tonalita	N60°
	E-31	8 183 301	210 928	1 965	Tufo	N355°
	E-32	8 183 203	210 884	1 953	Tonalita	N160°
	E-33	8 183 161	210 849	1 927	Tonalita	N105°
E-348 183 145210 86E-358 183 234210 79E-368 183 216210 85E-378 183 267210 86	E-34	8 183 145	210 863	1 931	Dique Aplítico	N125°
	210 797	1 940	Tonalita	N158°		
	E-36	8 183 216	210 853	1 950	Tonalita	N160°
	E-37	8 183 267	210 866	1 963	Gabrodiorita	N110°
Maı	E-38	8 183 303	210 878	1 967	Gabrodiorita	N155°
Π	E-39	8 183 250	210 850	1 956	Tonalita	N170°
	E-40	8 183 420	210 895	1 974	Tufo	N110°
	E-41	8 183 226	210 745	1 866	Tonalita	N140°
	E-43	8 183 243	210 768	1 912	Tonalita	N110°
	E-44	8 183 276	210 803	1 937	Gabrodiorita	N160°
	E-45	8 183 327	210 822	1 967	Gabrodiorita	N155°
	E-46	8 183 367	210 851	1 967	Tonalita	N165°
	E-47	8 183 352	210 780	1 955	Gabrodiorita	N160°
	E-48	8 183 320	210 708	1 908	Gabrodiorita	N180°

Tabla 4.3: Estaciones de Mapeo de Detalle en la Margen Derecha del Río Chili

La litología en las estaciones de mapeo es principalmente gabrodiorita y tonalita, donde se registró más información estructural; también se tomó información estructural de los tufos, aunque en menor proporción.

4.2.3 Análisis cinemático

A partir de la información levantada en el mapeo geomecánico sobre la orientación de las discontinuidades, se realizó el análisis estereográfico para analizar la distribución estadística de estas orientaciones y definir las familias de estructuras principales y secundarias dentro de cada dominio estructural, siendo definido el dominio estructural como el volumen del macizo rocoso dentro del cual las propiedades geométricas, mecánicas y físicas de las discontinuidades son similares.

Una vez definidas las familias dentro de cada dominio, éstas fueron utilizadas para realizar el análisis cinemático y evaluar el potencial de falla planar, en cuña y vuelco, en las principales direcciones de los taludes de corte, que podría tener algún impacto en la construcción de la cimentación del puente.

4.2.3.1 Análisis estereográfico

La información estructural obtenida de las estaciones de mapeo ha sido utilizada para el análisis estereográfico de las discontinuidades mapeadas. La orientación espacial de las discontinuidades (buzamiento y dirección de buzamiento) fueron analizados usando el software Dips 5.1 de Rocscience.

Las discontinuidades en los macizos rocosos tienen por lo general un patrón definido en sus características espaciales (buzamiento y dirección de buzamiento) y de resistencia (forma, relleno, rugosidad, alteración, etc.). Por ello se utilizaron estereogramas combinando la información estructural de las estaciones según la litología (gabrodiorita, tonalita y tufo) y según la margen (derecha e izquierda) para identificar un posible dominio estructural, siendo definido este como el volumen dentro del cual las características mecánicas y de orientación de las discontinuidades son similares.

El Anexo C.1 presenta los estereogramas de las familias encontradas para el mapeo superficial. Las combinaciones de todas las estaciones se muestran en la Figura C.1, Los estereogramas agrupados por cada litología se muestran en la Figura C.2 a la Figura C.4. Se aprecia un patrón similar entre la gabrodiorita y tonalita a diferencia del tufo volcánico, que muestra un patrón diferente que se caracteriza por presentar discontinuidades semi-verticales y una familia sub-horizontal. Se agruparon las discontinuidades de todas las estaciones por litología y margen, así como también se representaron mediante el diagrama de roseta que permite visualizar mejor las tendencias predominantes del rumbo de las estructuras. Esta información se encuentra representada de la Figura C.7 hasta la Figura C.21.

A continuación, se muestran las tablas con información de la orientación promedio de las familias principales y secundarias en la margen izquierda y derecha del rio Chili, para cada litología. El Plano 5 muestra los estereogramas en cada zona para cada litología.

Tabla 4.4: Familias de Estructuras Principales y Secundarias de la Margen Izquierda

 (Gabrodiorita)

	Orientación			
Familia	Dirección de Buzamiento	Buzamiento		
	(°)	(°)		
P1	299	44		
P2	221	68		
S3	16	66		
<u>S</u> 4	135	41		

Tabla 4.5: Familias de Estructuras Principales y Secundarias de la Margen Izquierda

(Tonalita)

	Orientación				
Familia	Dirección de Buzamiento	Buzamiento			
	(°)	(°)			
P1	131	63			
P2	218	73			
P3	21	65			
P4	281	59			
S5	83	30			

Tabla 4.6: Familias de Estructuras Principales y Secundarias de la Margen Derecha

 (Gabrodiorita)

	Orientación				
Familia	Dirección de Buzamiento	Buzamiento			
	(°)	(°)			
P1	217	76			
P2	252	61			
P3	280	57			
P4	354	39			
P5	193	48			
S6	32	65			
S7	50	11			

Tabla 4.7: Familias de Estructuras Principales y Secundarias de la Margen Derecha

(Toanlita)

	Orientación			
Familia	Dirección de Buzamiento	Buzamiento		
	(°)	(°)		
P1	257	61		
P2	150	62		
P3	28	64		

Tabla 4.8: Familias de Estructuras Principales y Secundarias de la Margen Derecha(Tufo volcáinico)

	Orientación			
Familia	Dirección de Buzamiento	Buzamiento		
	(°)	(°)		
P1	276	85		
S2	167	86		
S 3	198	84		
P4	206	8		

Del análisis estereográfico se observó que hay un patrón similar en ambas márgenes del río entre las litologías gabrodiorita y tonalita. Sin embargo, debido a que es un estudio

de cimentaciones localizado y existen ligeras diferencias en los estereogramas se ha decidido sectorizarlo por litología y por margen. Se concluye del análisis, que hay dos rumbos definidos en las familias encontradas de la gabrodiorita y tonalita. El primer grupo de familias presenta un rumbo similar al del rio Chili, mientras que el segundo grupo presenta un rumbo perpendicular al rio Chili. Esto significaría que las familias mapeadas están asociadas con fallas de mayor escala y con el rumbo del rio Chili. Los buzamientos de estos grupos de familias presentan principalmente buzamientos elevados, mayores a 60 grados. En cuanto a las estructuras del tufo volcánico, este presenta orientaciones diferentes debido a la estructura propia del material mostrando familias sub-verticales con buzamientos mayores a 84 grados y una familia sub-horizontal.

En función de los resultados del análisis estereográfico se han ubicados las orientaciones de los ocho taladros geomecánicos orientados en las cuatro ubicaciones previstas en el proyecto, como se muestra en la Tabla 4.9, con la finalidad de que estos capturen la mayor cantidad de información estructural en profundidad, reduciendo la posibilidad de tener zonas ciegas. Estas orientaciones se ilustran en el Plano 6.

		Coordenadas UTM				
Sondaje	Roca en la estación	Este (m)	Norte (m)	Dirección de Buzamiento (°)	Buzamiento (°)	Profundidad (m)
AUS-PC-01	Tufo Volcánico	210 948	8 183 306	60	60	80
AUS-PC-02	Tufo Volcánico	210 948	8 183 306	240	80	80
AUS-PC-03	Tonalita	210 867	8 183 228	190	60	80
AUS-PC-04	Tonalita	210 867	8 183 228	85	80	80
AUS-PC-05	Gabrodiorita	210 729	8 183 094	190	60	80
AUS-PC-06	Gabrodiorita	210 729	8 183 094	100	80	80
AUS-PC-07	Gabrodiorita	210 659	8 182 025	10	60	80
AUS-PC-08	Gabrodiorita	210 659	8 182 025	280	80	80

Tabla 4.9: Ubicación y orientación de sondajes propuestos
4.2.3.2 Análisis cinemático

El análisis cinemático, que consiste en evaluar la posibilidad de fallas locales del talud a través de las discontinuidades existentes, debido a las excavaciones que serán realizadas para la cimentación del puente, se realizó para las 4 direcciones de los taludes resultantes de la excavación de los pilares. Es decir, como parte del análisis se tomaron las direcciones de los cuatro lados de las excavaciones a ser realizadas para la cimentación. La Tabla 4.10 muestra dichas direcciones.

Familia	Dirección de Buzamiento del Talud	Inclinación del talud
	(°)	(°)
1T	N 46°	75°
2T	N136°	75°
3T	N226°	75°
4T	N316°	75°

Tabla 4.10: Dirección de e xcavación para pilares y estribos

En el análisis cinemático se evaluó la ocurrencia de fallas del tipo planar, cuña y de volteo para ambas márgenes del río Chili. En la margen izquierda el estribo y el pilar del puente están localizados sobre la gabrodiorita, En la margen derecha el pilar se encuentra sobre la tonalita y el estribo se encuentra sobre el tufo volcánico. Para cada caso se realizó el análisis cinemático tomando en consideración las familias identificadas en el análisis estereográfico.

En función de la orientación del talud y de la posición de los polos de las familias o de la intersección de los planos respecto a zonas críticas establecidas en el análisis cinemático, se definieron zonas de bajo, moderado y alto riesgo de ocurrencia de estas fallas. En todos los casos de análisis se utilizó un ángulo de inclinación propuesto del talud de corte de 75° debido a que la roca es de buena resistencia. En las discontinuidades de la gabrodiorita y la tonalita se utilizó un ángulo de fricción preliminar de las discontinuidades de 35° y en las discontinuidades del tufo se utilizó un ángulo de fricción de 33°, como valor promedio basado en la revisión de estudios en discontinuidades de similares características; sin embargo, se recomienda realizar ensayos de corte directo en las discontinuidades naturales o simuladas de las tres litologías a fin de tener resultados más confiables.

4.2.3.2.1 Falla planar

Para las fallas planares se utilizaron 1 a 2 desviaciones estándar de 5 a 10 grados para determinar el radio de influencia de cada polo, en función de la importancia de cada familia de discontinuidades. Luego, los polos de las orientaciones promedio de cada familia de juntas se compararon con su posición relativa a la "envolvente de exposición" de cada cara de banco analizada.

4.2.3.2.2 Falla en cuña

Para el análisis de fallas en cuña se definió una desviación de 5 a 10 grados alrededor de la intersección de familias definiendo una cuña. Este punto de intersección fue comparado con su ubicación relativa al "círculo del ángulo de fricción".

El riesgo de ocurrencia de falla planar o tipo cuña fue calificado con un puntaje en función de la posibilidad de pérdida de la cresta del talud. Estas posibilidades se definieron como baja, moderada, alta y muy alta, dependiendo del puntaje alcanzado.

4.2.3.2.3 Falla por volteo

Este análisis permite evaluar el potencial de riesgo que existe cuando las estructuras presentan rumbos sub-paralelos a la superficie del talud y presentan grandes buzamientos. Este análisis solo se realizó en el tufo por la presencia de familias casi verticales. Para las fallas por volteo se utilizaron 1 a 2 desviaciones estándar de 5 a 10 grados para determinar el radio de influencia de cada polo. Luego los polos de las orientaciones promedio de cada familia se compararon con la zona de riesgo de volteo de cada talud analizado.

Los resultados del análisis se muestran en la Tabla 4.11. Para este análisis se utilizó la información proveniente del análisis estereográfico y se consideró las fallas producto de la intersección de familias principales y/o secundarias. Los gráficos del análisis son presentados en el Anexo C.3.

Ubicación	Litología	Dirección de Buzamiento del Talud (°)	Inclinación del Talud (°)	Tipo de Falla	Riesgo
		46	75	Planar	Bajo
		40	75	Cuña	No presenta
		126	75	Planar	Moderado
Margen	Gabradiarita	130	75	Cuña	Moderado
Izquierda	Gabrodiorita	226	75	Planar	Alto
		220	75	Cuña	Bajo
		316	75	Planar	Moderado
		510	75	Cuña	Bajo
		16	75	Planar	Alto
		40	75	Cuña	Moderado
Manaan		126	75	Planar	Alto
dorocho	Tonalita	150	75	Cuña	Bajo
uerecha		226	75	Planar	Bajo
		220	75	Cuña	Bajo
		316	75	Planar	Bajo

Tabla 4.11: Resumen del análisis cinemático para la excavación en pilares y estribos.

Ubicación	Litología	Dirección de Buzamiento del Talud (°)	Inclinación del Talud (°)	Tipo de Falla	Riesgo
				Cuña	Bajo
				Planar	No presenta
		46	75	Cuña	No presenta
				Volteo	Bajo
				Planar	No presenta
		136	75	Cuña	No presenta
	Tufo			Volteo	Bajo
	Turo			Planar	No presenta
		226	75	Cuña	No presenta
				Volteo	No presenta
				Planar	No presenta
		316	75	Cuña	No presenta
				Volteo	Bajo

El estribo y pilar de la margen izquierda se prevé sean apoyados sobre gabrodiorita, del resumen se aprecia que la orientación de buzamiento del talud de 226° presenta un riesgo alto para la familia P2, por lo que se recomienda en esa zona excavar un talud hasta un máximo de 60 grados para que disminuya el potencial de falla planar en dicha cara.

El pilar de la margen derecha se encuentra apoyado sobre la tonalita, por lo que se realizó el análisis considerando las familias definidas para esta litología. De la Tabla 4.11 se observa que las orientaciones de buzamiento del talud de 46° y 136° presentan un riesgo alto para las familias P3 y P2 respectivamente, definidas en el análisis estereográfico. Para disminuir considerablemente el riesgo de falla planar en estas orientaciones se debe realizar un corte de talud de 60° de inclinación máxima.

El estribo de la margen derecha se encuentra apoyado sobre el tufo volcánico. Debido a que presenta familias sub-verticales se analizó también el modo de falla por vuelco. Se observó que para las orientaciones de 46°, 136° y 316° existe un riesgo bajo de falla por

volteo. No se encontró riesgo de falla planar y cuña para el estribo de la margen derecha sobre tufo.

4.2.4 Ensayos de laboratorio

Se ha desarrollado un programa de ensayos de laboratorio en bloques de roca intacta seleccionadas de los trabajos de mapeo de afloramientos. Estos ensayos están orientados a caracterizar los tipos de roca presentes en la zona de estudio en sus propiedades mecánicas. Los ensayos se vienen llevaron a cabo en el Laboratorio de Mecánica de Rocas de la Universidad Nacional de Ingeniería de Lima. El programa consiste principalmente en realizar ensayos de carga puntual con el fin de corroborar la resistencia a la compresión de la roca intacta. Estos ensayos se vienen realizando en las muestras de gabrodiorita y tonalita. No se realizaron ensayos en el tufo volcánico debido a que por ser un material poroso y de baja resistencia este presentaría una mayor sensibilidad y variabilidad en sus resultados, siendo estos poco confiables.

4.2.4.1 Ensayo de carga puntual

El ensayo de carga puntual se utiliza para determinar la resistencia a la compresión simple a partir del índice de resistencia a la carga puntual (Is), de tal forma que las tensiones aplicadas se convierten a valores aproximados de UCS, según el diámetro de la muestra.

Se han realizado 21 ensayos de carga puntual para las litologías gabrodiorita y tonalita, en bloques regulares de sección cuadrada de 5 cm de lado, y 10 cm de longitud. La Tabla 4.12 presenta los resultados de los ensayos de carga puntual realizados en muestras de testigos de roca y los valores equivalentes de la resistencia a la compresión no confinada (UCS). Se realizaron 14 ensayos en muestras de gabrodiorita y 6 ensayos en muestras de tonalita. La Figura 4.5 ilustra el tamaño de muestra que se recolecto para este tipo de ensayo. Se encontraron durezas muy altas tanto en la margen izquierda como en la margen derecha, alcanzando durezas en el rango de R5 a R6 principalmente para ambas litologías.

Zona	Muestra	Litología	Is(50) (MPa)	UCS* (MPa)	Dureza ISRM
	M-07	Gabrodiorita	11,47	275	R6
	M-08	Gabrodiorita	9,63	231	R5
	M-09	Gabrodiorita	8,44	203	R5
	M-11	Tonalita	9,27	222	R5
	M-12	Gabrodiorita	8,73	210	R5
Margen	M-14	Gabrodiorita	12,23	294	R6
Izquierda	M-15	Gabrodiorita	7,59	182	R5
	M-16	Gabrodiorita	10,48	252	R6
	M-19	Tonalita	13,51	324	R6
	M-21	Tonalita	8,88	213	R5
	M-23	Gabrodiorita	13,15	315	R6
	M-25	Gabrodiorita	11,15	268	R6
	M-32	Tonalita	9,22	221	R5
	M-33	Tonalita	8,65	208	R5
	M-34	Dique Aplítico	10,56	254	R6
Monaan	M-36	Tonalita	5,72	137	R5
Derecha	M-37	Gabrodiorita	8,64	207	R5
Derecha	M-38	Gabrodiorita	11,53	277	R6
	M-44	Gabrodiorita	11,97	287	R6
	M-47	Gabrodiorita	3,44	83	R4
	M-48	Gabrodiorita	9,48	227	R5

 Tabla 4.12: Resumen de los ensayos de carga puntual

Figura 4.5: Muestras del ensayo de carga puntual

4.2.5 Evaluación geomecánica

A partir de la investigación geomecánica de campo, se ha caracterizado al macizo rocoso predominante en el área de estudio sobre el cual se cimentarán las estructuras del Puente de la Cultura, estableciéndose sus parámetros geomecánicos.

En el presente estudio la calidad del macizo rocoso se ha estimado mediante diversos sistemas de clasificación como el RMR (Rock Mass Rating) desarrollado por Bieniawski (1989), la estimación del parámetro GSI (Geological Strength Index) propuesta por Marinos y Hoek (2000), el Índice Q desarrollado por Barton, Lien y Lunde (1974), el RMi (Rock Mass Index) de Palmstrom (1996), y mediante el SMR (Slope Mass Rating) desarrollado por Romana (1985). A continuación, se detallan estos sistemas de clasificación aplicados al caso de estudio.

4.2.5.1 RMR (Rock Mass Rating)

Para la determinación del RMR se utilizaron las propiedades relevantes tomadas en campo en los mapeos u obtenidas en el laboratorio, tales como la dureza de la roca intacta, el grado de fracturamiento o RQD, el espaciamiento de las discontinuidades, la condición de las discontinuidades (persistencia, apertura, rugosidad, relleno y meteorización), y la condición del agua subterránea. Cada uno de estos parámetros es asociado a un puntaje o valoración, los que sumados producen un valor conocido como RMR básico. La orientación de las discontinuidades permite ajustar este valor tomando en cuenta la influencia que estas orientaciones tendrían sobre el macizo rocoso, dependiendo del tipo de obra a desarrollar en este, es decir túneles, cimentación o corte de taludes.

El valor del RMR total o final permite clasificar al macizo rocoso en términos de su calidad, como se indica en la siguiente Tabla 4.13. Los registros de la valoración del RMR se muestra en la Figura 4.6 y 4.7.

RMR	Descripción	Clase de Macizo Rocoso
80 - 100	Muy Bueno	Ι
60 - 80	Bueno	Π
40 - 60	Regular	III
20 - 40	Malo	IV
0 - 20	Muy Malo	V

Formato de Mapeo Estructural de Afloramientos

Proyecto: Evaluación Geomecánica Puente de la Cultura Ubicación : Margen Izquierda del Río

Inicio N: 8183140.5 E: 210618.0 Cota: 1931.9m.

Final N: 8183153.0 E: 210606.6 Cota: 1931.6m. Nota: Use solo uno de estos sistemas de mapeo Azimut / Buz o Buz / Directión de Buz Fecha: Diciembre, 2012

Mapeado por: A.A.

Descripción de la Propiedades Promedio para la Propiedades para 옹 Propiedades y puntuaciones para la familia de juntas u otra estructura mapeada dela Estación Estación la Estructura Terminación (la Estructura Ē ę ș JRC/ Rugosidad Estructi Grado de Alteración Número Estaci Distancia de Cuenta Comentarios Longitud Dureza R Rebote N Espaciam. Orientación de las de cturas Espesor Relleno Azimut Orientack del Martil Schmidt Forma RQD Estimad GSI 용 Estructuras itolo Satu ⊾ di L Ś Azim. Buz. Dir. Buz JF 88 35 0.38 2 4-6 1 5 5 1.0 1 La estación presenta vetillas de Qz de hasta 0.1m 1 JF 89 28 0.38 2 4-6 1 5 5 2.0 1 1 de potencia JF 38 290 1 0.38 24 5-2 5 2.0 1 1 1 JF 22 278 1 0.23 2-4 1 5-2 5 1.5 1 1 JF 27 282 1 0.24 1 2-4 5 5-2 5 1.5 1 JF 48 34 1 0.11 1 2-4 5 5 5 0.5 1 JF 45 5 48 1 0.11 24 5 5 0.5 1 1 JF 5 32 130 1 0.11 2 4-6 5 5 1.0 1 JF 35 4-6 5 1.0 135 1 0.11 2 1 5 1 JF 5 34 125 1 0.20 3 4-6 1 5 1.0 1 JF 28 130 0.15 6-8 5 5 1.5 1 3 1 1 JF 5 30 128 1 0.34 2 4-6 1 5 1.0 1 JF 0.23 2 4-6 5 1.0 25 120 1 1 5 1 JF -Potencia 0.1m, presenta roca triturada 10 225 3 0-2 1-5 5 10.0 1 1 1 JF 40 305 0.50 4-6 5 5 1.0 1 3 1 1 JF 50 290 0.50 4 4-6 1 1 5 5 2.0 1 JF 36 320 1 0.46 3 6-8 1 5 5 2.0 1 45 70 NE 23 E-03 N125 4 JF 3 48 350 1 0.65 3 2-4 3 5 5 1.0 1 40-45-JF 42 345 1 0.65 3 2-4 3 5 5 0.5 1 JF 5 45 359 1 1.00 1 4-6 4 5 1.0 1 JF 72 210 0.12 3 6-8 3 5 1 1 5 1.0 JF 68 235 1 0.12 3 6-8 2 2-5 5 1.5 2 JF 61 225 1 0.12 1 4-6 3 5-2 5 1.3 2 JF 73 223 0.15 3 6-8 4 2-5 5 2.0 2 1 JF 50 230 0.23 3 6-8 3 2-5 5 3.0 1 2 JF 54 0.12 4.6 2-5 225 1 5 2.0 2 3 2 JF 53 227 1 0.23 3 4-6 4 5 5 3.0 2 JF 60 230 0.40 3 6-8 2 2-5 5 1.5 2 1 JF 60 230 1 0.10 3 6-8 1 2-5 5 1.5 2 2 JF 39 232 1 0.11 3 6-8 5 5 1.5 2 JF 4 5 43 235 1 0.21 2 4-6 5 1.8 2 JF 13 4-6 4 5 5 0.8 1 122 0.28 1 1 JF 18 125 1 0.28 1 2-4 4 5 5 0.9 1 155 4-6 4 5 5 JF 38 1 0.22 0.5 1 3 JF 39 4 5 5 132 1 0.14 3 4-6 0.5 1 Dureza R Tipos de Estructuras Forma de Juntas Relleno de Juntas 1 Rugosidad de Juntas Espesor de Juntas Plano de Estratificación EP Escalonada Irregular Muy Esp = 0 Esp = 1 mm Esp = 2 m Gelene R=1 Se talla fácilmente con una navaja. Rugosa Poco Rugosa Ambos Arcille 2 Junta Unica JU Azuritz Magnetitz R=2 So lata con atteutad con una navaja Familia de Junt Barita Biotita Calcita Malaquita Molibdeno $\langle \neg$ R=3 Ge requiere solo un gelpe con el martillo de geólogo para fracturaria Familia de Junta Primaria .IP 3 Dustanaido 6 5 Purchaselón d FL and a second of and the second data Oxido Ferrico Falla Se requiere mes de un gelpe con el martillo de geólogo para fracturaria. 公公 R=4 Famila de Fallas Ondulada Plana Ondulada Pulida Esp = 3 mm Esp 4-5 m Calcopirita Panizo Lisa 4 <u>\45</u> EN Z SUN Foliación Cuarzo Pirita Ce requiere muchos golpes con el martillo de geólogo para fracturarta. R=5 Cizale Dolomita Sericita 5 Veta Epidota Talco Casi imposible fincturaria con polpeza de el martillo de geólogo R=6 Puntua Puntuación Familia de Veta: VF oldoen Yeer

Figura 4.6: Formato de mapeo estructural por celdas

Valoración del Macizo Rocoso RMR

		Final	N818	83201.9 E210	691.7																		
	Nº	ión		Orient	ación de l	a Cara	to	Decde	Tramo	-	Parte	native.			Valoración	del Ma	cizo Roco	so (RN	MR)				Va
	E-01	1		N155		85 NE		Om	25	5.0m							Valor Est	Imado					
				Tipo de R	0023				Frecuencia Frac	turas (Jv)	RESISTENCIA CO	MPRESIVA (MPa)	>250	(15)	100-250	(12)	50-100	(7)	25-50	(4)	<25(2) <5(1	<1(0)	1
		٨		*		в		56	N* Fract. / m	ni. F	RQD %		90-100	(20)	75-90	(17) X	50-75	(13)	25-50	(8)	<25	(3)	2
	Gabr	odiorita		100%		÷		14	7	E	ESPACIAMIENTO	(m)	>2	(20)	0,6-2	(15) X	0.2-0.6	(10)	0.06-0.2	(8)	< 0.06	(5)	3
0	lipo (Orientad	ción	Espaciamiento	JRC	Re	elleno	JCS	Coment	tarios		PERSISTENCIA	<1m	(6)	1-3 m	(4)	3-10m	(2)	(10-20 m	(1)	> 20 m	(0)	44
a	in the second	Dir. Buz.	2014 calidade	0.40	4.5	Tipo	1.2.2	Mpa			CONDICIÓN	ABERTURA	Cerrada	(6)	<0.1mm	(5)	0.1-1.0mm	(4) X	(1-5 mm	(1)	> 5 mm	(0)	48
-	JF	20	70	0.40	2-4	OxiEp	132	141			LINTAG	REUENO	Limpin	(0)	Durn < Smm	(0)	Durma Error	(3)	Sumar	E	Cursue to E m	a (0)	40
-	JF	113	15	0.65	2.5	Ox/Cal	122	130			JUNIAD	ALTERACION	Sana	(6)	Lio Alterada	(5) X	Mod Alterada	(3)	May Alte	racia (2)	Descompues	ta (0)	40
-	IF	272	48	0.85	2-4	Ox	132	135			AGUA SUBTERRA	INFA	Seco	(15)	Humedo	(10)	Saturado	(7)	Goteo	(4)	Fulo	(10)	40
-	31		N 750	0.00		~		100			00100012100		OLLO	(13)	Valor Tof	al RMR	(suma de	valore	ción de	1 a 5 1	1 Mp	107	1-
-	2		6	14. No.				-			1000	75 00			Valion 101	Cla	se de Macizo	Rocos	10	1 11 0 1			
+	- 22		G	.C.	5			-	-	2	GSI	15-80	RM	R	100 - 81		80-61	60 -	- 41	40-21	20 -	1	
	C.		3	3	6				36	8			DESCRI	PCION	I MUY BUE	NA	II BUENA	III REG	JULAR	IV MALA	VMUYN	ALA	
		F	PROYECCI	ON ESTEREOGR	AFICA DE I	LA ESTACIÓ	DN .				F	OTOGRAFIA D	E LA ESTA	CIÓN									
					EOMECÁNICA D	i.					S 11 3		A AN DES							Abrevia	tura del Ti	oo de R	oc:
			int	No. Contraction of the second						1000	- 1 B			Ela.					Gn		Gne	IS	
		/	COA		s.	1D Ose	Dip / Direction				1		and the second second	1. 100	6				Gb		Gab	0	
		X	SC/C		11	1.00				1000	THE LOCAL DRIVE		1000						TV		Tufo Vol	cánico	
		1.10					70 / #25			100	10PT 1 10-20020	Soft States	The Party	Par and a	A COLORED				-				
	w		The second	+	E	2 m 3 m 4 m	10 / 125 70 / 279 15 / 113 48 / 272			K		R							To Gd	Abreviat	Tona Gabrod	ita Iorita Abrevi	atu
	55		A CONTRACTOR		E	2 m 3 m 4 m 	70 / 129 70 / 129 16 / 113 46 / 272 http://www.international.com/ http://www.international.com/ Process Environs			1		SI			A PARTY OF				To Gd 1 2 3 4	Abreviat spaciami > 2 0.6 - 0.2 - 0 0.06 -	Tona Gabrod MC anto 2 m 0.6 m 0.2 m	Abrevi Tipos d Ox Ep Arc Pnz	atu le F
	Gente			R A	Indic	2 m 8 m 4 m Level Level 3 m	10 / 125 10 / 129 15 / 130 48 / 222 add Area Add Area Add Area Energy Contents Contenta			Grafe		İndice d	e Resister	ncia			Rango F	lesis.	To Gd 1 2 3 4 5	Abreviati spaciami > 2 0.6 - 0.2 - 0 0.06 - < 0.0 Abreviati	Tona Gabrod Urc ento 2 m 0.6 m 0.2 m 16 m	Abrevi Tipos d Ox Ep Arc Pnz Cal	atu le F J F (
	Grado				indic	2 m 3 m 4 m Leaver 3 m 2 m 2 m 2 m 2 m 2 m 2 m 3 m 4	70 / 125 70 / 129 15 / 130 46 / 222 add Anna Harrisghners Flowes Ennes			Grado		Îndice d Identifica	le Resister ción de C	ncia			Rango F Comp.	lesis. Mpa	To Gd 1 2 3 4 5	Abreviati spaciami > 2 0.6 - 0.2 - (0.06 - < 0.0 Abreviat EP	Tona Gabrod Inc. 2 m 2 m 0.5 m 0.2 m	Ita Iorita Abrevii Tipos d Ox Ep Arc Pnz Cal Do de Es	atu (E P C Stru
	Grado		Ningún sig	pro de alteración	indic en el materi	2 m 3 m 4 m Leaver 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	To / 126 To / 126 H5 / 130 H5 / 130 H6 / 132 H6	coloración so	bre	Grado R1 Delez	nable con golp	Indice d Identifica es firmes con la	Resister ción de C punta de ma	ncia ampo artilo de	geôlogo, puede		Rango F Comp. 1.0 - 5	Resis. Mpa	To Gd 1 2 3 4 5	Abreviati spaciami > 2 0.6 - 0.2 - (0.06 - < 0.0 Abreviati EP JS	Tona Gabrod IIC anto m 2 m 0.6 m 0.2 m 1.6 m 1.66 m Plano de Familla de Ji	Abrevi Tipos d Ox Ep Arc Pnz Cal Do de E estratifica anta secu	El (I El A P C Strift ación Inda
	Grado	INA	Ningún sig	gno de alteración s de discontinuidas	insite en el materix des principal	2 m 8 m 4 m 2 m 2 m 4 m 4 m 3 m 2 m 2 m 2 m 4 m 3 m 3 m 3 m 4 m 3 m 4 m 3 m 4 m 4 m 3 m 4 m 4 m 3 m 4 m 4 m 3 m 4 m 4 m 4 m 3 m 4	10 / 10 0 / 29 15 / 10 16 / 10 46 / 272 46 / 272 10 / 29 10 / 29 15 / 10 16 /	coloración so	bre	Grado R1 Delez rasgar	inable con golpree con una na	Índice d Identifica es firmes con la vaja	Resister ción de C punta de ma	ncia antilo de	geólogo, puede		Rango F Comp. 1,0 - 6	lesis. Mpa	To Gd 1 2 3 4 5	Abreviate =pateiami > 2 0.6 - 0.2 - (0.06 - < 0.0 Abreviat EP JS JU	Tona Gabrod m 2 m 2 m 0.2 m 0.4 m 0.5 m 0.	Abrevi Tipos d Ox Ep Arc Pnz Cal Do de E estratifica a unica	etu le F (F C Sin aciór inda
	(Grado SA		Ningún sig superficies La decolor	pro de alteración de discontinuidad	Institution Institution en el materia des principal ación, del mi	2 m 8 m 4 m 4 m 2 m 2 m 1 m 1 m 1 m 1 m 1 m 1 m 1 m 1	The left of the second	coloración so de discontinu	bre Idades, El	Crado R1 Delez R2 Puede	make con golp rese con una na e rasgarse con	indice d Identifica es firmes con la vaja encutad con un	le Resister ción de Ce punta de ma	ncia ampo artilio de e Indenta	geólogo, puede s superficialment	nte con	Rango F Comp. 1.0 - 5 5 - 2	Cesis. Mpa 5,0	To Gd 1 2 3 4 5	Abreviati space and 0.6 - 0.2 - (0.06 - < 0.0 Abreviati EP JS JU JF	Tona Gabrod m 2 m 5.6 m 0.2 m 16 m 16 m Vuras de Tri Plano de Familia de j Jun	Ita lorita Albrevii Tipos d Ox Ep Arc Pnz Cal Cal col e e estratifica unta secu a única de junta	atu le F (F C Stro clor inda
	Grado SA LiG		Ningún sig superficies La decolor material ro	ano de atteración se de discontinuídas aración indica attera posos descolorido	is principal action. del ma	2 m 4 m 4 m 1 1 1 1 1 1 1 1 1 1 1 1 1	10 (16) 10	coloración so de discontinu su condición	bre Ildades. El sana.	Grado R1 Paega R2 Puede I a pun	inable con golpa rese con una na e rasgarse con ta de una picor	indice of Identifica es firmes con la vaja dificultad con ur ta	Re Resister ción de C punta de ma	ncia ampo artilio de e Indenta	geólogo, puede superficialmen	nte con	Rango F Comp. 1,0-5 5-2	tesis. Mpa 5.0	To Gd 1 2 3 4 5	Abreviate =patienni > 2 0.6 - 0.2 - (0.06 - < 0.0 Abreviate EP JS JU JF JP -	Tona Gabrod IIC anto 2 m 2 m 2 m 2 m 2 m 2 m 2 m 10.6 m 9 Lano de Familia de ju Junu Familia de ju	Ita lorita Albrevii Tipos d Ox Ep Arc Pnz Cal Cal Cal col e estratifica aunta secu a única de junta punta prin	Ettu ie F (F C Station acion inda
	Grado SA LIG MODE		Ningún sig superficies La decolor materiar os Menos de	no de alteración so de alteración so de discontinuidas ración indica alteracionsos descolorido la mitad del mater	incirc en el materia actón, del mi extremadari tal rocoso e	2 m 4 m 4 m 1 m 2 m 4 m 1 m 2 m 2 m 4 m 1 m 2 m 1 m 1 m 1 m 1 m 1 m 1 m 1 m 1	und Artes 46 / 272 und Artes there gates contained utzak ligera deco by superficies s debli que en puesto ylo dec containu o n	coloración so de discontinu su condición sintegrado a io no fucieo rec	bre Ildades. El sana. un suelo la 2050.	Crado R1 Delez R2 Puedo R3 Puedo R3 No pu R3 Tradition	mable con golp mable con golp rata e ragarse con ta de una pico uede ser rasgar	indice d Identifica es firmes con la vaja dificultad con un ta to e pole de la n	Resister ción de Ci punta de ma na navaja. Se una navaja e iota	ncia ampo artilo de e Indenta	geólogo, puede a superficialmen men se puede	nte con	Rango F Comp. 1,0 - 5 5 - 2 25 - 5	tesis. Mpa 5.0	To Gd 1 2 3 4 5	Abreviate =patienni > 2 0.6 - 0.2 - (0.06 - < 0.0 Abreviate =P JS JU JF JP FL ==	Tona Gabrod Mici anio m 2 m 2 m 2 m 2 m 2 m 2 m 2 m 2 m 2 m 2	Abrevi Tipos d Ox Ep Arc Pnz Cal So de E estratifica a unica a de junta printa printa printa a de falla:	Etu (E F C S S In Inda Is s
	Grado SA LIG MODE		Ningún sig superficies La decolor material ro Menos de roca sana	ano de alteración es de discontinuidas acación de alteración es de discontinuidas acación indica altera consoci descolorido la mitad del matero o decolorada se per mitad del matero o decoloradas es per mitad del matero acación de a	institution en el materia ación, del materia ación, del materia ratal rocoso el resenta con	e de Altern Laver (1946) al rocoso. Qu les aterial rocoso. Qu les aterial rocoso. Qu les	10 / 10 10	coloración so de discontinu su condición sintegrado a u no núcleo roc	bre Ildades. El sana. un suelo la coso.	Grado R1 Delez R2 Iapun R3 No pu ractu	inable con golp recon una na e rasgarse con ta de una pico vede ser rasgad rar con un simp uede ser rasgad rar con un simp	Índice d Indice d Identifica es fitmes con la vaja dificultad con ur ta to o pelado con ur ta con má de tro	e Resister ción de C punta de ma na navaja. Se una navaja e loca	ncia ampo artilo de e Indenta el espect	geólogo, puede a superficialmen men se puede	nte con	Rango R Comp. 1,0 - 5 5 - 2 25 - 5 50 - 1	Resis. Mpa 5.0 5	To Gd 1 2 3 4 5	Abreviat specificities > 2 0.6 - 0.2 - (0.06 - < 0.0 Abreviat EP JS JU JF JF FF FF FN	Tona Gabred IIC anto m 2 m 2 m 2 m 3.6 m 2 m 3.6	Abrevi Tipos d Ox Ep Arc Pnz Cal Cal cal a de junta punta prin a de jalata a de fallata a de fallata	El (U Je I P C Stri Inda Is S
	GTERIO SA LIG MODE MUY AL		Ningún sig superficies La decolor material ro Menos de roca sana Más de la roca sana	ano de alteración s de discontinuidas ración Indica alter racioso descolorido u la mitad del matei o decolorada se p mitad de mateira	india en el materi des principal solon, del mi extremadam ital roccos esta resenta con roccos esta	e de Altern se de Altern Description al receso. Qui eles tateral receso. Alteral receso. Alte	The Less The Le	coloración so de discontinu su condición sintegrado a un e	bre Jidades. El sana. un suelo la 2050.	Grado R1 Delez R2 Puede R3 No pu R3 No pu R4 La mu R5 E Lese	mable con golparse con un singuestra se rompuestra se romp	Índice d Indice d Identifica es firmes con la vaja dificultad con ur ta lo o pelado con ur ta lo o pelado con ur ta pelado con ur ta so o pelado con ur ta	Resister ción de C punta de ma na navaja se una navaja e icota	ncia empo infilio de e Indenta el espect picota	geologo, puede a superficialmen men se puede tracturado	the con	Rango F Comp. 1.0 - 5 5 - 2 25 - 5 50 - 11 100 - 2	Cestis. Mipa 5.0 5 5 80 00 250	To Gd 1 2 3 4 5	Abreviat =>20.6- 0.2- 0.06- < 0.0 Abreviat EP JS JU JF FL FF FN CZ	Tona Gabred Inc. 2 m 2 m 2 m 2 m 2 m 1.6 m	Abrevii Tipos d Ox Ep Arc Cal Do de E estratinca anta secu a única a única a única a única a única a única a única	El (U (E / F c c sin inda is s
	Greeko SA LiG MODE MUY AL		Ningún sig superficies La decolor material ro Menos de roca sala Más de la roca sala	ano de alteración so de alteración so de discontinuidar ración indica altera rocoso descolorido la mitad del material o decolorada se p mitad del material o decolorada se p	In el materi des principal solon, del mi extremadan rital rocoso esta resenta com rocoso esta	2 m 4 m 4 m 4 m 2 m 4 m 4 m 2 m 2 m 4 m 4 m 2 m 2 m 2 m 2 m 2 m 2 m 2 m 2	al de la contra de	coloración so de discontinu su condición sintegrado a i mo núcleo ros egrado a un e	bre Ildades. El sana. In suelo la joso. suelo. La	Grado R1 Deda R2 Puede R3 fractus R4 La mu R5 Fless Fless	mable con golp rese con una na e rasgarse con ta de una pico uede ser rasgar are con un simu uestra se rompo pecimen requie agalamento e co	indice of Identificates es firmes con la vaja dificultad con ur ta for o pelado con de golpe de la p e con más de un re muchos golpe o es caragado o	Resister ción de C punta de ma na navaja. Sr una navaja e ciona gope de la se de picota	ncia ampo artillo de e Indenta el espect pleota para ser	geólogo, puede a superficialmen men se puede fracturado	nte con	Rango R Comp. 1.0 - 5 5 - 2 25 - 8 50 - 11 100 - 2	Gestis. Mpa 5,0 5 5 80 00 850	To Gd 1 2 3 4 5	AD review -> 2 0.6- 0.2-(0.06- < 0.0 Abreview EP JS JJ JF JF FF FF FF FR CZ VT	Tona Gabrod II.C. anto m 2 m 2 m 2 m 2 m 2 m 16 m Viano de Familia de ji Viano de Familia de ji	Abrevi Tipos d Ox Ep Aro Pnz Cal Pnz Cal Cal Cal Cal Cal Cal Cal Cal	E fu F C Strinda is s

Figura 4.7: Formato de valoración del macizo rocoso RMR

Los valores de RMR básico estimados para cada estación de mapeo superficial en los cortes existentes para la margen izquierda y derecha se presentan en el Anexo B y se resumen en la Tabla 4.14 y 4.15. En la margen izquierda la gabrodiorita presenta un RMR que varia entre 54 y 74 con un promedio de 64, en la tonalita el RMR varia entre 64 y 71 con un promedio de 66. Como se observa no hay mayor variación entre la calidad de la tonalita con la de la gabrodiorita presentando ambas una calidad de clase II (Roca Buena). En la margen derecha la gabrodiorita presenta un RMR que varia entre 59 y 72 con un promedio de 64, el RMR de la tonalita varia entre 57 y 71 con un promedio de 65. El tufo tiene un RMR que varia entre 60 y 68, con un promedio de 64. Como se observa, al igual que en la margen izquierda la margen derecha presenta un macizo rocoso de clase II (Roca Buena) para los tres tipos de litología. Los valores del RMR se verificaron con los valores de GSI determinados en campo. También se correlacionaron los valores del RMR con el valor del índice Q mostrando una correlación aceptable con la correlación dada por Bieniawski (1984) en la Ecuación 1.

Ecuación 1: RMR = 9.LnQ + 44....(1)

Zona	Estación	Coordenadas U	U TM	Cota	Litología	RMR
		Norte (m) Este (m) (msn		(msnm)	Ŭ,	
	E-01	8 183 183	210 709	1 891	Gabrodiorita	71
	E-02	8 183 173	210 657	1 928	Gabrodiorita	62
a	E-03	8 183 141	210 618	1 932	Gabrodiorita	54
erd	E-04	8 183 118	210 580	1 945	Gabrodiorita	62
inp	E-05	8 183 077	210 539	1 940	Gabrodiorita	57
ı Iz	E-06	8 183 031	210 587	1 970	Gabrodiorita	74
gen	E-07	8 183 046	210 659	1 970	Gabrodiorita	65
Aar	E-08	8 183 110	210 684	1 958	Gabrodiorita	60
Z	E-09	8 183 120	210 712	1 941	Gabrodiorita	60
	E-10	8 183 135	210 747	1 894	Gabrodiorita	65
	E-11	8 183 111	210 775	1 904	Tonalita	65

Tabla 4.14: Sistema de Clasificación RMR, Margen Izquierda

Zona	Estación	Coordenadas U	Cota	Litología	RMR	
		Norte (m)	Este (m)	(msnm)		
	E-12	8 183 090	210 749	1 934	Gabrodiorita	62
	E-13	8 183 075	210 730	1 955	Gabrodiorita	69
	E-14	8 183 020	210 710	1 971	Gabrodiorita	65
	E-15	8 182 963	210 519	1 970	Gabrodiorita	69
	E-16	8 182 961	210 670	2 006	Gabrodiorita	60
	E-17	8 182 961	210 740	1 972	Gabrodiorita	65
	E-19	8 183 049	210 786	1 925	Tonalita	64
	E-21	8 183 056	210 825	1 913	Tonalita	71
	E-22	8 183 007	210 819	1 947	Tonalita	65
	E-23	8 182 961	210 776	1 952	Gabrodiorita	62
	E-24	8 182 893	210 780	1 972	Gabrodiorita	71
	E-25	8 182 910	210 670	2 019	Gabrodiorita	60
	E-42	8 183 216	210713	1 866	Gabrodiorita	63

Tabla 4.15: Sistema de Clasificación RMR, Margen Derecha

Zona	Estación	Coordenadas U	J TM	Cota	Litología	RMR
		Norte (m)	Este (m)	(msnm)		
	E-26	8 183 254	211 107	1 987	Tufo	66
	E-27	8 183 195	211 173	1 989	Tufo	68
	E-28	8 183 159	210 965	1 895	Gabrodiorita	72
	E-29	8 183 321	210 956	1 985	Tufo	60
	E-30	8 183 161	210 879	1 947	Tonalita	65
	E-31	8 183 301	210 928	1 965	Tufo	63
	E-32	8 183 203	210 884	1 953	Tonalita	61
	E-33	8 183 161	210 849	1 927	Tonalita	65
cha	E-34	8 183 145	210 863	1 931	Dique Aplítico	71
ere	E-35	8 183 234	210 797	1 940	Tonalita	66
D	E-36	8 183 216	210 853	1 950	Tonalita	69
ieg.	E-37	8 183 267	210 866	1 963	Gabrodiorita	64
Maı	E-38	8 183 303	210 878	1 967	Gabrodiorita	59
4	E-39	8 183 250	210 850	1 956	Tonalita	62
	E-40	8 183 420	210 895	1 974	Tufo	63
	E-41	8 183 226	210 745	1 866	Tonalita	66
	E-43	8 183 243	210 768	1 912	Tonalita	69
	E-44	8 183 276	210 803	1 937	Gabrodiorita	69
	E-45	8 183 327	210 822	1 967	Gabrodiorita	62
	E-46	8 183 367	210 851	1 967	Tonalita	57
	E-47	8 183 352	210 780	1 955	Gabrodiorita	65
	E-48	8 183 320	210 708	1 908	Gabrodiorita	60

4.2.5.1.1 Resistencia de la roca intacta

La dureza o resistencia de la roca intacta fue estimada en el campo mediante los procedimientos estandarizados del ISRM asignándoles un valor R según la Tabla 4.16, y mediante mediciones del rebote utilizando un martillo Schmidt. En las estaciones geomecánicas del mapeo superficial ubicados en la zona de estudio la estimación de campo dio un valor de resistencia que varia entre R3.5 y R4.5 para las litologías de gabrodiorita y tonalita, y para el tufo volcánico un valor entre R1.5 y R2.5.

Dureza ISRM	Descripción	UCS (MPa)	Resistencia estimada de campo
R6	Extremadamente fuerte	>250	No puede ser rayado con un lápiz de dureza.
R5	Muy fuerte	100-250	Puede ser rayado solo un poco o casi nada con lápiz de dureza.
R4	Fuerte	50-100	Puede ser rayado con dificultad con un lápiz de dureza.
R3	Medianamente fuerte	25-50	No puede ser rayado o pelado con una navaja, se raya fácilmente con un lápiz de dureza.
R2	Débil	May-25	Puede ser rayado con dificultad con una navaja.
R1	Muy débil	1-May	Puede ser rayado con una navaja.
R0	Extremadamente débil	0.25-1.0	Se indenta con la uña.

Tabla 4.16: Clasificación de la Dureza en Campo (ISRM)

En el campo también se utilizó el martillo Schmidt tipo N y L para determinar la dureza de rebote de la roca a ensayar. A continuación, se muestra las Tablas 4.17 y 4.18 donde

se observan los valores de resistencia promedio obtenidos para cada estación a partir del rebote del martillo Schmidt y de los ensayos medidos en campo según el ISRM. En algunas estaciones no se pudo tomar la dureza debido a condiciones de seguridad y estabilidad.

 Tabla 4.17: Dureza obtenida en campo según ISRM vs martillo Schmidt (Estaciones

 de la margen izquierda)

Zono Datació		Coorden	adas	Cota	-	Dureza		
Zona	Estacion	Norte	Este	(msnm)	Litologia	R (ISRM)	Martillo Schmidt	
	E-01	8 183 183	210 709	1 891	Gabrodiorita	4.8	4.5	
	E-02	8 183 173	210 657	1 928	Gabrodiorita	4.3	3.5	
	E-03	8 183 141	210 618	1 932	Gabrodiorita	-	3	
	E-04	8 183 118	210 580	1 945	Gabrodiorita	4.8	3.5	
	E-05	8 183 077	210 539	1 940	Gabrodiorita	4	3.5	
	E-06	8 183 031	210 587	1 970	Gabrodiorita	4.9	4	
	E-07	8 183 046	210 659	1 970	Gabrodiorita	5.3	4	
	E-08	8 183 110	210 684	1 958	Gabrodiorita	4.7	4	
	E-09	8 183 120	210 712	1 941	Gabrodiorita	4.6	4	
da	E-10	8 183 135	210 747	1 894	Gabrodiorita	5	4	
iier	E-11	8 183 111	210 775	1 904	Tonalita	4.8	4	
ıbz	E-12	8 183 090	210 749	1 934	Gabrodiorita	4.5	3.5	
I n:	E-13	8 183 075	210 730	1 955	Gabrodiorita	4.9	4	
urge	E-14	8 183 020	210 710	1 971	Gabrodiorita	5.1	4	
M	E-15	8 182 963	210 519	1 970	Gabrodiorita	4.7	4	
	E-16	8 182 961	210 670	2 006	Gabrodiorita	4.1	3.5	
	E-17	8 182 961	210 740	1 972	Gabrodiorita	5.4	4	
	E-19	8 183 049	210 786	1 925	Tonalita	4.8	4	
	E-21	8 183 056	210 825	1 913	Tonalita	4.8	4	
	E-22	8 183 007	210 819	1 947	Tonalita	4.7	4	
	E-23	8 182 961	210 776	1 952	Gabrodiorita	5	4	
	E-24	8 182 893	210 780	1 972	Gabrodiorita	5.4	4	
	E-25	8 182 910	210 670	2 019	Gabrodiorita	4.2	4	
	E-42	8 183 216	210 713	1 866	Gabrodiorita	-	4	

Tabla 4.18: Dureza obtenida en campo según ISRM vs martillo Schmidt (Estaciones

 de la margen derecha)

a		Coordenada	denadas UTM Cota			Dureza	
Zona	Estación	Norte (m)	Este (m)	(msnm)	Litología	R (ISRM)	Martillo Schmidt
	E-26	8 183 254	211 107	1 987	Tufo	3	2.5
	E-27	8 183 195	211 173	1 989	Tufo	3	2
	E-28	8 183 159	210 965	1 895	Gabrodiorita	-	4
	E-29	8 183 321	210 956	1 985	Tufo	-	1.5
	E-30	8 183 161	210 879	1 947	Tonalita	4.7	4
	E-31	8 183 301	210 928	1 965	Tufo	3	2
	E-32	8 183 203	210 884	1 953	Tonalita	4.8	4
	E-33	8 183 161	210 849	1 927	Tonalita	4.4	4
cha	E-34	8 183 145	210 863	1 931	Dique Aplítico	5	5
ere	E-35	8 183 234	210 797	1 940	Tonalita	-	4
Ū۱	E-36	8 183 216	210 853	1 950	Tonalita	-	4
iəg.	E-37	8 183 267	210 866	1 963	Gabrodiorita	4.8	4.5
Aar	E-38	8 183 303	210 878	1 967	Gabrodiorita	5.1	4
N	E-39	8 183 250	210 850	1 956	Tonalita	4.7	4
	E-40	8 183 420	210 895	1 974	Tufo	3	2
	E-41	8 183 226	210 745	1 866	Tonalita	-	4
	E-43	8 183 243	210 768	1 912	Tonalita	4.9	4
	E-44	8 183 276	210 803	1 937	Gabrodiorita	5	4
	E-45	8 183 327	210 822	1 967	Gabrodiorita	4.9	4
	E-46	8 183 367	210 851	1 967	Tonalita	4.5	3.5
	E-47	8 183 352	210 780	1 955	Gabrodiorita	4.8	4
	E-48	8 183 320	210 708	1 908	Gabrodiorita	5	4

Se realizó una estadística de los valores de dureza obtenidos con el martillo Schmidt y los obtenidos en campo según la recomendación del ISRM (2007). Estos se encuentran en las Figuras 4.8. Se observa que en ambas márgenes se obtuvieron valores un poco mayores utilizando el método del martillo Schmidt, posiblemente debido a que la estimación de dureza con el martillo de geólogo tiende a ser conservadora. Finalmente, los valores de dureza con el martillo Schmidt se acercan bastante a los de la resistencia a la compresión no confinada equivalente, obtenida a partir de los ensayos de carga puntual, según se reporta en el ítem 4.4.1.

RESISTENCIA DE LA ROCA INTACTA - MARGEN IZQUIERDA

Estadística del valor de rebote del martillo Schmidt en función de R.

MARTILLO SC

RESISTENCIA DE LA ROCA INTACTA - MARGEN DERECHA

Estadística del valor de rebote del martillo Schmidt en función de R.

Figura 4.8: Estadistica entre los valores de R obtenidos de campo y el martillo

Schmidt

4.2.5.1.2 RQD y grado de fracturamiento

El RQD fue determinado en cada estación geomecánica mediante la metodología de celdas de detalle y en algunos casos líneas de detalle (scanlines) y también utilizando el contador de juntas volumétricas (Jv) de Palmstrom medido en campo para utilizar la correlación y calcular el RQD. El RQD medido de las estaciones se encuentra mayormente entre 70 y 90, mientras que el Jv medido en campo varía entre 7 y 12.

Se observó una correlación aceptable entre el RQD obtenido en campo con el Jv como se ilustra en la Figura 4.9. Los valores de RQD tomados para cada estación se muestran en el Anexo B.

Figura 4.9: Correlación entre grado de fracturamiento y RQD (Palmstrom 1974)

4.2.5.1.3 Condición de discontinuidades

La condición de discontinuidades se estimó en campo, en función de diversos factores como rugosidad, persistencia, espesor, forma, relleno. Se observa en general que las discontinuidades presentan las mismas características. La discontinuidad típica es poco rugosa, tienen un espaciamiento que varia entre 0.1 y 0.7 m, presenta forma ondulada, tiene un espesor de 1 mm. (Ver Anexo B)

4.2.5.1.4 Espaciamiento de discontinuidades

El espaciamiento de las discontinuidades en general varía entre 0.1 y 0.7 m, el parámetro de estructura del GSI muestra que el tamaño de bloques, que tiene relación con el espaciamiento entre discontinuidades.

4.2.5.1.5 Condición de agua subterránea

En todas las estaciones mapeadas la condición del agua subterránea se ha considerado como seca, lo que es favorable para la resistencia del macizo rocoso.

4.2.5.2 GSI (Geological Strength Index)

Para cada estación se calculó también el valor del GSI como se muestra en los registros de mapeo superficial (Anexo A). La clasificación del GSI fue introducida por Hoek et al., (1995) y actualizada posteriormente (Hoek et al., 2002). El GSI es un complemento para el criterio de falla de rocas generalizado de Hoek & Brown. El resumen de valores de GSI determinados para cada litología es mostrado en la Figura 4.10. De ello se observa que el GSI en la margen izquierda varia entre 47 y 87, teniendo un promedio de 65 y en la margen derecha varia entre 52 y 82, con un promedio de 68. No se observan grandes diferencias según la litología, se encontró un puntaje similar entre las litologías gabrodiorita y tonalita. Para el tufo volcánico los valores típicos de GSI están alrededor de 65. Además, la Figura 4.11 muestra la correlación entre la valoración RMR y GSI.

GSI POR LITOLOGÍA

Figura 4.10: Valores de GSI determinados para cada litología

Figura 4.11: Relación entre los valores de GSI y RMR (Hoek, 1995)

4.2.5.3 Índice Q de Barton

También llamado índice de calidad de túneles, el sistema de clasificación Q es específicamente recomendado para túneles y cavernas y a diferencia de los otros sistemas, es el único que toma en cuenta un factor de nivel de esfuerzos. En el presente estudio se ha utilizado como una clasificación complementaria, con la finalidad de compararlo y correlacionarlo con el RMR. En la Figura 4.12 se muestra la correlación que hay entre el índice Q y el RMR.

El macizo rocoso ha sido clasificado en nueve categorías basadas en los valores de Q, como se muestra en la Tabla 4.19. La mayoría de los valores cae en el grupo 2, con una clasificación de regular a malo.

 Tabla 4.19: Clasificación del Macizo Rocoso Basado en los valores de Q (Barton et al.,

 1974)

Q	Grupo	Clasificación		
10-40		Bueno		
40 - 100		Muy Bueno		
100 - 400	1	Extremadamente Bueno		
400 - 1000		Excepcionalmente Bueno		
0.10 - 1.0		Muy Malo		
1.0 - 4.0	2	Malo		
4.0 - 10.0		Regular		
0.001 - 0.01	2	Excepcionalmente Malo		
0.01 - 0.1	5	Extremadamente Malo		

A continuación, se muestra la Tabla 4.20 con los valores de cada parámetro considerado para la obtención del índice Q para cada estación. Para aplicar la correlación con el RMR se ha considerado a los parámetros de presión de poros Jw y el factor de reducción de esfuerzos SRF, ambos como 1.

 Tabla 4.20: Clasificación del Macizo Rocoso Basado en los valores de Q (Barton et al.,

 1974)

Estación	RQD (Jv)	Jn	Jr	Ja	Jw	SRF	Índice Q
E-01	92	9	2	4	1	1	5.1
E-02	85	6	3	3	1	1	14.2
E-03	59	6	2	4	1	1	4.9
E-04	65	6	2	3	1	1	7.2
E-05	68	6	2	3	1	1	7.6
E-06	88	9	3	4	1	1	7.3
E-07	88	9	3	4	1	1	7.3
E-08	85	6	3	3	1	1	14.2
E-09	78	6	3	4	1	1	9.8
E-10	78	12	3	3	1	1	6.5
E-11	85	12	3	3	1	1	7.1
E-12	91	6	2	4	1	1	7.6

Estación	RQD (Jv)	Jn	Jr	Ja	Jw	SRF	Índice Q
E-13	91	6	3	5	1	1	9.1
E-14	88	6	3	4	1	1	11
E-15	88	6	3	4	1	1	11
E-16	72	6	3	4	1	1	9
E-17	85	6	3	4	1	1	10.6
E-19	95	6	3	4	1	1	11.9
E-21	100	4	2	4	1	1	12.5
E-22	82	6	2	5	1	1	5.5
E-23	75	6	3	4	1	1	9.4
E-24	100	3	2	4	1	1	16.7
E-25	75	6	2	3	1	1	8.3
E-26	100	6	3	3	1	1	16.7
E-27	100	6	3	5	1	1	10
E-28	78	3	3	3	1	1	26
E-29	78	12	1.5	3	1	1	3.3
E-30	85	9	3	3	1	1	9.4
E-31	100	6	3	3	1	1	16.7
E-32	68	9	3	5	1	1	4.5
E-33	98	3	2	4	1	1	16.3
E-34	100	6	4	4	1	1	16.7
E-35	75	6	2	3	1	1	8.3
E-36	100	6	3	4	1	1	12.5
E-37	75	9	3	4	1	1	6.3
E-38	75	6	2	5	1	1	5
E-39	75	6	3	3	1	1	12.5
E-40	100	3	3	4	1	1	25
E-41	98	6	1.5	4	1	1	6.1
E-42	100	6	3	5	1	1	10
E-43	100	6	3	3	1	1	16.7
E-44	92	6	3	5	1	1	9.2
E-45	92	6	3	3	1	1	15.3
E-46	82	9	1.5	4	1	1	3.4
E-47	89	6	2	3	1	1	9.9
E-48	75	9	3	5	1	1	5

Figura 4.12: Relación entre los valores de Q y RMR (Bieniawski, 1976)

4.2.5.4 RMi (Rock Mass Index)

El índice del macizo rocoso fue desarrollado por Palmstrom (1996) para caracterizar la resistencia del macizo rocoso en construcciones. El principal enfoque del desarrollo del RMi estuvo en el efecto de las discontinuidades en el macizo rocoso que reducen la resistencia de la roca intacta. Las tensiones in situ o presiones de agua no son incluidas en el RMi. Los principales parámetros de entrada en una caracterización general de la resistencia del macizo rocoso son los siguientes:

- Tamaño de bloques, limitado por las juntas, medido como volumen del bloque.
- Resistencia del bloque del material, medido como la resistencia a la compresión uniaxial.
- La resistencia de las caras del bloque, medido como el ángulo de fricción.

• El tamaño y la terminación de las juntas, medido como persistencia y continuidad.

El RMi representa principalmente la reducción de la resistencia de la roca causada por las discontinuidades. El índice RMi esta subdividido en 7 categorías como se muestra en la Tabla 4.21.

RMi	Clasificación (Resistencia)
>100	Extremadamente alta
10 - 100	Muy alta
4 - 10	Alta
1 - 4	Media
0.1 - 1	Baja
0.01 - 0.1	Muy baja
<0.01	Extremadamente Baja

Tabla 4.21: Relación entre el índice RMi y la estabilidad del talud.

En general se observa que para la gabrodiorita y para la tonalita se determinan valores de RMi entre 1 y 10, los que dan una clasificación del macizo rocoso de media a alta. Para el tufo volcánico se obtienen valores entre 0.1 y 1 por lo que la clasificación del macizo rocoso es de baja. Según está clasificación, la zona más crítica estaría en el estribo derecho donde se encuentra el tufo volcánico. La Figura 4.13 muestra las estadísticas de los valores del RMi.

CLASIFICACIÓN GEOMECÁNICA - INDICE RMI

Estadística del valor del RMi - Margen izquierda

Estadística del valor del RMi - Margen derecha

Figura 4.13: Estadisticas de los valores del RMi

Se observa que en la margen izquierda el valor de RMi se encuentra principalmente entre 2 y 3, lo que le representa una resistencia media del macizo rocoso. En la margen derecha también se encuentra un RMi entre 2 y 3, pero con mayor dispersión hacia valores más bajos.

4.2.5.5 SMR (Slope Mass Rating)

El índice SMR es una clasificación adaptada del sistema RMR de Bieniawski (1989) para taludes por Romana (1985,1992) que permite evaluar la estabilidad de una excavación, este sistema incluye cuatro factores de ajuste para las discontinuidades:

SMR = RMR + (F1*F2*F3) + F4

Donde:

F1: Depende del paralelismo entre el rumbo de las juntas y de la cara del talud.

F2: Depende del buzamiento de la junta en la rotura plana.

F3: Refleja la relación entre los buzamientos de la junta y el talud.

F4: Factor de ajuste según el método de excavación, establecido empíricamente

A continuación, la Tabla 4.22 muestra la clasificación SMR que esta subdividida en 5 categorías.

SMR	Estabilidad del Talud
100 - 81	Totalmente estable
80 - 61	Estable
60 -41	Parcialmente estable
40 - 21	Inestable
<20	Totalmente inestable

Tabla 4.22: Relación entre el índice SMR y la estabilidad del talud.

La evaluación de la estabilidad de los cortes del talud por el sistema SMR se realizó para las 4 direcciones de la excavación de los pilares. Para cada dirección de la futura cimentación a ejecutar se calcularon los parámetros derivados de comparar la orientación del talud con la orientación de cada familia de discontinuidades, y la inclinación de la cara del talud con el buzamiento de la familia de discontinuidades correspondiente. La evaluación se realizó para los casos de falla planar y vuelco siguiendo el procedimiento establecido por Romana (1985, 2003), y para el caso de falla por cuña siguiendo una extensión del método por Tomás et al (2000).

Como parte del análisis se tomaron las direcciones de los cuatro lados de las excavaciones a ser realizadas para la cimentación. La Tabla 4.23 muestra dichas direcciones.

Talud	Dirección de buzamiento del talud	Buzamiento del talud
1T	N46°	80°
2T	N136°	80°
3T	N226°	80°

Tabla	4.23:	Direccciòn	de	excavación	para	pilares.
I uniu		Direction	uv	encuvacion	puru	pilares.

Talud	Dirección de buzamiento del talud	Buzamiento del talud	
4T	N316°	80°	

Los resultados de la clasificación se muestran en la Tabla 4.24. Para este análisis se utilizó la información proveniente del análisis estereográfico y se consideró las fallas producto de la intersección de familias principales y/o secundarias.

			SMR	Clase	Tipo	
Ubicación	Litología	Orientación	Promedio	Promedio	de Falla Crítica	Recomendación
		1T	34	IV	Planar	Anclaje o pernos, shotcrete, re- excavación de paredes
		2T	37	IV	Cuña	Anclaje o pernos, shotcrete
Margen Izquierdo	Gabrodiorita	3Т	36	IV	Planar	Anclaje o pernos, shotcrete, re- excavación de paredes
		4T	31 - 26	IV	Planar y Cuña	Anclaje o pernos, shotcrete, re- excavación de paredes
	Tonalita	1T	35	IV	Planar	Anclaje o pernos, shotcrete, re- excavación de paredes
		2T	47	III	Planar y Cuña	Anclaje o pernos, shotcrete
Margen Izquierdo		3Т	40	IV	Planar	Anclaje o pernos, shotcrete, re- excavación de paredes
		4T	33 - 31	IV	Planar y Cuña	Anclaje o pernos, shotcrete, re- excavación de paredes
	Tufo Volcánico	1T	45	III	Vuelco	Anclaje o pernos puntuales o sistemáticos

Tabla 4.24: Resumen de Clasificación SMR – Puente de la Cultura

Ubicación	Litología	Orientación	SMR Promedio	Clase Promedio	Tipo de Falla Crítica	Recomendación
		2T	45	III	Vuelco	Anclaje o pernos puntuales o sistemáticos
		3T	56	III	Vuelco	Anclaje o pernos puntuales o sistemáticos
		4T	61	II	Cuña	Anclaje o pernos puntuales o sistemáticos

En general se obtiene valores bajos a regulares de SMR en la gabrodiorita y tonalita, para los que este sistema de clasificación de taludes rocosos propone el anclaje o pernos, y shotcrete en algunos casos; para el tufo volcánico los valores son regulares a buenos proponiendo el anclaje o pernos puntuales o sistemáticos de paredes como medida de estabilización.

4.2.6 Caracterización geotécnica

4.2.6.1 Investigaciones geotécnicas

Las investigaciones geotécnicas consistieron en la excavación de calicatas en el suelo superficial de la margen derecha, así como ensayos de densidad con el cono de arena. La segunda etapa consistió en el desarrollo del programa de perforaciones diamantinas orientadas, incluyendo el logueo geomecánico y orientado, ensayos de dureza de la roca con el martillo Schmidt y muestreo de testigos para ensayos de laboratorio en mecánica de rocas. También se desarrolló un programa de investigación hidrogeológica que consistió en la ejecución de ensayos de permeabilidad Lugeon y Lefranc de carga constante y variable.

4.2.6.1.1 Calicatas / trincheras

Se realizó un total de 17 calicatas convenientemente ubicadas y distribuidas dentro del área correspondiente al estribo derecho del puente, con la finalidad de conocer el perfil estratigráfico superficial, y evaluar las propiedades geotécnicas del suelo residual arenoso producto de la meteorización del tufo volcánico existente.

La Tabla 4.25 presenta un resumen de las calicatas ejecutadas. La profundidad promedio alcanzada en estas calicatas fue de 3 m, hasta el nivel del basamento rocoso. En algunas de ellas se aprovechó la presencia de un talud de corte para describir el perfil del terreno. En cada una de las calicatas se realizó el muestreo y registro detallado de los materiales existentes. En el Plano 6 del Anexo F muestra la Ubicación de Investigaciones Geotécnicas.

Calicotos	Coordenadas U	Cota	Nivel	Profundidad	
Cancatas	Norte	Este	(msnm)	Freático	Total (m)
TP_CV12-01	8 183 249	210 886	1 958	NE	3,0
TP_CV12-02	8 183 262	210 917	1 961	NE	2,0
TP_CV12-03	8 183 293	210 905	1 957	NE	2,0
TP_CV12-04	8 183 321	210 894	1 956	NE	1,2
TP_CV12-05	8 183 365	210 967	1 991	NE	3,0
TP_CV12-06	8 183 311	210 957	1 986	NE	4,0
TP_CV12-07	8 183 306	211 079	1 991	NE	4,0
TP_CV12-08	8 183 255	211 139	1 990	NE	3,8
TP_CV12-09	8 183 271	211 101	1 989	NE	2,0
TP_CV12-10	8 183 304	211 033	1 991	NE	2,0
TP_CV12-11	8 183 277	210 997	1 990	NE	2,0
TP_CV12-12	8 183 312	211 000	1 991	NE	2,0
TP_CV12-13	8 183 338	210 973	1 990	NE	1,8
TP_CV12-14	8 183 492	210 917	1 997	NE	3,8
TP_CV12-15	8 183 398	210 974	1 996	NE	6,0
TP_CV12-16	8 183 397	210 930	1 982	NE	2,0
TP_CV12-17	8 183 175	210 890	1 951	NE	2,0

Tabla 4.25: Resumen de Calicatas

Calcata TP_CV12-01, Puente de la Cultura

Calicata TP_CV12-02, Puerte de la Cultura.

Calicata TP_CV12-05, Puente de la Cultura

Calicata TP_CV12-05. Puerte de la Cultura

Calicata TP_CV12-15, Puente de la Cultura.

Calicata TP_CV12-16, Puente de la Cultura.

Figura 4.14: Muestra algunas caliactas ejecutadas

Figura 4.15: Perfil estratigráfico de las calicatas

4.2.6.1.2 Sondajes diamantinos

El programa de perforaciones diamantinas se desarrolló con la finalidad de obtener información geomecánica y estructural del macizo rocoso en las áreas donde estará localizada la cimentación de los pilares y estribos del Puente La Cultura. El programa consistió en la realización de 9 taladros diamantinos orientados. La orientación de los taladros fue planificada en base a los resultados del análisis estereográfico, donde se identificaron las familias de las estructuras principales y secundarias del mapeo superficial realizado. En la Tabla 4.26 se presentan la ubicación y orientación de los sondajes diamantinos ejecutados. El Plano 6 del Anexo F muestra la Ubicación de Investigaciones Geotécnicas.

Tabla 4.26 Resumen de Ubicación de Sondajes

Sector	Sondaje	Coorde UT	nadas M	Elevación (msnm)	Azimut	Buz.	Nivel Freático	Nivel de Roca	Prof. (m)
		Norte	Este						
Estribo Derecho	AUS-PC-01	8183 311	210960	1986	190	-60	NE	0,0	80,00
	AUS-PC-02	8183309	210959	1986	210	-80	NE	0,0	80,00
	AUS-PC-03	8183226	210870	1956	330	-80	NE	0,0	80,00

Sector	Sondaje	Coordenadas UTM		Elevación (msnm)	Azimut	Buz.	Nivel Freático	Nivel de Roca	Prof. (m)
		Norte	Este						
Pilar Derecho	AUS-PC-04	8183226	210872	1956	80	-60	NE	0,0	80,00
Pilar Izquierdo	AUS-PC-05	8183100	210730	1943	190	-60	NE	0,0	47,55
	AUS-PC-05A	8183100	210730	1943	190	-60	NE	0,0	80,00
	AUS-PC-06	8183105	210727	1941	280	-80	NE	0,0	80,05
Estribo Izquierdo	AUS-PC-07	8183020	210659	1991	10	-60	NE	3,0	80,00
	AUS-PC-08	8183018	210664	1991	100	-80	NE	1,4	80,00

Figura 4.16: Vista panorámica de la plataforma AUS-PC-01

4.2.6.1.3 Orientación de testigos

Para la medición de la orientación de los testigos diamantinos se utilizó un dispositivo de plomada electrónica ACT-II de Reflex, el cual es insertado en la parte final del tubo interior (muestreador) y permite registrar electrónicamente la posición del testigo en el taladro. Posteriormente el tubo interior es recuperado y extraído a la superficie donde se procede a la orientación del dispositivo.

4.2.6.1.4 Ensayos de permeabilidad

Con el fin de evaluar las propiedades hidráulicas del macizo rocoso, se realizaron ensayos de permeabilidad in situ tanto del tipo Lefranc como del tipo Lugeon, según el grado de fracturamiento existente. En la Tabla 4.27 se muestra un resumen de los resultados obtenidos en los diferentes sondajes y profundidades a las cuales fueron ejecutados los ensayos de permeabilidad.

Taladro	Prueba	Intervalo de Profundidad de Prueba (m)		Prof. Vertical	Longitud de	Tipo de			Media		Nivel de	Zona de
		Торе	Base	Promedio (m)	Prueba (m)	Prueba (1)	K _{max} /K _{min}	K _{pmax} /K _{pmin}	Geométrica K (cm/s)	Litología	Agua (mbns) (2)	Prueba (3)
AUS-PC-03	1	6,00	12,55	9,3	6,6	LCC	1,0	0	2,47E-04	Gabrodiorita - Tonalita Gnéisica	7,0	Vadosa
AUS-PC-04	1	4,00	11,55	7,8	7,6	LU	1,5	1,1	7,19E-05	Gabrodiorita Gnéisica	11,6	Vadosa
AUS-PC-05	1	6,50	9,35	7,9	2,9	LU	2,2	1,3	1,09E-04	Tonalita Gnéisica	9,4	Vadosa
	2	22,25	26,25	24,3	4,0	LU	1,3	1,1	6,57E-05	Tonalita Gnéisica	26,3	Vadosa
AUS-PC- 05-A	1	30,50	34,10	32,3	3,6	LU	2,0	0,9	4,26E-05	Tonalita Gnéisica	5,5	Vadosa
AUS-PC-06	1	7,80	10,10	9,0	2,3	LCC	1,0	0	1,16E-03	Gabrodiorita Gnéisica	3,8	Vadosa
AUS-PC-07	1	3,00	7,10	5,1	4,1	LCC	1,0	0	2,58E-03	Gabrodiorita Gnéisica	7,1	Vadosa
	2	9,00	12,95	11,0	4,0	LCC	1,0	0	6,78E-04	Gabrodiorita Gnéisica	4,3	Vadosa
	3	16,50	20,30	18,4	3,8	LCC	1,0	0	7,93E-04	Gabrodiorita Gnéisica	4,0	Vadosa
AUS-PC-08	1	2,85	5,95	4,4	3,1	LCC	1,0	0	4,11E-04	Gabrodiorita Gnéisica	6,0	Vadosa
	2	7,15	11,30	9,2	4,2	LCC	1,0	0	1,52E-04	Gabrodiorita Gnéisica	11,3	Vadosa
	3	16,50	19,50	18,0	3,0	LCV	1,0	0	4,08E-03	Gabrodiorita Gnéisica	18,2	Vadosa
	4	16,85	26,65	21,8	9,8	LCV	1,0	0	7,83E-05	Gabrodiorita Gnéisica	16,4	Vadosa

Tabla 4.27: Resumen de Ensayos de Permeabilidad Ejecutados al Interior de las Perforaciones

<u>Notas</u>:

- (1) LU: Prueba Lugeon
 LCC: Pruebas Lefranc Carga Constante
 LCV: Pruebas Lefranc Carga Variable
- (2) Nivel de agua estimada durante las pruebas. En ninguna prueba se encontró nivel estático, solo agua de perforación. mbns (metros bajo el nivel de superficie)
- (3) Zona Vadosa a zona no saturada

Se realizaron un total de 4 ensayos del tipo Lugeon en 3 perforaciones (AUS-PC-04, AUS-PC-05 y AUS-PC-05-A), en intervalos de 4,5 m en promedio. La profundidad máxima de la prueba fue de 34,1 metros bajo el nivel de la superficie, obteniéndose coeficientes de permeabilidad con valores fluctuando entre 4,3 x 10-5 a 1,09 x 10-4 cm/s (3,3 a 8,4 U.L. ó Unidades Lugeon). Los ensayos Lugeon fueron normalmente realizados bajo condiciones estables para cinco diferentes presiones de inyección (25%, 50%, 75%, y 100% de presión máxima), con un intervalo máximo de presión de 3 a 58 psi. Los flujos fueron medidos en todas las pruebas a intervalos de 1 minuto, empleando el valor del flujo estable (presión constante).

Se realizaron ensayos del tipo Lefranc en 4 perforaciones. De acuerdo a las características de la roca se realizaron ensayos del tipo carga variable (un total de 2 pruebas) y carga constante (un total de 7 pruebas); así, en los tramos menos fracturados se realizaron ensayos de carga variable y en los tramos muy fracturados se realizaron ensayos de carga constante. Esto en función al consumo requerido de agua para el ensayo correspondiente. Un total de 7 pruebas Lefranc usaron técnicas de carga constante en intervalos de longitud de cámara de 9,5 m en promedio. La profundidad máxima de la prueba fue de 20,30 mbns, obteniéndose coeficientes de permeabilidad con valores fluctuando entre 1,52 x 10-4 a 2,58 x 10-3 cm/s y 2 pruebas usaron técnicas de carga variable en intervalos de longitud de cámara de 19,9 m en promedio. La profundidad máxima de la prueba fue fue de 26,65 mbns, obteniéndose coeficientes de permeabilidad con valores fluctuando entre 7,83 x 10-5 a 4,08 x 10-3 cm/s.
4.2.6.2 Analisis de los resultados de laboratorio

4.2.6.2.1 Ensayos de mecánica de rocas

Se seleccionaron muestras representativas de testigos de los taladros geomecánicos para desarrollar un extenso programa de laboratorio en mecánica de rocas. Los ensayos se llevaron a cabo en el laboratorio de Mecánica de Rocas de la Universidad Nacional de Ingeniería. El programa consistió en la ejecución de ensayos de carga puntual diametral, ensayos de propiedades físicas, ensayos de compresión no confinada, ensayos de compresión triaxial, ensayos de corte directo en discontinuidades naturales y simuladas, ensayos de propiedades elásticas y ensayos de tracción (método brasileño). Adicionalmente se realizaron ensayos químicos.

Ensayos de carga puntual

Se ejecutaron 85 ensayos de carga puntual en muestras de roca obtenidas de los taladros, con la finalidad de medir indirectamente su resistencia a la compresión o dureza. Los ensayos se llevaron a cabo de acuerdo al procedimiento de la norma ASTM D-5731 y los resultados se presentan en la Tabla 4.28. A continuación, se resume lo observado en la Tabla 4.28 para cada sector:

- Pilar de la margen derecha: El índice de carga puntual en la tonalita gnéisica indica un valor promedio de 13,0 MPa, con una resistencia a la compresión no confinada promedio de 247,4 MPa e índice de resistencia R5; así mismo se tiene para la gabrodiorita gnéisica un índice de carga puntual de 10,5 MPa, con una resistencia a la compresión no confinada promedio de 267,3 MPa y un índice de resistencia R6, con algunos valores puntuales menores como R3.
- Pilar de la margen izquierda: El índice de carga puntual en la tonalita gnéisica indica un valor promedio de 10,8 MPa, con una resistencia a la compresión no

confinada promedio de 260,0 MPa y un índice de resistencia que varía entre R4 y R6; así mismo se tiene para la gabrodiorita gnéisica un índice de carga puntual de 10,6 MPa, con una resistencia a la compresión no confinada promedio de 247,3 MPa y un índice de resistencia de R5 a R6.

- Estribo de la margen izquierda: El índice de carga puntual encontrado para la gabrodiorita gnéisica indica un valor promedio de 11,0 MPa, con una resistencia a la compresión no confinada promedio de 263,3 MPa y un índice de resistencia que varía de R5 a R6.
- No se realizaron ensayos de carga puntual en testigos de la toba volcánica debido a que estas muestras presentan una baja resistencia para la cual no es aplicable este ensayo.

Sector	Perforación	Profundidad	Litología	Is(50) (MPa)	<i>©</i> χ (MPa)	ISRM
	AUS-PC-03	4,69 - 4,85	Tonalita gnéisica	0,70	17	R2,0
	AUS-PC-03	30,82 - 31,37	Tonalita gnéisica	10,53	253	R6,0
	AUS-PC-03	50,23 - 50,40	Tonalita gnéisica	14,50	348	R6,0
Pilar de la	AUS-PC-03	65,60 - 65,75	Gabrodiorita gnéisica	11,87	285	R6,0
	AUS-PC-03	69,42 - 69,62	Tonalita gnéisica	12,63	303	R6,0
derecha	AUS-PC-03	78,05 - 78,20	Tonalita gnéisica	11,50	276	R6,0
	AUS-PC-04	6,40-6,56	Gabrodiorita gnéisica	1,73	41	R3,0
	AUS-PC-04	12,30 - 12,60	Tonalita gnéisica	9,97	239	R5,0
	AUS-PC-04	15,07 - 15,25	Gabrodiorita gnéisica	8,45	203	R5,0
	AUS-PC-04	34,75 - 34,91	Tonalita gnéisica	10,70	257	R6,0

Tabla 4.28: Resumen de Ensayos de Carga Puntual

Sector	Perforación	Profundidad	Litología	Is(50) (MPa)	øχ (MPa)	ISRM
	AUS-PC-04	49,75 - 49,92	Tonalita gnéisica	8,39	201	R5,0
	AUS-PC-04	69,67 - 69,90	Tonalita gnéisica	5,48	131	R5,0
	AUS-PC-04	78,80 - 78,94	Tonalita gnéisica	8,40	202	R5,0
	AUS-PC-05	24,40 - 24,59	Tonalita gnéisica	8,89	213	R5,0
	AUS-PC-05	30,07 - 30,25	Tonalita gnéisica	2,82	68	R4,0
	AUS-PC-05	67,47 – 67,61	Gabrodiorita gnéisica	12,15	292	R6,0
	AUS-PC-05	75,36 - 75,55	Gabrodiorita gnéisica	9,52	228	R5,0
Pilar de la	AUS-PC-05	79,78 - 80,00	Gabrodiorita gnéisica	10,52	252	R6,0
izquierda	AUS-PC-06	3,90 - 4,12	Gabrodiorita gnéisica	7,34	176	R5,0
	AUS-PC-06	11,30 - 11,50	Gabrodiorita gnéisica	10,13	243	R5,0
	AUS-PC-06	44,97 - 45,12	Tonalita gnéisica	8,78	211	R5,0
	AUS-PC-06	49,45 - 49,65	Tonalita gnéisica	10,70	257	R6,0
	AUS-PC-06	58,90 - 59,50	Gabrodiorita gnéisica	10,71	257	R6,0
	AUS-PC-07	20,80 - 20,95	Gabrodiorita gnéisica	14,40	346	R6,0
	AUS-PC-07	25,34 - 25,52	Gabrodiorita gnéisica	13,06	313	R6,0
	AUS-PC-07	50,33 - 50,50	Gabrodiorita gnéisica	8,73	210	R5,0
	AUS-PC-07	75,85 - 76,08	Gabrodiorita gnéisica	10,62	255	R6,0
Estribo do	AUS-PC-07	79,80 - 80,00	Gabrodiorita gnéisica	13,99	336	R6,0
la margen	AUS-PC-08	11,68 - 11,84	Gabrodiorita gnéisica	12,43	298	R6,0
izquieiua	AUS-PC-08	31,07 - 31,22	Gabrodiorita gnéisica	12,32	296	R6,0
	AUS-PC-08	40,02 - 40,16	Gabrodiorita gnéisica	8,59	206	R5,0
	AUS-PC-08	59,80 - 59,98	Gabrodiorita gnéisica	8,74	210	R5,0
	AUS-PC-08	65,34 - 65,54	Gabrodiorita gnéisica	12,66	304	R6,0
	AUS-PC-08	79,79 - 80,00	Gabrodiorita gnéisica	8,27	199	R5,0

Notas:

Is (50) Índice de Carga Puntual corregido

 σ c: Resistencia a la compresión no confinada obtenida mediante correlación con el índice de carga puntual Is (50) indicada en la Norma ASTM D-5731.

Ensayos de propiedades físicas

Los resultados de los ensayos de propiedades físicas de la roca se presentan en la Tabla 4.29. A continuación, se resumen los valores observados para cada sector:

- Estribo de la margen derecha: De acuerdo con los resultados, la densidad de la toba varía de 13,2 a 15,2 kN/m3, con una densidad promedio de 14,3 kN/m3. Además, esta roca presenta una porosidad elevada del orden de 30,5% y una absorción de 21,0%.
- Pilar de la margen derecha: De acuerdo con los resultados, la densidad de la tonalita gnéisica varía de 25,8 a 26,7 kN/m3, con una densidad promedio de 26,1 kN/m3. Así mismo, la gabrodiorita gnéisica varía de 26,3 a 27,4 kN/m3, con una densidad promedio de 26,8 kN/m3. La porosidad en la tonalita gnéisica es de 1,1% promedio, en tanto en la gabrodiorita gnéisica es de 0,8%. La absorción en la tonalita gnéisica es de 0,4% promedio, y en la gabrodiorita gnéisica es de 0,3%.
- Pilar de la margen izquierda: De acuerdo con los resultados, la densidad de la tonalita gnéisica varía de 25,7 a 26,3 kN/m3, con una densidad promedio de 26,1 kN/m3. Así mismo, la gabrodiorita gnéisica varía de 25,6 a 29,6 kN/m3, con una densidad promedio de 27,1 kN/m3. La porosidad en la tonalita gnéisica es de 1,0% promedio, en tanto en la gabrodiorita gnéisica es de 0,8%. La absorción en la tonalita gnéisica es de 0,4% promedio, y en la gabrodiorita gnéisica es de 0,3%.

Estribo de la margen izquierda: De acuerdo con los resultados, la densidad de la gabrodiorita gnéisica varía de 25,6 a 26,9 kN/m3, con una densidad promedio de 26,5 kN/m3. La porosidad en la gabrodiorita gnéisica es de 0,9%. La absorción en la gabrodiorita gnéisica es de 0,3%.

Sector	Perforación	Profundidad	Litología	Porosidad Aparente	Absorción	Peso Específico Aparente (kN/m3)
	AUS-PC-01	9,73 – 9,98	Toba	31,77	23,52	13,24
	AUS-PC-01	20,75 - 21,15	Toba	30,34	22,09	13,46
	AUS-PC-01	30,54 - 30,95	Toba	32,11	21,70	14,50
Estribo do	AUS-PC-01	42,42 - 42,80	Toba	30,13	20,05	14,73
la margen	AUS-PC-01	59,69 - 60,05	Toba	26,34	17,81	14,49
derecha	AUS-PC-02	16,51 – 16,71	Toba	31,34	22,42	13,70
ucreena	AUS-PC-02	19,30 - 19,53	Toba	28,97	20,07	14,14
	AUS-PC-02	30,75 - 30,95	Toba	31,56	20,76	14,90
	AUS-PC-02	42,23 - 42,45	Toba	31,51	21,46	14,39
	AUS-PC-02	50,68 - 50,81	Toba	31,36	20,26	15,17
	AUS-PC-03	15,56 - 15,82	Tonalita gnéisica	1,17	0,45	25,76
	AUS-PC-03	41,80 - 42,00	Tonalita gnéisica	0,68	0,25	26,72
Pilar de la	AUS-PC-03	55,30 - 55,45	Gabrodiorita gnéisica	0,68	0,25	27,36
derecha	AUS-PC-03	61,70 - 61,96	Gabrodiorita gnéisica	0,84	0,31	26,32
	AUS-PC-04	40,50 - 41,15	Tonalita gnéisica	0,90	0,34	26,04
	AUS-PC-04	60,15 - 60,35	Tonalita gnéisica	1,53	0,58	25,84
	AUS-PC-05	6,12-6,32	Tonalita gnéisica	0,99	0,37	26,25
Dilan da la	AUS-PC-05 A	28,48 - 28,79	Tonalita gnéisica	1,29	0,48	26,32
Pilar de la margen	AUS-PC-05 A	42,20 - 42,46	Gabrodiorita gnéisica	0,72	0,27	26,03
izquierua	AUS-PC-06	13,10 - 13,30	Gabrodiorita gnéisica	0,84	0,32	25,59
	AUS-PC-06	19,05 – 19,30	Tonalita gnéisica	0,97	0,36	26,11

Tabla 4.29: Resumen de Propiedades Fisicas de la Roca

Sector	Perforación	Profundidad	Litología	Porosidad Aparente	Absorción	Peso Específico Aparente (kN/m3)
	AUS-PC-06	40,31 - 40,63	Tonalita gnéisica	0,98	0,37	25,73
	AUS-PC-06	60,02 - 60,25	Gabrodiorita gnéisica	0,97	0,32	29,61
	AUS-PC-07	21,10-21,40	Gabrodiorita gnéisica	0,78	0,28	26,90
	AUS-PC-07	29,14 - 29,36	Gabrodiorita gnéisica	1,21	0,46	25,60
Estribo de	AUS-PC-07	35,62 - 35,87	Gabrodiorita gnéisica	0,95	0,36	26,14
izquierda	AUS-PC-07	38,17 - 38,50	Gabrodiorita gnéisica	0,59	0,22	26,81
	AUS-PC-08	27,31 – 27,52	Gabrodiorita gnéisica	0,89	0,33	26,86
	AUS-PC-08	36,30 - 36,53	Gabrodiorita gnéisica	0,88	0,33	26,42

Ensayos de compresión no confinada (compresión uniaxial)

Los resultados de estos ensayos se resumen en la Tabla 4.30. A continuación, se resume lo observado para cada sector:

- Estribo de la margen derecha: De acuerdo a los resultados, se observa que la resistencia a la compresión no confinada de la toba varía de 10,4 a 18,7 MPa, con una resistencia a la compresión promedio de 13,9 MPa.
- Pilar de la margen derecha: De acuerdo a los resultados, se observa que la resistencia a la compresión no confinada de la tonalita gnéisica varía de 50,7 a 148,7 MPa, con una resistencia a la compresión promedio de 83,3 MPa. Así mismo, la gabrodiorita gnéisica varía de 60,3 a 192,8 MPa, con una resistencia a la compresión promedio de 126,5 MPa.

- Pilar de la margen izquierda: De acuerdo a los resultados, la resistencia a la compresión no confinada de la gabrodiorita gnéisica varía de 125,4 a 241,0 MPa, con una resistencia a la compresión no confinada promedio de 181,4 MPa.
- Estribo de la margen izquierda: De acuerdo a los resultados, la resistencia a la compresión no confinada de la gabrodiorita gnéisica varía de 139,3 a 246,8 MPa, con una resistencia a la compresión no confinada promedio de 185,4 MPa.

Sector	Perforación	Profundidad	Litología	σc (MPa)
	AUS-PC-01	9,73 - 9,98	Toba	12,11
	AUS-PC-01	20,75 - 21,15	Toba	11,16
	AUS-PC-01	30,54 - 30,95	Toba	13,22
	AUS-PC-01	42,42-42,80	Toba	11,75
Estribo de la	AUS-PC-01	59,69 - 60,05	Toba	10,38
dorocho	AUS-PC-02	16,51 – 16,71	Toba	17,15
uerecha	AUS-PC-02	19,30 – 19,53	Toba	15,88
	AUS-PC-02	30,75 - 30,95	Toba	16,21
	AUS-PC-02	42,23 - 42,45	Toba	18,71
	AUS-PC-02	50,68 - 50,81	Toba	12,85
	AUS-PC-03	15,56 - 15,82	Tonalita gnéisica	50,69
	AUS-PC-03	41,80 - 42,00	Tonalita gnéisica	148,66
Pilar de la	AUS-PC-03	55,30 - 55,45	Gabrodiorita gnéisica	60,25
derecha	AUS-PC-03	61,70 - 61,96	Gabrodiorita gnéisica	192,78
	AUS-PC-04	40,50-41,15	Tonalita gnéisica	81,01
	AUS-PC-04	60,15 - 60,35	Tonalita gnéisica	52,70
	AUS-PC-05	6,12-6,32	Tonalita gnéisica	125,42
Pilar de la margen izquierda	AUS-PC-06	13,10 - 13,30	Tonalita gnéisica	206,60
	AUS-PC-06	19,05 – 19,30	Tonalita gnéisica	146,43
	AUS-PC-05 A	28,48 - 28,79	Tonalita gnéisica	241,00

 Tabla 4.30: Resistencia de la Roca a la Compresión No Confinada

Sector	Perforación	Profundidad	Litología	σc (MPa)
	AUS-PC-06	40,31 - 40,63	Tonalita gnéisica	148,61
	AUS-PC-05 A	42,20-42,46	Gabrodiorita gnéisica	202,99
	AUS-PC-06	60,02 - 60,25	Gabrodiorita gnéisica	198,64
	AUS-PC-07	21,10-21,40	Gabrodiorita gnéisica	246,83
	AUS-PC-07	29,14 - 29,36	Gabrodiorita gnéisica	173,57
Estribo de la	AUS-PC-07	38,17 - 38,50	Gabrodiorita gnéisica	139,30
margen izquierda	AUS-PC-08	27,31 – 27,52	Gabrodiorita gnéisica	246,50
	AUS-PC-07	35,62 - 35,87	Gabrodiorita gnéisica	159,91
	AUS-PC-08	36,30 - 36,53	Gabrodiorita gnéisica	146,20

Notas: σc: Resistencia a la compresión no confinada (UCS)

Ensayos de compresión triaxial

Los resultados del ensayo de compresión triaxial en roca intacta se resumen en la Tabla 4.31. A continuación se resumen estos resultados para cada sector:

- Estribo de la margen derecha: De acuerdo a los resultados, se observa que la toba muestra un valor de mi (parámetro del criterio de falla de Hoek & Brown) promedio de 9,4. Así mismo, se observa que para la tonalita gnéisica se obtiene un valor de mi de 14,2. Los valores promedio de cohesión y ángulo de fricción según el criterio de falla de Mohr Coulomb son de 3,8 MPa y 39,7°, respectivamente, para la toba; y de 12,8 MPa y 49,5°, respectivamente, para la tonalita gnéisica.
- Pilar de la margen derecha: De acuerdo a los resultados, se observa que para la tonalita gnéisica el valor promedio de mi es de 19,7 y para la gabrodiorita gnéisica

el valor promedio es 19,3. Los valores promedio de cohesión y ángulo de fricción son de 14,4 MPa y 54,3°, respectivamente, para la tonalita gnéisica; y de 14,5 MPa y 54,1°, respectivamente, para la gabrodiorita gnéisica.

- Pilar de la margen izquierda: De acuerdo a los resultados, se observa que la tonalita gnéisica muestra un valor de mi promedio de 29,2. Los valores promedio de cohesión y ángulo de fricción son de 23,5 MPa y 59,9°, respectivamente, para la tonalita gnéisica.
- Estribo de la margen izquierda: De acuerdo a los resultados, se observa que la gabrodiorita gnéisica muestra un valor de mi promedio de 27,9. Los valores promedio de cohesión y ángulo de fricción son de 22,3 MPa y 59,6°, respectivamente, para la gabrodiorita gnéisica.

Sector	Perforación	Profundidad	Litología	mi	c (MPa)	ø (°)
	AUS-PC-01	6,70 - 7,25	Toba			
	AUS-PC-01	6,70 - 7,25	Toba	9,06	4,29	39,79
	AUS-PC-01	14,30 - 14,45	Toba			
	AUS-PC-01	39,43 - 39,90	Toba			
	AUS-PC-01	39,43 - 39,90	Toba	9,39	4,20	40,14
	AUS-PC-01	43,25 - 43,70	Toba			
	AUS-PC-01	61,03 - 61,18	Toba			
	AUS-PC-01	61,18 - 61,33	Toba	10,17	2,55	39,09
Estribo de	AUS-PC-01	61,33 - 61,48	Toba			
la margen	AUS-PC-02	6,60 - 7,09	Toba	8,83	3,45	38,43
derecha	AUS-PC-02	6,60 - 7,09	Toba			
	AUS-PC-02	25,95 - 26,49	Toba			
	AUS-PC-02	45,14 - 45,32	Toba			
	AUS-PC-02	45,32 - 45,48	Toba	9,64	4,51	40,86
	AUS-PC-02	45,48-45,66	Toba			
	ALIS DC 02	75 05 75 52	Tonalita			
	AUS-FC-02	15,05 - 15,52	gnéisica	14 21	12,82	49,45
	ALLS PC 02	75 05 75 52	Tonalita	14,21		
	AUS-FC-02	75,05 - 75,52	gnéisica			

Tabla 4.31: Resumen de Ensayos de Compresión Triaxial en Roca Intacta

Sector	Perforación	erforación Profundidad		mi	c (MPa)	ø (°)
	AUS-PC-02	75,05 - 75,52	Tonalita gnéisica			
	AUS-PC-03	15,08 - 15,40	Tonalita gnéisica			
	AUS-PC-03	15,08 - 15,40	Tonalita gnéisica	20,11	15.52	54.83
	AUS-PC-03	15,40 - 15,56	Tonalita gnéisica			
	AUS-PC-03	27,60 - 28,05	Tonalita gnéisica			
	AUS-PC-03	27,60 - 28,05	Tonalita gnéisica	20,50	11,19	54,47
	AUS-PC-03	27,60 - 28,05	Tonalita gnéisica			
	AUS-PC-03	58,04 - 58,55	Gabrodiorita gnéisica			
	AUS-PC-03	58,04 - 58,55	Gabrodiorita gnéisica	20,19	14,70	54,78
	AUS-PC-03	58,04 - 58,55	Gabrodiorita gnéisica			
	AUS-PC-04	17,60 – 18,18	Gabrodiorita gnéisica			
margen	AUS-PC-04	17,60 – 18,18	Gabrodiorita gnéisica	18,46	14,24	53,47
ucrecita	AUS-PC-04	17,60 – 18,18	Gabrodiorita gnéisica			
	AUS-PC-04	22,50 - 23,06	Tonalita gnéisica		15,68	54,32
	AUS-PC-04	22,50 - 23,06	Tonalita gnéisica	19,38		
	AUS-PC-04	22,50 - 23,06	Tonalita gnéisica			
	AUS-PC-04	39,65 - 40,15	Tonalita gnéisica			
	AUS-PC-04	39,65 - 40,15	Tonalita gnéisica	19,93	14,19	54,56
	AUS-PC-04	39,65 - 40,15	Tonalita gnéisica			
	AUS-PC-04	56,95 - 57,55	Tonalita gnéisica			
	AUS-PC-04	56,95 - 57,55	Tonalita gnéisica	18,38	15.47	53.55
	AUS-PC-04	56,95 - 57,55	Tonalita gnéisica			
	AUS-PC-05 A	13,43 - 13,88	Tonalita gnéisica	30,37	24,85	60,91

Sector	Perforación	Profundidad	Litología	mi	c (MPa)	ø (°)
	AUS-PC-05	13 43 - 13 88	Tonalita			
	A	15,15 15,00	gnéisica			
	AUS-PC-05	14.43 - 14.67	Tonalita			
	A	, ,	gnéisica			
	AUS-PC-06	41,06 - 41,48	Tonalita			
			Topolito			
	AUS-PC-06	41,06 - 41,48	Tollalita	28,28	22,44	58,71
			Tonalita			
	AUS-PC-06	41,06 - 41,48	gnéisica			
	AUS-PC-05		Tonalita			
	A	62,30 - 62,80	gnéisica			
D 11 1 1	AUS-PC-05	(2.20. (2.00	Tonalita	20.05		59,18
Pilar de la	А	62,30 - 62,80	gnéisica	29,07	23,83	
margen	AUS-PC-05	(2.20) (2.80)	Tonalita			
izquierda	А	02,30 - 02,80	gnéisica			
	ALIS PC 06	15 73 16 15	Tonalita			
	A03-1 C-00	15,75 - 10,15	gnéisica		20,87	59,82
	AUS-PC-06	15 73 – 16 15	Tonalita	28 32		
		10,75 10,15	gnéisica	20,52		57,02
	AUS-PC-06	15,73 - 16,15	Tonalita			
			gnéisica			
	AUS-PC-06	28,90 - 29,45	Tonalita	29,84		
		20,90 29,10	gneisica			
	AUS-PC-06	28,90 - 29,45	Tonalita		25,48	60,72
			Topalita			
	AUS-PC-06	28,90 - 29,45	anéisica			
			Gabrodiorita			
	AUS-PC-07	29,81 - 30,15	gnéisica			
		20.01 20.15	Gabrodiorita	22 00		
	AUS-PC-07	29,81 – 30,15	gnéisica	23,98	23,04	57,77
	ALIC DC 07	20.54 20.75	Gabrodiorita			
	AUS-PC-07	30,54 - 30,75	gnéisica			
	AUS PC 07	11 08 15 16	Gabrodiorita			
Estribo de	A05-1C-07	44,98 - 45,40	gnéisica			
la margen	AUS-PC-07	44 98 - 45 46	Gabrodiorita	28 77	21.84	60.07
izquierda	1100 1 0 07	11,90 13,10	gnéisica	20,77	21,01	00,07
izquierau	AUS-PC-07	45.46 - 45.67	Gabrodiorita			
		,	gnéisica			
	AUS-PC-08	33,20 - 33,63	Gabrodiorita			
			gneisica Cohradiarit	29,21		
	AUS-PC-08	33,20 - 33,63	Gabrodiorita		21,88	60,27
		S-PC-08 33,63 – 33,89	Gabrodiorita			
	AUS-PC-08					

Sector	Perforación	Profundidad	Litología	mi	c (MPa)	ø (°)
	AUS-PC-08	42,35 - 42,97	Gabrodiorita gnéisica			
		42.25 42.07	Gabrodiorita			
	AUS-PC-08	42,35 – 42,97	gnéisica	29,45	22,30	60,40
			Gabrodiorita			
	AUS-PC-08	41,43 – 41,58	gnéisica			

Notas: c: Cohesión; ø: Ángulo de fricción, mi: Parámetro de criterio de falla de Hoek & Brown para la roca intacta.

Ensayos de tracción indirecto (ensayo brasileño)

Los resultados de los ensayos de resistencia a la tracción en roca se resumen en la Tabla 4.32. A continuación se resume lo observado para cada sector:

- Estribo de la margen derecha: De acuerdo a los resultados, se observa que la resistencia a la tracción promedio de la toba es de 1,5 MPa lo cual representa un 11,0 % del valor de la resistencia a la compresión no confinada.
- Pilar de la margen derecha: De acuerdo a los resultados, se observa que la resistencia a la tracción de la tonalita gnéisica tiene un valor promedio de 13,7 MPa, lo cual representa un 16,4 % del valor de la resistencia a la compresión no confinada. Así mismo, se observa que para la gabrodiorita gnéisica se tiene una resistencia a la tracción promedio de 16,2 MPa, lo cual representa un 12,8 % del valor de la resistencia a la compresión no confinada.
- Pilar de la margen izquierda: De acuerdo a los resultados, se observa que la resistencia a la tracción de la tonalita gnéisica tiene un valor promedio de 14,8

MPa. Así mismo, la gabrodiorita gnéisica tiene un valor de 14,0 MPa, lo cual representa el 7,5 % del valor de la resistencia a la compresión no confinada.

Estribo de la margen izquierda: De acuerdo a los resultados, se observa que la resistencia a la tracción de la gabrodiorita gnéisica tiene un valor promedio de 14,8 MPa, lo cual representa el 8,0 % del valor de la resistencia a la compresión no confinada.

Sector	Perforación	Profundidad	Litología	σt (MPa)
	AUS-PC-01	$10,\!47 - 10,\!66$	Toba	1,58
margen derecha	AUS-PC-01	25,38 - 25,55	Toba	1,43
	AUS-PC-02	8,40 - 8,53	Toba	1,50
dereena	AUS-PC-02	28,25 - 28,88	Toba	1,65
	AUS-PC-03	$10,\!15-10,\!48$	Tonalita gnéisica	14,89
	AUS-PC-03	44,03 - 44,20	Tonalita gnéisica	11,63
Pilar de la margen derecha	AUS-PC-03	58,55 - 58,85	Gabrodiorita gnéisica	14,64
	AUS-PC-04	12,60 - 12,95	Gabrodiorita gnéisica	17,81
	AUS-PC-04	27,50 - 28,10	Tonalita gnéisica	14,47
	AUS-PC-04	59,10 - 59,30	Tonalita gnéisica	13,67
	AUS-PC-05 A	12,30 - 12,46	Tonalita gnéisica	14,27
Dilon de le	AUS-PC-05 A	24,59 - 24,76	Tonalita gnéisica	14,59
margen	AUS-PC-05 A	43,20 - 43,36	Gabrodiorita gnéisica	13,96
izquierda	AUS-PC-06	40,31 - 40,63	Tonalita gnéisica	13,71
	AUS-PC-06	13,33 – 13,64	Tonalita gnéisica	16,45
	AUS-PC-07	21,55 - 21,70	Gabrodiorita gnéisica	16,05

Tabla 4.32: Resumen de Ensayos de Resistencia a la Tracción

Sector	Perforación	Profundidad	Litología	σt (MPa)
Estribo de la	AUS-PC-07	38,92 - 39,05	Gabrodiorita gnéisica	14,09
	AUS-PC-07	62,71 - 62,90	Gabrodiorita gnéisica	15,52
	AUS-PC-08	60,13 - 60,30	Gabrodiorita gnéisica	14,23
izquierda	AUS-PC-08	33,00 - 33,20	Gabrodiorita gnéisica	15,05
	AUS-PC-08	39,89 - 40,02	Gabrodiorita gnéisica	15,40
	AUS-PC-08	13,30 - 13,53	Gabrodiorita gnéisica	13,32

Nota: σt: Resistencia a la tracción

Ensayos de corte directo

Los resultados de los ensayos de resistencia de corte directo en discontinuidades se resumen en la Tabla 4.33. Se observa una diferencia entre los valores de ángulo de fricción obtenidos de ensayos en discontinuidades naturales y simuladas, siendo en las discontinuidades naturales el ángulo de fricción mayor. Para los análisis de estabilidad al deslizamiento a través de las discontinuidades, se ha tomado en cuenta los resultados obtenidos en discontinuidades naturales, o los resultados de los ensayos de discontinuidades simuladas incrementados por las características de la superficie de las fracturas reportadas de campo.

A continuación, una breve descripción de lo observado en la Tabla 4.33 para cada sector:

- Estribo de la margen derecha: De acuerdo a los resultados, se observa que los valores promedio de la cohesión y del ángulo de fricción para la toba en discontinuidades simuladas es de 0,1 MPa y 27,6°, respectivamente.
- Pilar de la margen derecha: De acuerdo a los resultados, se observa que los valores promedio de la cohesión y del ángulo de fricción para la tonalita gnéisica

son de 0,1 MPa y 26,5°, respectivamente, en las discontinuidades simuladas, y de 0,1 MPa y 31,5°, respectivamente, en discontinuidades naturales.

- Pilar de la margen izquierda: De acuerdo a los resultados, se observa que los valores promedio de la cohesión y del ángulo de fricción para las discontinuidades simuladas en tonalita gnéisica y gabrodiorita gnéisica son de 0,1 MPa y 26,4°, respectivamente. Así mismo, los valores promedio de la cohesión y del ángulo de fricción en discontinuidades naturales son de 0,1 MPa y de 31,2°, respectivamente.
- Estribo de la margen izquierda: De acuerdo a los resultados, se observa que los valores promedio de la cohesión y del ángulo de fricción para las discontinuidades simuladas de la gabrodiorita gnéisica son de 0,1 MPa y 27,4°, respectivamente.

Sector	Perforación	Profundidad	Litología	Discontinuidad	c (MPa)	ø (°)
Estribo	AUS-PC-01	8,55 - 8,85	Toba	Simulada	0,094	27,86
estribo do lo	AUS-PC-01	24,20 - 24,65	Toba	Simulada	0,096	27,69
ut la margan	AUS-PC-02	15,60 - 15,90	Toba	Simulada	0,092	27,43
derecha	AUS-PC-02	35,04 - 35,23	Toba	Simulada	0,092	27,48
ucreena	AUS-PC-02	48,19 - 48,39	Toba	Simulada	0,089	27,68
	AUS-PC-03	10,15 - 10,48	Tonalita gnéisica	Simulada	0,100	26,16
	AUS-PC-03	19,70 - 20,06	Tonalita gnéisica	Simulada	0,101	27,15
Pilar de la	AUS-PC-03	42,10-42,52	Tonalita gnéisica	Natural	0,096	31,87
margen derecha	AUS-PC-04	12,30 - 12,60	Tonalita gnéisica	Natural	0,108	29,97
	AUS-PC-04	18,18 - 18,42	Tonalita gnéisica	Simulada	0,099	26,11
	AUS-PC-04	27,50 - 28,10	Tonalita gnéisica	Natural	0,093	32,77

 Tabla 4.33: Resumen de Ensayos de Corte Directo en Discontinuidades

Sector	Perforación	Profundidad	Litología	Discontinuidad	c (MPa)	ø (°)
	AUS-PC-05 A 25,20 – 25,47 Tonali gnéisic		Tonalita gnéisica	Simulada	0,097	26,86
Pilar de la margenAUS-PC-05 A A $38,28-38,49$ Gabrodiorita gnéisica1a margenAUS-PC-06 $15,20-15,50$ Tonalita gnéisica	AUS-PC-05 A	38,28 - 38,49	Gabrodiorita gnéisica	Simulada	0,100	26,18
	Natural	0,100	31,22			
izquierda	AUS-PC-06 24,65 – 24,90 Tonalita gnéisica	Simulada	0,097	26,15		
	AUS-PC-06	59,61 - 60,02	Gabrodiorita gnéisica	Natural	0,100	31,08
	AUS-PC-07	23,36 - 23,59	Gabrodiorita gnéisica	Simulada	0,093	26,88
	AUS-PC-07	57,05 - 57,26	Gabrodiorita gnéisica	Simulada	0,098	27,16
Estribo de la	AUS-PC-07	57,26 - 27,62	Gabrodiorita gnéisica	Simulada	0,097	27,70
margen izquierda	AUS-PC-08	29,63 - 29,94	Gabrodiorita gnéisica	Simulada	0,086	26,94
	AUS-PC-08	38,50 - 38,75	Gabrodiorita gnéisica	Simulada	0,108	28,00
	AUS-PC-08	61,32 - 61,57	Gabrodiorita gnéisica	Simulada	0,091	27,67

Nota: C: Cohesión; ø: Ángulo de fricción

Ensayos de propiedades elásticas

Las propiedades elásticas del módulo de Young y la relación de Poisson de la roca intacta se obtienen mediante ensayos de compresión bajo deformaciones axiales controladas. Los resultados de este ensayo se presentan en la Tabla 4.34. A continuación, se resumen estos valores para cada sector:

- Estribo de la margen derecha: De acuerdo a los resultados, se observa que los valores promedio del módulo de Young y de la relación de Poisson para la toba son de 2,2 GPa y 0,33, respectivamente.
- Pilar de la margen derecha: De acuerdo a los resultados, se observa que los valores promedio del módulo de Young y de la relación de Poisson para la tonalita

gnéisica son de 11,3 GPa y 0,30, respectivamente. Así mismo, para la gabrodiorita gnéisica se observa un valor del módulo de Young de 6,4 GPa y un valor de 0,32 de la relación de Poisson.

- Pilar de la margen izquierda: De acuerdo a los resultados, se observa que el valor promedio del módulo de Young y de la relación de Poisson para la tonalita gnéisica es de 15,8 GPa y 0,29, respectivamente.
- Estribo de la margen izquierda: De acuerdo a los resultados, se observa que el valor promedio del módulo de Young y de la relación de Poisson para la gabrodiorita gnéisica es de 15,0 MPa y 0,30, respectivamente.

Los valores de módulo elástico determinados en la roca intacta se encuentran en el orden de magnitud de los valores del módulo elástico medido directamente en la roca mediante los ensayos dilatométricos, lo que implica que la condición del macizo rocoso en general es poco afectada por las condiciones in situ, tal como el fracturamiento o el grado de meteorización.

Sector	Perforación	Profundidad	Litología	Módulo de Young (GPa)	Relación de Poisson
	AUS-PC-01	9,45 - 9,98	Toba	2,21	0,33
Estable de	AUS-PC-01	10,47 – 10,66	Toba	1,91	0,34
Estribo de	AUS-PC-01	32,68 - 32,88	Toba	2,62	0,33
derecha	AUS-PC-01	59,25 - 59,52	Toba	4,40	0,32
ucreena	AUS-PC-02	15,90 - 16,08	Toba	1,87	0,34
	AUS-PC-02	29,30 - 29,49	Toba	2,44	0,34
Pilar de la	AUS-PC-03	12,03 - 12,26	Tonalita gnéisica	7,16	0,31
derecha	AUS-PC-03	26,80 - 27,20	Tonalita gnéisica	12,82	0,30

Tabla 4.34: Resumen de Constantes Elásticas de la Roca Intacta

Sector	Perforación	Profundidad	Litología	Módulo de Young (GPa)	Relación de Poisson
	AUS-PC-04	12,60 - 12,95	Gabrodiorita gnéisica	6,40	0,32
	AUS-PC-04	27,50 - 28,10	Tonalita gnéisica	12,79	0,30
	AUS-PC-04	60,35 - 60,55	Tonalita gnéisica	12,32	0,30
	AUS-PC-05 A	14,07 - 14,25	Tonalita gnéisica	14,07	0,29
Dilan da la	AUS-PC-05 A	25,00 - 25,20	Tonalita gnéisica	15,77	0,29
Pilar de la margen	AUS-PC-05 A	60,56 - 60,73	Tonalita gnéisica	15,54	0,29
izquierda	AUS-PC-06	13,33 - 13,64	Tonalita gnéisica	17,42	0,29
	AUS-PC-06	40,85 - 41,06	Tonalita gnéisica	15,97	0,29
	AUS-PC-07	23,11 - 23,36	Gabrodiorita gnéisica	11,94	0,31
	AUS-PC-07	39,86 - 40,02	Gabrodiorita gnéisica	19,37	0,29
Estribe de	AUS-PC-07	63,32 - 63,51	Gabrodiorita gnéisica	18,89	0,30
la margen	AUS-PC-08	13,78 – 13,94	Gabrodiorita gnéisica	15,65	0,29
izquierda	AUS-PC-08	28,16 - 28,37	Gabrodiorita gnéisica	12,95	0,30
	AUS-PC-08	37,75 - 38,00	Gabrodiorita gnéisica	12,30	0,30
	AUS-PC-08	62,55 - 62,79	Gabrodiorita gnéisica	13,54	0,29

4.2.6.2.2 Ensayos de mecánica de suelos

Como parte de las investigaciones geotécnicas mediante la excavación de calicatas y sondajes diamantinos en el estribo derecho, fueron extraídas muestras disturbadas e inalteradas de suelo representativas, con el fin de caracterizar los depósitos de suelo residual identificado en la margen derecha del área de estudio, correspondiente a la formación de tufo volcánico. Estas muestras fueron sometidas a ensayos estándar y especiales con el fin de determinar su clasificación SUCS, caracterización física y parámetros de resistencia y deformación, para ser utilizados en los análisis geotécnicos.

Los ensayos se realizaron en el Laboratorio Geotécnico de Ausenco y en laboratorios externos. Los ensayos se realizaron de acuerdo a los procedimientos recomendados por la versión actual de la American Society for Testing and Materials (ASTM). Los ensayos realizados fueron los siguientes:

- Análisis Granulométrico ASTM D-422;
- Límites de Atterberg ASTM D-4318;
- Clasificación de Suelos ASTM D-2487;
- Ensayo de Compactación Proctor Estándar y Modificado ASTM D-698 y ASTM D-1557;
- Ensayo de Permeabilidad (Pared flexible) ASTM D-5084;
- Ensayo de Compresión Triaxial Consolidado No Drenado (CU) ASTM D-4767;
- Ensayo de Consolidación Unidimensional ASTM-2435;
- Ensayo de Colapso ASTM D5333;
- Ensayo de Corte Directo a Gran Escala; y Ensayos Químicos.

La Tabla 4.35 presenta una descripción de los ensayos realizados y comentarios relacionados a los resultados obtenidos.

Muestras	Profundidad	SUCS	Grava	A rena	Finos	Límite Atterb	s de	C.H.
mucsuas	TTOTUTIUTUAU	5005	Ulava	Archa	1 mos	LL	IP	(%)
TP_CV12-02/ M-1	0,80 - 1,40	SW	13,9	81,5	4,6	NP	NP	0,2
TP_CV12-02/ M-2	1,40 - 2,00	SM	23,4	60,5	16,2	NP	NP	0,1
TP_CV12-03/ M-1	0,00 - 2,00	SW	22,4	73,1	4,5	NP	NP	0,3
TP_CV12-06/ M-1	0,30 - 4,00	SM	5,2	72,0	22,8	NP	NP	0,5
TP_CV12-07/ M-1	0,40 - 1,40	SM	3,6	72,2	24,2	NP	NP	0,2
TP_CV12-08/ M-1	0,80 - 3,80	SM	1,8	75,2	22,9	NP	NP	0,3
TP_CV12-09/ M-1	1,10 - 2,00	SP	4,9	94,3	0,8	NP	NP	3,1
TP_CV12-10/ M-1	0,00 - 1,00	SM	2,5	76,3	21,2	NP	NP	0,7
TP_CV12-11/ M-1	0,00 - 1,00	SM	3,9	75,4	20,6	NP	NP	2,4
TP_CV12-12/ M-1	0,50 - 2,00	SM	0,1	79,4	20,5	NP	NP	0,8
TP_CV12-12/ M-2	0,50 - 2,00	SM	24,6	60,0	15,4	NP	NP	0,5
TP_CV12-13/ M-1	0,20 - 1,80	SM	2,2	73,7	24,1	NP	NP	15,1
TP_CV12-14/ M-1	1,00 - 3,80	SM	3,8	69,6	26,5	NP	NP	0,2
TP_CV12-15/ M-1	0,00 - 0,20	SM	0,0	78,5	21,5	NP	NP	0,1
TP_CV12-16/ M-2	0,00 - 2,00	SM	2,3	63,1	34,6	NP	NP	0,7

Tabla 4.35: Resumen de Ensayos de Clasificación de Suelos – Calicatas

Notas:

SUCS: Sistema Unificado de Clasificación de Suelos

LL : Límite Líquido

IP : Índice Plástico

CH : Contenido de humedad

NP : No Presenta

Ensayos de compresión triaxial (CU)

Se realizaron ensayos de compresión triaxial consolidados — no drenados (CU) con medición de presión de poros en 2 muestras remoldeadas de superficie con el objetivo de evaluar los parámetros de resistencia al corte de la toba volcánica, de acuerdo con la norma ASTM D-4 767. Los resultados de los ensayos indican un parámetro de resistencia cortante en esfuerzos efectivos de 22 a 45 kPa para la cohesión y entre 35,5° y 38,3° para el ángulo de fricción; en esfuerzos totales la cohesión resulta de 106 a 238 kPa y el ángulo de fricción se encuentra entre 18,7° y 25,2°. Los resultados de los ensayos se muestran en la Tabla 4.36.

También se realizaron 2 de estos ensayos en muestras inalteradas de toba extraída como testigo de perforación de los sondajes en el estribo derecho. Los resultados obtenidos indican parámetros de resistencia cortante mayores a los de las muestras remoldeadas.

T :4-1	Marantar	Profundidad	auca	Esfuerzos Efectivos		Esfuerzos Totales	
Litologia Muestra		(m)	5005	c (kPa)	Ф (°)	c (kPa)	Ф (°)
	TP_CV12-07/ M-1 Remoldeada	0,4 - 1,4	SM	22	35,5	106	18,7
	TP_CV12-14/ M-1 Remoldeada	1,0 - 3,8	SM	45	38,3	238	25,2
Toba	AUS-PC-02 M-1/M-2/M-3 Inalterada	73,05 – 76,65	SM	26	39,7	135	31,5
	AUS-PC-02 M-36/M-39/M- 38 Inalterada	52,38 – 67,84	SM	52	43,4	125	40,0

Tabla 4.36: Resumen	de	Ensayos	de	Com	presión	Triaxial
---------------------	----	---------	----	-----	---------	----------

Notas:

c: cohesión; Ø: Ángulo de fricción.

Ensayos de corte directo a gran escala

Se llevaron a cabo dos ensayos de corte directo a gran escala para evaluar las características de resistencia cortante de los suelos en muestras remoldeadas a una densidad seca de 1.20 y 1,17 g/cm3 y contenidos de humedad inicial de 12,4 y 13,9%, en las muestras TP_CV12-07/M-1 y TP_CV12-16/M-1, respectivamente. Los ensayos de corte directo a gran escala siguieron el procedimiento de la norma ASTM D – 5321. Los parámetros de resistencia cortante se calcularon para un desplazamiento de 2,5 cm y para otro de 7,0 cm, respectivamente, y se resumen en la Tabla 4.37. La mayor resistencia en la muestra TP_CV12-07/M-1 se debería a su mayor densidad inicial respecto a la otra muestra.

		Envolvente de Esfuerzos					
	Prof.	2,5 cm de Despla	zamiento	7 cm de Desplazamiento			
Muestra		Ángulo	i i i i i i i i i i i i i i i i i i i	Ángulo			
	(m)	Cohesión	de	Cohesión	de		
	(111)	(KPa)	Fricción (°)	(KPa)	Fricción (°)		
TP_CV12-07/ M-1	0,4 - 1,4	28	29,6	0	39,2		
TP_CV12-16/ M-1	0,0 - 2,0	57,6	30,1	52,7	27,7		

 Tabla 4.37: Resultados de Ensayos de Corte Directo a Gran Escala

Ensayos químicos

Se llevaron a cabo 6 ensayos químicos en muestras de suelo residual con el objetivo de determinar la potencial agresividad de estos en contacto con las estructuras de concreto armado de la cimentación. Los valores de pH obtenidos varían de 7,8 a 8,5. El contenido de sulfatos obtenido varía entre 133 y 3 764 ppm. La cantidad de cloruros va de <13 hasta 4 287 ppm. El contenido de sales solubles totales varía de 300 a 14 172 ppm y en 2

muestras se cuantificó la cantidad de carbonatos obteniendo 0.0%. Los resultados obtenidos se resumen en la Tabla 4.38. Estos resultados indican que el potencial de ataque químico de estos suelos al concreto va de moderado a severo, por lo que debe evitarse en lo posible utilizar estos materiales como fundación o relleno. En caso sea inevitable el contacto con estructuras de concreto más adelante se dan recomendaciones para mitigar este efecto.

Muestra	Profundidad (m)	pН	SST (ppm)	Cloruros (ppm)	Sulfatos (ppm)	Carbonatos (%)
TP_CV12-02/ M-2	1,40 - 2,00	8,26	2718	731	864	-
TP_CV12-03/ M-1	0,00 - 2,00	-	-	-	-	0,0
TP_CV12-08/ M-1	0,80 - 3,80	8,45	1 530	476	253	-
TP_CV12-12/ M-2	0,50 - 2,00	8,33	14 172	4 287	3 764	-
TP_CV12-14/ M-1	1,00 - 3,80	7,80	3 255	299	1 619	0,0
TP_CV12-17/ M-1	Superficial	8,50	300	<13	133	-

Tabla 4.38: Resumen de Ensayos Químicos de Suelos

Nota:

SST: Sales soluble totales. ppm: partes por millón.

4.2.6.3 Unidades geotécnicas

De acuerdo con los registros del mapeo superficial, calicatas y perforaciones, para la zona del Puente de la Cultura se han definido las siguientes unidades geotécnicas:

- Depósito eólico, cenizas volcánicas, coluviales y antrópico (Unidad Geotécnica I),
- Deposito Aluvial (Unidad Geotécnica II),

- Suelo Residual (Unidad Geotécnica III),
- Basamento Rocoso de Tobas con dureza igual o mayor a R2 (Unidad Geotécnica IV), y
- Basamento Rocoso de Rocas Intrusivas Gnéisicas (Unidad Geotécnica V).

Estas unidades geotécnicas se presentan en el Plano 6 y son descritas a continuación.

4.2.6.3.1 Depósito eólico, cenizas volcánicas, coluviales, y antrópico (Unidad Geotécnica I)

Se presenta de manera restringida en el estribo derecho del puente proyectado, habiendo sido originado por acarreo eólico y acumulación de cenizas volcánicas, con gravas, bolonería y bloques, que en parte han sido removidas durante la construcción de la carretera en este sector. Esta unidad está conformada por arenas limosas de plasticidad nula, que clasifican como SM según el sistema SUCS, de color gris blanquecino a pardo, secas, sueltas, con presencia de gravas aisladas, de formas angulosas a sub angulosas. Más al este se presenta un depósito antrópico conformado por material desbrozado para la construcción de la carretera.

En el estribo izquierdo adyacente a la línea férrea, se presenta también material antrópico generado por el corte de la plataforma de los taladros AUS-PC-07 y AUS-PC-08, conformado por gravas angulosas, con escasa o nula matriz.

4.2.6.3.2 Depósito aluvial (Unidad Geotécnica II)

Unidad registrada durante el mapeo geológico, que se presenta de manera restringida en la margen izquierda del puente proyectado. Esta unidad está conformada por arenas bien gradadas con grava, con finos de plasticidad nula, clasificadas como SW según el sistema SUCS. Estas arenas presentan compacidad suelta, están ligeramente húmedas, de color gris oscuro, con gravas de formas sub angulosas a sub redondeadas, y estructura ligeramente estratificada a homogénea.

4.2.6.3.3 Suelos residuales (Unidad Geotécnica III)

Conformados por horizontes de tobas poco consolidadas, registrados en el tramo inferior de los sondajes AUS-PC-01 y AUS-PC-02, ubicados en el estribo derecho del puente proyectado, con un espesor estimado de 25 m, habiéndose registrado el contacto superior aproximadamente a los 50 m de profundidad, y a los 75 m el contacto con tonalitas gnéisicas. También se ha considerado como suelo residual una capa superior conformada por los últimos eventos del vulcanismo Sencca, y que cubre la penillanura de Arequipa.

Esta unidad está conformada por arenas finas limosas, con finos de plasticidad nula, con gravas de 1 a 2%, arena de 58 a 69%, limo y arcilla de 29 a 41%, que clasifican como SM según el sistema SUCS. Presentan una compacidad medianamente densa a densa, condición húmeda, color marrón, con clastos líticos y de piedra pómez de formas angulosas a sub angulosas.

4.2.6.3.4 Rocas volcánicas, tobas con dureza $\geq R2$ (Unidad Geotécnica IV)

Conformada por toba de grano fino a medio, con fragmentos de piedra pómez y lava de color variado, con tamaños que van de algunos milímetros hasta 1.5" de diámetro. En conjunto presenta color blanquecino, pardo claro y rosado, en los niveles superiores marrón claro a rojizo, por alteración superficial; en bancos gruesos, de aspecto masivo. Poco compacta, débilmente alterada, con dureza R2, poco fracturada, con RQD en general de 70% a 100%. Estas rocas presentan clasificación RMR de roca de calidad regular (entre 40 y 60).

4.2.6.3.5 Rocas intrusivas gnéisicas dureza $\geq R2$ (Unidad Geotécnica V)

Conformada por el basamento rocoso de tonalita gnéisica, de grano grueso a medio, color gris rosáceo y gris oscuro de tono verdoso por probable contaminación con las del grupo gabrodiorita gnéisica, así como por procesos de epidotización y cloritización; en general presenta textura de apariencia foliada a fluidal y en tramos masiva, que indica procesos por metamorfismo. Moderada a débilmente alterada, con durezas R3.5 a R5.5; moderadamente fracturada en los primeros 10 a 15 m, disminuyendo el fracturamiento con la profundidad. El RQD varía entre 20% y 100%, y en pequeños tramos asociados a zonas de falla es de 0%. Estas rocas presentan clasificación RMR como roca de calidad regular a buena (entre 40 y 80). La roca es competente y en general mejora sus propiedades físicas en profundidad.

El basamento rocoso de gabrodiorita gnéisica está conformado por una roca de grano grueso a medio, color gris oscuro a gris verdoso, con procesos de epidotización y cloritización. En general presenta una textura de apariencia foliada a fluidal, que indica procesos de metamorfismo. Se presenta moderada a débilmente alterada, con durezas R3.5 a R5.5, y con un pequeño tramo muy alterado con dureza R2; se encuentra moderadamente fracturada en superficie, mejorando a poco fracturada en profundidad, con pequeños tramos muy fracturados, el RQD varía de 0% a 100%, con pequeños tramos de 0% asociados a zonas de falla. Estas rocas presentan clasificación RMR de calidad regular (de 40 a 60), mejorando a buena (60 a 80) en profundidad. La roca es competente y en general mejora sus propiedades físicas en profundidad.

4.2.6.4 Perfil estratigráfico de los sondajes

En base a las investigaciones de campo, al mapeo geológico-geotécnico de detalle y al registro de las perforaciones realizado en ambos estribos del puente y los pilares

correspondientes, se han identificado dos tipos de rocas distintas por su origen y por sus características geomecánicas: una roca intrusiva gnéisica, dura y competente y otra roca piroclástica, masiva, de dureza baja.

En ambos estribos del puente proyectado fueron realizados un total de 09 sondajes denominados AUS_PC-01 a AUS_PC-8, con diferentes direcciones e inclinaciones de perforación, con el objetivo de cortar las principales familias de fracturas registradas en el levantamiento geomecánico superficial; así como determinar en la medida de lo posible, la relación espacial de las unidades rocosas registradas en superficie.

De acuerdo a los registros de las perforaciones, se observó que los rasgos texturales descritos del basamento rocoso cristalino reflejan un grado de metamorfismo concordante con los resultados del estudio de sección delgada. Es por ello que se agregó el sufijo "gnéisico" a la denominación de las rocas intrusivas gabrodiorita y tonalita.

El perfil estratigráfico interpretado mediante las perforaciones se detalla a continuación y se presenta en los planos 6, 7 y 8 del Anexo F.

4.2.6.4.1 Estribo y pilar derecho

En este sector fueron ejecutadas 4 perforaciones inclinadas denominadas AUS_PC-01 al AUS_PC-04, dos en el estribo, y dos en el pilar de apoyo, respectivamente.

 Estribo Derecho.- Las perforaciones realizadas en esta zona fueron denominadas AUS_PC-01 y AUS_PC-02. El perfil estratigráfico registrado se resume a continuación:

Volcánico Sencca.- Esta unidad estratigráfica de edad Terciario superior es registrada de 0,0 m a 69,0m en AUS_PC-01 en su totalidad; en tanto que en AUS_PC-02 es

registrada de 0,0 a 71,7 m de profundidad, donde entra en contacto con el intrusivo gnéisico.

Entre 0,0 y 54,50m, consiste en tobas riolíticas, dispuestas en bancos masivos e isótropos, poco compactos, dureza R2 a R1 en el tramo inferior. Están compuestas por una matriz de ceniza volcánica constituida por fragmentos de vidrio volcánico, beige clara variando a marrón en profundidad, con fragmentos aislados de pómez vesicular y líticos de hasta 2.0" de tamaño. Se caracteriza por presentar fracturamiento sub vertical siguiendo planos de debilidad asociados a su propiedad isotrópica, característica que deberá tenerse en consideración en el diseño y conformación de taludes de corte definitivos en este material. Entre 54,50 y 71,7m (AUS_PC-02), se han registrado tobas inconsolidadas, clasificadas como arenas limosas, pasando en contacto irregular a tonalitas gnéisicas.

Tonalitas Gnéisicas.- Registrada desde 71,7 m hasta los 78,0m de profundidad en que finaliza la perforación AUS-PC-02. Esta unidad constituida por las rocas cristalinas del basamento rocoso en el estribo derecho del puente, infrayace a las tobas en contacto irregular. Son de composición tonalítica, masiva cristalina, texturalmente los minerales presentan una orientación E-O de aspecto foliado, en parte con marcado alineamiento o flujo, que le dan una textura gnéisica. La roca se presenta de buena calidad geomecánica (valor RMR regular a buena), poco fracturada, poco alterada y de dureza R4,5.

 Pilar de Apoyo.- Las perforaciones realizadas en esta zona fueron denominadas AUS_PC-03 y AUS_PC-04. El perfil estratigráfico registrado se resume a continuación. Gabrodioritas Gnéisicas.- Las perforaciones realizadas registran que esta roca estaría cortando a las tonalitas gnéisicas y se reporta inter-digitada con las tonalitas gnéisicas entre los 5,20 a 9,70m, y luego de 48,80 a 67,30m en el AUS_PC-03; también entre 4,00 y 10,40m, y luego de 12,50 a 17,20 m en el AUS_PC-04. Consiste en una roca color gris oscura, grano grueso a medio, que presenta una orientación de los cristales ferro-magnesianos acentuada en algunos casos con un aspecto foliado, alineada o de flujo, que le da una textura gnéisica. Presenta dureza entre R4,0 a R4,5. Las características de esta roca son similares a las tonalitas gnéisicas, el fracturamiento disminuye en profundidad, en general tiene una valoración RMR regular a buena.

Tonalitas Gnéisicas.- Esta unidad se registra desde la superficie hasta el final de la perforación en 80,00 m y se encuentra inter-digitada con las gabrodioritas gnéisicas. Presenta una orientación de los cristales ferro-magnesianos de aspecto foliado, y en algunos casos un marcado alineamiento o bandeamiento, que le dan una textura gnéisica. Presenta una dureza con valores entre R4,0 a R5,0, fracturada hasta los 13,00 m y disminuyendo el fracturamiento a profundidad, con características geomecánicas similares a la gabrodiorita gnéisica pues el valor RMR de calidad de roca obtenido indica roca buena.

4.2.6.4.2 Estribo y pilar izquierdo

En este sector fueron ejecutados 5 sondajes denominados AUS_PC-05 al AUS_PC-08, 2 en el estribo, y 3 en el pilar de apoyo, respectivamente. El perfil estratigráfico interpretado mediante las perforaciones se detalla a continuación:

• Estribo Izquierdo.- Las perforaciones realizadas en esta zona fueron denominadas AUS_PC-07 y AUS_PC-08.

Gabrodioritas Gnéisicas.- Esta unidad es la única que se atraviesa en ambos sondajes desde la superficie hasta el final de la perforación en 80,0m. En general presenta similares características físicas y texturales a las descritas para esta roca en el estribo derecho, siendo la textura gnéisica más marcada, aunque irregular en profundidad. De acuerdo al logueo de las muestras de perforación presenta una calidad de roca RMR regular hasta los 30 m de profundidad mejorando a RMR buena hasta finalizar el sondaje en 80m. De igual modo en tramos superficiales (hasta los 20,0m) tiene valor de dureza entre R3,0 a R3,5 (roca de dureza media) mejorando en profundidad a dureza R4,5 correspondiente a roca dura. En general esta unidad rocosa está moderada a poco fracturada y poco alterada.

 Pilar Izquierdo.- En este sector se realizaron 3 sondajes denominados AUS_PC-05, AUS_PC-05A y AUS_PC-06. El perfil estratigráfico encontrado mediante las perforaciones se detalla a continuación:

Gabrodioritas Gnéisicas.- De acuerdo al logueo de las muestras de perforación, se encuentra inter-digitada con la roca tonalita gnéisica, variando a un color gris rojizo, donde el bandeamiento es más acentuado. Los tramos de esta roca reportados son de 0,0 a 4,0 m, de 31,65 a 47,0 m y de 62,3 a 70,1 m en el AUS_PC-05A; y en los tramos de 0,0 a 10,50 m y de 52,40 a 66,70 m en el AUS_PC-06. Presentan una calidad de roca RMR regular a buena, poco fracturada y poco alterada, con dureza R4,5 a R5,0 (roca muy dura). Esta unidad presenta las mismas características geomecánicas que las encontradas en las perforaciones de la margen derecha del puente.

Tonalitas Gnéisicas.- De acuerdo al registro de perforaciones se encuentra como inter-digitada con las gabrodioritas gnéisicas en las siguientes tramos; entre 4,00 a 31,65m, de 47,00 a 62,30m y de 70,10 a 80,00m en el AUS_PC-05A; de 10,50 a

52,40m y de 66,70 a 80,00m en el AUS_PC-06. Al igual que las gabrodioritas gnéisicas la estructura de alineamiento de los cristales ferromagnesianos es más acentuada. Las características geomecánicas de la roca son similares a las descritas en el estribo derecho. Tiene una valoración RMR de regular a buena y dureza R4,0 a R4,5.

4.2.6.5 Análisis estereográfico de los sondajes

La información estructural obtenida de los registros del logueo orientado de los taladros geomecánicos y del mapeo geomecánico superficial realizada en la zona del estudio, ha sido utilizada para el análisis estereográfico de las discontinuidades mapeadas. Los datos de buzamiento y dirección de buzamiento fueron analizados usando el software Dips 5.1 de Rocscience.

El análisis estereográfico fue utilizado para definir las principales familias de estructuras encontradas dentro de cada dominio estructural definido por el tipo de litología representativa (gabrodiorita gnéisica, tonalita gnéisica y toba) en cada zona (estribo y pilar), siendo definido el dominio estructural como el volumen del macizo rocoso dentro del cual las propiedades geométricas, mecánicas y físicas de las discontinuidades son similares.

El Anexo C.2 presenta los estereogramas de las familias encontradas para los taladros, y la combinación de la información de taladros y el mapeo superficial en las figuras C.3.1 al C.3.24. Luego se definieron los dominios estructurales como margen izquierda, margen derecha y según el tipo de estructuras a evaluar (estribos y pilares). Los estereogramas que representan las familias principales y secundarias encontradas en estos dominios se muestran en las figuras C.3.25 a C.3.30 del Anexo C.2.

Figura C.3.25 – Familia de estructuras de los taladros AUS-PC-07, AUS-PC-08 y el mapeo estructural de la margen izquierda para la gabrodiorita gnéisica del estribo izquierdo.

Figura C.3.28 – Familia de estructuras de los taladros AUS-PC-03, AUS-PC-04 y el mapeo estructural de la margen derecha para la gabrodiorita gnéisica del pilar derecho.

Figura 4.17: Anàlisis estereográfico de los sondajes

En las Tablas 4.39 al 4.44 se presentan las orientaciones promedio para las familias principales y secundarias halladas en las zonas de estudio para cada estribo y pilar en la margen izquierda y derecha del río Chili.

Tabla 4.39: Familias de Estructuras Principales y Secundarias del Estribo Izquierdo

 Gabrodiorita Gnéisica

	Orientación					
Familia	Dirección de Puzamiente (°)	Buzamiento				
	Dirección de Buzalmento ()	(°)				
P1	352	77				
P2	98	25				
P3	210	68				

	Orientación					
Familia	Dirección de Buzamiento (°)	Buzamiento (°)				
S1	251	66				
S2	155	46				
S3	294	56				
S4	354	26				
S5	47	44				
S6	30	79				

Tabla 4.40: Familias de Estructuras Principales y Secundarias del Pilar Izquierdo -

Gabrodiorita Gnéisica

	Orientación					
Familia	Dirección de Buzamiento (°)	Buzamiento (°)				
P1	19	54				
P2	175	37				
P3	250	49				
S1	301	46				
S2	227	63				
S3	138	89				
S4	83	74				

Tabla 4.41: Familias de Estructuras Principales y Secundarias del Pilar Izquierdo -

Tonalita Gnéisica

	Orientación	
Familia	Dirección de Buzamiento (°)	Buzamiento (°)
P1	24	62
P2	317	38
S1	58	46
S2	282	54
S 3	218	75
<u>S</u> 4	132	69

Tabla 4.42: Familias de Estructuras Principales y Secundarias del Pilar Derecho -

Gabrodiorita Gnéisica

	Orientación	
Familia	Dirección de Buzamiento (°)	Buzamiento (°)
P1	279	58
P2	216	77
P3	32	64
S1	251	61
S2	171	50
S 3	353	38

Tabla 4.43: Familias de Estructuras Principales y Secundarias del Pilar Derecho -

Tonalita Gnéisica

	Orientación	
Familia	Dirección de Buzamiento (°)	Buzamiento (°)
P1	260	61
P2	151	63
P3	28	64
S1	226	58
<u>S</u> 2	202	74

Tabla 4.44: Familias de Estructuras Principales y Secundarias del Estribo Derecho -

Toba

	Orientación	
Familia	Dirección de Buzamiento (°)	Buzamiento (°)
P1	100	84
P2	156	89
P3	214	87
S1	206	8
S2	73	23

Del análisis estereográfico, se ha corroborado que hay un patrón de discontinuidades similar en ambas márgenes del río entre las litologías gabrodiorita gnéisica y tonalita gnéisica. Sin embargo, debido a que es un estudio de cimentaciones localizado y existen algunas diferencias en los estereogramas se decidió sectorizarlo por litología, estructura y por margen. Se concluye del análisis, que hay rumbos definidos en las familias encontradas de la gabrodiorita y tonalita. Un grupo de familias presenta un rumbo similar al del río Chili, mientras que otro grupo presenta un rumbo perpendicular al río Chili. Esto significaría que las familias mapeadas están asociadas con fallas de mayor escala y con el rumbo del río Chili. Los buzamientos de estos grupos de familias presentan mayormente buzamientos elevados, mayores a 60°. En cuanto a las estructuras de la toba volcánica, estas presentan diferentes orientaciones, presentando disyunción columnar, característico de este tipo de roca, con ángulos sub-verticales y también presenta una familia sub-horizontal, particularidad que ofrece una pseudo- estratificación.

En el anexo de Figuras 5 al 29 se muestran algunas características de las discontinuidades como la rugosidad, espesor, forma, condición de juntas, para la ubicación de cada tipo de estructura (pilar, estribo) y para cada litología (gabrodiorita gnéisica, tonalita gnéisica y toba).

4.2.6.6 Clasificación RMR

El sistema de clasificación geomecánica RMR (Bieniawski, 1989) fue utilizado para caracterizar la calidad del macizo rocoso global encontrado en cada sondaje orientado. Los valores básicos del RMR (sin ajustar debido a las orientaciones principales de las familias de las discontinuidades), fueron calculados para cada corrida basada en su valor del RQD, espaciamiento de discontinuidad, condición de junta, dureza, y condición de agua subterránea.

Cada uno de estos parámetros tiene un puntaje según sus características y una vez cuantificados todos los parámetros para cada corrida, se suman para obtener el valor del RMR básico por corrida. Esta clasificación toma en cuenta la condición de la roca intacta, la condición de la discontinuidad y la influencia del agua.

En general, los valores básicos de RMR muestran una calidad del macizo rocoso de regular a buena en todos los materiales encontrados. A continuación, se presenta una descripción de los parámetros que permiten obtener el valor del RMR. La Figura 4.18 presenta la valoración del RMR de los sondajes. Asimismo, el anexo de Figuras presneta a detalle alas propiedades geomecánicas de cada sonadaje.

Figura 4.18: Valoración del RMR en sondajes

RQD y grado de fracturamiento

Los taladros geomecánicos muestran una gran variabilidad en el grado de fracturamiento, de acuerdo a los sondajes realizados en los principales apoyos, 2 en el estribo izquierdo, 3 en el pilar izquierdo, 2 en el pilar derecho y 2 en el estribo derecho, además de 3 taladros verticales realizados para los ensayos dilatométricos. Se observaron principalmente tres litologías, gabrodiorita gnéisica, tonalita gnéisica y toba volcánica. En las dos primeras se encontraron valores de RQD variables que van desde 33% a 81%, disminuyendo el fracturamiento con la profundidad; la toba presenta valores elevados de RQD, por encima de 78%.

Se utilizó el gráfico de correlación entre el RQD y el espaciamiento de discontinuidades, con la finalidad de validar los valores de RQD obtenidos en el logueo geomecánico. Esta correlación es presentada en el anexo de Figuras.

Para la caracterización geomecánica, el RQD fue el parámetro más sensible para distinguir zonas de mayor y menor competencia.

La zona con poco fracturamiento más adecuada para la cimentación se encuentra por debajo de los 5 m de la superficie del terreno para el estribo derecho y debajo de los 15 m para el estribo izquierdo; y por debajo de los 10 a 15 m para los pilares izquierdo y derecho.

Espaciamiento y condición de las discontinuidades

La condición de las discontinuidades ha sido medida bajo los lineamientos del sistema de clasificación geomecánica RMR en la versión de 1989, que considera parámetros como la rugosidad, forma, apertura, relleno, presencia de agua y persistencia de las discontinuidades.

De los logueos geomecánicos en los sondajes se encontraron valores de condición de junta promedio variando aproximadamente entre 15 y 25 para la gabrodiorita y tonalita gnéisica y para la toba volcánica entre 10 y 20.

Condición de agua subterránea

De acuerdo con la evaluación en campo y registro del nivel freático dentro de los sondajes, no se registró nivel freático en los taladros de perforación, sin embargo, de acuerdo a la clasificación de Bieniawski (1989), se consideró conservadoramente una valoración para la condición de la roca húmeda.

Los valores promedio del RMR obtenidos para cada litología y zona son mostrados en la Tabla 4.45, se observa que los valores pertenecen a la Clase III a II, que corresponde a una roca regular a buena. También se puede observar que el dique es el que presenta un mayor valor del RMR.

Zona	Litología	RMR	Descripción
	Gabrodiorita 1	49	Regular
	Gabrodiorita 2	59	Buena
	Tonalita 1	53	Regular
Margan Daracha	Tonalita 2	63	Buena
Margen Derecha	Dique 1	52	Regular
	Dique 2	67	Buena
	Toba 1	51	Regular
	Toba 2	58	Regular
	Gabrodiorita 1	45	Regular
Margan Izquiarda	Gabrodiorita 2	64	Buena
Margen izquierda	Tonalita 1	48	Regular
	Tonalita 2	65	Buena

Tabla 4.45: Clasificación del Macizo Rocoso de Acuerdo al Sistema RMR (19	989)
---	------

4.2.6.7 Estimación del GSI

Para cada material rocoso presente en la zona de estudio se calculó el valor del GSI; este valor se obtuvo de la revisión del mapeo geotécnico y de las perforaciones geomecánicas realizadas. La clasificación del GSI fue introducida por Hoek et al. (1995) y actualizada posteriormente (Hoek et al., 2002). El GSI es un complemento para el criterio de falla de rocas generalizado de Hoek & Brown y permite estimar los parámetros s, a y mb en ese criterio. Este parámetro toma en consideración el fracturamiento del macizo rocoso o el tamaño del bloque promedio de roca intacta y la condición superficial de las discontinuidades.

La Figura 4.11 muestra los valores de GSI obtenidos según la litología encontrándose un puntaje similar entre las litologías gabrodiorita y tonalita gnéisica. Se observa que el GSI estimado a partir del mapeo superficial y de los registros de perforaciones varía entre 50 y 83 con los menores valores cerca a la superficie por el mayor fracturamiento, mejorando en profundidad tanto en la gabrodiorita y tonalita gnéisica. Para la toba se estimaron valores de GSI de 52 a 72. Se comprobó que la correlación entre el RMR (1989) y el GSI de Hoek (1995), se ajusta razonablemente para cada tipo de litología.

Propiedades del macizo rocoso

Las propiedades del macizo rocoso fueron definidas utilizando información de campo y ensayos de laboratorio realizados en muestras representativas de roca intacta de las áreas de fundación. La descripción de los parámetros de resistencia del macizo rocoso es mostrada a continuación.

<u>Parámetros de resistencia cortante del macizo rocoso</u>

Los parámetros de resistencia de la roca intacta se combinaron con la información del macizo rocoso para obtener los parámetros de resistencia de este último.

Antes de calcular los parámetros de resistencia del macizo rocoso, para cada tipo de litología se determinó un valor de GSI y este se utilizó como dato de entrada en la estimación de la curva de resistencia del macizo rocoso. Las características estructurales promedio se estimaron a partir del mapeo en cada estación y de los logueos geomecánicos orientados.

Para determinar las curvas de resistencia del macizo rocoso se utilizó el programa RocData y el criterio de falla de Hoek & Brown extendido al macizo rocoso. Los casos de estabilidad gobernada por las estructuras en donde prevalece un criterio de falla para las discontinuidades de la roca se analizaron por separado. En la Tabla 4.46 se presentan los principales datos de entrada, así como los parámetros del criterio de Hoek & Brown para cada tipo de material. Se asumió un valor del factor de disturbancia de 1 para la gabrodiorita gnéisica y la tonalita gnéisica debido a que será necesaria voladura para dichos materiales, para la toba se asumió un factor de disturbancia de 0,2 debido a que en este caso sería necesario utilizar solo excavación con maquinaria pesada.

El valor del mi se obtuvo de los resultados de los ensayos triaxiales a diferentes esfuerzos de confinamiento, estos niveles de confinamiento fueron de 0,5, 1,0 y 2,0 MPa. Se observó una diferencia entre los valores del mi para la gabrodiorita y tonalita gnéisica de las márgenes izquierda y derecha, siendo los valores de la margen izquierda muy cercanos a los que recomienda la base de datos del software Rocdata para ese tipo de roca. Esta diferencia se asocia posiblemente al dique que se encuentra en la margen

derecha y que podría haber ocasionado una mayor alteración de la gabrodiorita y tonalita gnéisica en dichos materiales.

Zona	Litología	Parámetros Hoek & Brown						Parámetros Mohr- Coulomb		
		σc (MPa)	GSI	mi	D	Mb	S	a	c (MPa)	ø
	Gabrodiorita 1	175	54	28	1	1,048	0,0005	0,504	1,24	48,8
Margen	Gabrodiorita 2	175	70	28	1	3,285	0,0067	0,501	2,27	57,1
Izquierda	Tonalita 1	178	54	28	1	1,048	0,0005	0,504	1,25	49,0
	Tonalita 2	178	70	28	1	3,285	0,0067	0,501	2,30	57,2
	Gabrodiorita 1	129	52	19	1	0,616	0,0003	0,505	0,96	41,8
	Gabrodiorita 2	129	72	19	1	2,571	0,0094	0,501	2,14	52,8
	Tonalita 1	133	52	20	1	0,649	0,0003	0,505	0,98	42,5
Margen	Tonalita 2	133	72	20	1	2,707	0,0094	0,501	2,17	53,4
Derecha	Dique 1	146	57	29	1	1,34	0,0008	0,504	1,28	49,4
	Dique 2	146	73	29	1	4,22	0,0010	0,500	2,37	57,5
	Toba 1	14	55	10	0,2	1,68	0,0047	0,504	0,64	31,8
	Toba 2	14	70	10	0,2	3,04	0,0300	0,500	0,87	36,6

Tabla 4.46: Parámetros de Resistencia del Macizo Rocoso

• <u>Propiedades de suelos</u>

En general, las estructuras de cimentación del puente se han estimado sobre el macizo rocoso, pero es necesario describir algunas características de los suelos encontrados en la zona de estudio. Los suelos que se encuentran en la parte superficial de la zona de estudio en general son suelos sueltos, con bajos parámetros de resistencia para ser usados como suelos de cimentación, se recomienda que su uso sea restringido a zonas de relleno no estructural.

• <u>Características de permeabilidad</u>

Se dispone de datos derivados de pruebas de permeabilidad en el área del estudio, medidos en la parte superior de las perforaciones con la finalidad de medir las condiciones de inyectabilidad, de ser estas necesarias.

En general, la permeabilidad medida en los taladros muestra una disminución con la profundidad. La media geométrica de la permeabilidad para la gabrodiorita gnéisica es de 4,15x10-4 cm/s, con un rango de magnitud entre 7,19x10-5 y 4,08x10-3 cm/s y para la tonalita gnéisica el valor de la media geométrica es de 6,73x10-5 cm/s, con un rango de magnitud entre 4,26x10-5 y 1,09x10-4 cm/s. En la toba volcánica no fue posible realizar ensayos de permeabilidad Lugeon o Lefranc debido al rápido descenso del nivel de agua observado en los sondajes de este sector, debido a la elevada porosidad de esta.

• Condiciones de agua subterránea

Durante las perforaciones, las cuales llegaron a una profundidad de aproximadamente 80.0 m en la dirección vertical, no se ha registrado presencia del nivel freático. Aún cuando el área presenta un clima seco y árido, existen eventos significativos de lluvias ocasionales que pueden generar recarga en el acuífero profundo.

4.2.7 Análisis geotécnico

4.2.7.1 Profundidad y tipo de la cimentación

Los análisis de cimentación superficial fueron realizados para las estructuras de apoyo de la Alternativa 1 (Puente en Arco) y Alternativa 2 (Puente de Voladizos Sucesivos) propuestos para el Puente de la Cultura.

Alternativa 1: Puente en Arco. Esta alternativa comprende la construcción de dos estribos y siete (07) pilares distribuidos a lo largo del tablero del puente. El puente propuesto

consta de dos arcos de concreto auto-anclados con vigas transversales conectando las costillas de los arcos.

Alternativa 2: Puente de Voladizos Sucesivos. Esta alternativa comprende la construcción de dos estribos y dos (02) pilares. La subestructura del puente está compuesta por pilares de columnas gemelas de concreto soportadas en zapatas de concreto armado. Los estribos también están soportados por zapatas de concreto y comprenden muros aleros integrados y losas de aproximación.

Para el análisis de la cimentación se han considerado profundidades de cimentación de 5 y 10 m para los estribos, mientras que para los pilares del puente se han considerado profundidades de cimentación de 10 y 15 m. Para el caso del estribo derecho, la toba volcánica tiene una calidad similar entre los 5 y 10 m, y al recibir solicitaciones de carga menores que los apoyos centrales se ha estimado que estas profundidades serían adecuadas como nivel de cimentación. En el caso de los pilares centrales la profundidad de 10 m corresponde a roca intrusiva competente pero fracturada, que podría requerir algún tratamiento de inyección, mientras que la mayor profundidad corresponde a roca poco fracturada hasta los 12 o 13m, disminuyendo su fracturamiento a esas profundidades, sin embargo, tratándose de un estribo con menor solicitación de carga que los apoyos centrales se han considerado profundidades de 5 a 10m con posible requerimiento de inyección. La Figura 32 permite visualizar y comparar la calidad del macizo rocoso en términos del valor RMR en todos los taladros realizados.

A continuación, la Tabla 4.47 presenta las dimensiones preliminares de cada una de las estructuras de apoyo del puente en términos de la alternativa propuesta, así como las cargas estimadas a partir de la información proporcionada por *Buckland & Taylor (2013)*.

Tabla 4.47: Cargas y Dimensiones Preliminares de la Cimentación, Buckland &

Taylor

Alternativa	Margen/ Estructura	B	L (m)	Carga Máxima (MPa)	
		(111)	21.4	(I VII a)	
	Izquierdo/Estribo	0	21,4	0,15	
Alternativa 1		6	21,4	,	
memativa 1.	Izquierdo/Pilar	12	24	0.50	
	Principal	12	24	0,50	
	Derecho/Pilar	12	24	0.50	
Puente en	Principal	12	24	0,50	
Arco	Danacha/Estrika	6	21,4	0.15	
	Derecno/Estribo	6	21,4		
	Izaniardo/Estribo	4,5	21,4	0,15	
Altomative 2.	izquieido/Estilbo	4,5	21,4		
Alternativa 2:	Izquierdo/Pilar	20	32	0.04	
	Principal	20	32	0,94	
	Derecho/Pilar	20	32	0.47	
Puente de	Principal	20	32	0,47	
v oladizos	Danacha/Eatrika	8	21,4	0.00	
Sucesivos	Derecho/Estribo	8	21,4	0,09	

Notas:

B: Ancho de la cimentación.

L: Largo de la cimentación.

4.2.8 Condiciones de Cimentación para los Estribos y Pilares del Puente

Las condiciones de cimentación fueron determinadas tomando como base las secciones geológicas-geotécnicas elaboradas para el presente estudio; las profundidades de cimentación propuestas para los estribos y pilares del puente se indican en la Tabla 4.48. Asimismo, se determinó la pendiente del terreno en las proximidades de la cimentación de la subestructura del puente con el objetivo de considerar su influencia en los análisis de cimentación pertinentes.

La Tabla 4.48 muestra las condiciones de cimentación identificadas para cada estructura de apoyo del Puente de la Cultura.

Alternativa	Margen/ Estructura	Profundidad de Cimentación (m)	Material de Fundación
	Izquierdo/Estribo		Gabrodiorita 1
Alternativa 1:	izquierdo/Estribo	10	Gabrodiorita 1
	Izquiardo/Dilor Drinoinol	10	Gabrodiorita 1
	izquierdo/Pitar Principal	15	Gabrodiorita 2
	Darasho/Dilar Drinsingl	10	Tonalita 1
Puente en Arco	Derecho/Phar Philopai	15	Tonalita 2
	Danasha/Estrika	5	Toba 2
	Derecho/Estribo	10	Toba 2
	Izaviardo/Estribo	5	Gabrodiorita 1
Altomative 2.	izquieruo/Esuitoo	10	Gabrodiorita 1
Alternativa 2.	Izquiardo/Dilor Drinoinol	10	Gabrodiorita 1
	izquieruo/ritai riticipai	15	Gabrodiorita 2
Describe	Danasha/Dilan Drinsingl	10	Tonalita 1
Puente de	Derecho/Phar Principal	15	Tonalita 2
v oradizos	Daraaho/Estriho	5	Toba 2
Sucesivos	Derecho/Estribo	10	Toba 2

Tabla 4.48: Condiciones de cimentación

4.2.9 Capacidad portante de la cimentación

4.2.9.1 Capacidad portante en roca

La capacidad portante de las estructuras cimentadas sobre roca es dependiente del espaciamiento de las juntas con respecto al ancho de la cimentación, la orientación de las juntas, condición de las juntas (abierta o cerrada) y del tipo de roca. Los diferentes tipos de fallas posibles en la cimentación han sido presentados por diversos autores como Sowers (1979), Goodman (1980) y USACE (1994).

En el Anexo E se presenta el análisis de capacidad de carga por el método de Serrano y Olalla (2001). La Tabla 4.49 mostrada a continuación resume los valores de capacidad de carga admisible en roca reportados de los análisis realizados por cada método, comparados con las máximas cargas estimadas actuantes Qact para ambas alternativas del puente.

Alternativa	Margen/ Estructura	Material de Fundación	B (m)	L (m)	qadm1 (MPa)	qadm2 (MPa)	qadm3 (MPa)	Qact (MPa)
		Gabrodiorita 1	6	21,4	1,94	1,12	0,27	0.15
Alternativa	Izquierdo/Estribo	Gabrodiorita 1	6	21,4	1,94	1,12	0,27	0,15
1:	Izaniordo/Dilor 3	Gabrodiorita 1	12	24	3,73	1,12	0,30	0.50
	izquieido/r liai 3	Gabrodiorita 2	12	24	12,61	17,20	0,77	0,50
	Danaaha/Dilan 4	Tonalita 1	12	24	1,66	0,71	0,18	0.50
Puente en	Derecho/Pilar 4	Tonalita 2	12	24	7,12	11,21	0,59	0,50
Arco	Derecho/Estribo	Toba 1	12	24	0,22	2,03	0,34	0.15
		Toba 2	4,5	21,4	0,22	2,03	0,37	0.15
	Izquierdo/Estribo	Gabrodiorita 1	4,5	21,4	1,48	1,11	0,41	0.15
Alternativa		Gabrodiorita 1	4,5	21,4	1,48	1,11	0,43	0,15
2:	Izaviordo/Dilor 1	Gabrodiorita 1	20	32	6,11	1,12	0,30	0.04
	izquierdo/ritar i	Gabrodiorita 2	20	32	13,27	13,27	0,75	0,94
Puente de	Derecho/Dilor 2	Tonalita 1	20	32	2,73	0,71	0,18	0.47
	Defectio/Pliar 2	Tonalita 2	20	32	11,68	11,23	0,65	0,47
voiauizos	Danacha /Eatrika	Toba 1	8	21,4	0,28	2,03	0,36	0.00
Succivos	Derecho/Estribo	Toba 2	8	21,4	0,28	2,03	0,37	0,09

Tabla 4.49:	Resumen de	Capacidad	de Carga A	dmisible – Roc	a
			1 2		

Notas:

B: Ancho de la cimentación.

L: Largo de la cimentación.

 $qadm1q_{adm}$: Capacidad de carga admisible – USACE

 $qadm2q_{adm}$: Capacidad de carga admisible – Bowles.

qadm3q_{adm}: Capacidad de carga admisible – Serrano y Olalla

De acuerdo con los resultados de la Tabla 4.50, se observa que los valores de capacidad de carga obtenidos de la fórmula de Serrano y Olalla son bastante más bajos que los métodos de USACE y Bowles, debido a que este método considera el efecto de la cercanía del talud a la zapata, y la disturbancia del macizo rocoso por la voladura. Sin embargo, el efecto del talud es analizado en este estudio separadamente bajo un criterio de estabilidad cinemática de taludes. Por lo tanto, en la definición de la capacidad de carga admisible solo se utilizarán los métodos de USACE y Bowles, considerándose que los valores obtenidos por el método de Serrano y Olalla son muy conservadores. En general, los valores de capacidad de carga admisible estimados superan las cargas actuantes en cada apoyo del puente, salvo algunas excepciones por el método de Serrano y Olalla.

Para la alternativa 1 se observa que la capacidad de carga admisible en el estribo izquierdo es de 1,1 a 1,9 MPa entre 5 y 10 m de profundidad de cimentación, en la gabrodiorita. En el pilar izquierdo la capacidad de carga admisible es de 1,2 a 3,7 MPa a los 10 m de profundidad de cimentación, y se incrementa de 12,6 a 17,2 MPa a los 15m, también en gabrodiorita. En el pilar de la margen derecha la capacidad de carga admisible es de 0,7 a 1,7 MPa a los 10 m, y se incrementa de 11,2 a 11,7 MPa a los 15 m, en la tonalita. En contraste con los valores mostrados para los materiales intrusivos, la toba para el estribo derecho presenta una capacidad de carga en el orden de 0,2 a 2,0 MPa a profundidades de 5 a 10 m.

Para la alternativa 2 se observa que la capacidad de carga admisible en el estribo izquierdo es de 1,1 a 1,5 MPa entre 5 y 10 m de profundidad de cimentación, en la gabrodiorita. En el pilar izquierdo la capacidad de carga admisible es de 1,1 a 6,1 MPa a los 10 m de profundidad de cimentación, y se incrementa a 13,3 MPa a los 15 m, también en gabrodiorita. En el pilar de la margen derecha la capacidad de carga admisible es de 0,7 a 2,7 MPa a los 10 m, y se incrementa de 7,1 a 11,2 MPa a los 15 m, en la tonalita. En contraste con los valores mostrados para los materiales intrusivos, la toba para el estribo derecho presenta una capacidad de carga en el orden de 0,3 a 2,0 MPa a profundidades de 5 a 10 m.

4.2.9.2 Análisis de asentamientos

Para estimar la magnitud de los asentamientos totales y diferenciales en la cimentación del puente, se realizó un análisis de asentamientos elásticos que tomen en cuenta las cargas aplicadas por la superestructura, las dimensiones de la cimentación proyectada, y los parámetros elásticos de la roca al nivel de la cimentación.

El análisis de asentamientos elásticos se sustenta en considerar al macizo rocoso como un semi espacio elástico, isotrópico y homogéneo. De este modo, se utilizan formulaciones como la sugerida por USACE (Rock Foundations, 1994) para cimentaciones flexibles.

En la Tabla 4.50 se presenta el resultado de los análisis de asentamientos elásticos calculados para cimentaciones rígidas. Se observa que todos los asentamientos cumplen con el valor del asentamiento máximo permisible asumido de 2,5 cm. Sin embargo, el diseñador estructural del puente deberá confirmar si los asentamientos predichos son aceptables para la estructura.

Alternativa	Margen/ Estructura	Material de Fundación	B (m)	L (m)	E (GPa)	u	Qact (MPa)	Sc (mm)
Alternativa 1:	Izquierdo/ Estribo	Gabrodiorita 1	6	21,4	7,0	0,38	0,15	0,2

 Tabla 4.50:
 Resumen de Análisis de Asentamientos Elásticos

Alternativa	Margen/ Estructura	Material de Fundación	B (m)	L (m)	E (GPa)	u	Qact (MPa)	Sc (mm)
		Gabrodiorita 1	6	21,4	7,0	0,38		0,2
	Izquierdo/ Pilar	Gabrodiorita 1	12	24,0	7,0	0,38	0.50	0,9
	Principal	Gabrodiorita 2	12	24,0	13,2	0,38	0,50	0,5
Duanta an	Derecho/	Tonalita 1	12	24,0	15,6	0,36		0,4
Puente en ArcoPilarPrincipal	Pilar Principal	Tonalita 2	12	24,0	23,2	0,36	0,50	0,3
	Derecho/	Toba 2	6	21,4	2,4	0,40	0.15	0,6
	Estribo	Toba 2	6	21,4	2,4	0,40	0.15	0,6
Izquierdo/ Estribo Alternativa	Izquierdo/	Gabrodiorita 1	4,5	21,4	7,0	0,38	0.15	0,2
	Estribo	Gabrodiorita 1	4,5	21,4	7,0	0,38	0,15	0,2
2:	Izquierdo/ Pilar	Gabrodiorita 1	20	32,0	7,0	0,38	0.94	2,6
	Principal	Gabrodiorita 2	20	32,0	13,2	0,38	0,94	1,4
	Derecho/	Tonalita 1	20	32,0	15,6	0,36		0,6
Puente de Voladizos	Pilar Principal	Tonalita 2	20	32,0	23,2	0,36	0,47	0,4
Sucesivos	Derecho/	Toba 2	8	21,4	2,4	0,40	0.00	0,4
	Estribo	Toba 2	8	21,4	2,4	0,40	0,09	0,4

Notas:

B: Ancho de la cimentación.

Scq_{adm}: Asentamiento elástico total

De la información mostrada en Tabla 4.50, se observa que para la Alternativa 1, Puente en Arco el asentamiento máximo en el estribo izquierdo es de 0,2 mm, y en el pilar izquierdo dicho asentamiento es de 0,9 mm. Los asentamientos en el pilar y estribo derecho son de 0,4 y 0,6 mm, respectivamente. De esto podemos deducir que los asentamientos diferenciales en cada uno de los tramos del puente estarían en el rango de 0,7 mm (en los 100 m) para el tablero o sector izquierdo del puente, 0,5 mm (en los 200 m) para la zona central del puente y de 0,2 mm (en los 100 m) para el tablero de la zona derecha del puente. Por lo tanto, la máxima distorsión angular ocurre entre el estribo y pilar izquierdo y es de 7,0 x 10-5. Esto cumple con el límite máximo permisible de distorsión angular (4,0 x 10-3) que recomienda la norma AASHTO para puentes.

Para la Alternativa 2, Puente con Voladizos Sucesivos, la máxima distorsión angular también ocurre entre el estribo y pilar izquierdo, y es de 2,4 x 10-5.

4.2.10 Análisis de estabilidad de taludes

4.2.10.1 Análisis cinemático

Una vez definidas las principales familias de discontinuidades dentro de cada dominio estructural, éstas fueron utilizadas para realizar el análisis cinemático y evaluar el potencial de ocurrencia de falla planar, en cuña y vuelco, en las principales direcciones de los taludes de corte, y en los taludes adyacentes a las plataformas de cimentación, que podrían tener algún impacto en la construcción de la cimentación del puente.

El análisis cinemático consiste en evaluar la posibilidad de ocurrencia de fallas locales del talud a través de las discontinuidades existentes, debido a las excavaciones que serán realizadas para la cimentación del puente. Este análisis se realizó para las 4 direcciones de los taludes resultantes de la excavación de los pilares. Es decir, como parte del análisis se tomaron las direcciones de los cuatro lados de las excavaciones a ser realizadas para la cimentación. La Tabla 4.51 muestra dichas direcciones y la inclinación del talud inicialmente propuesta.

Talud	Dirección de Buzamiento del Talud	Inclinación del Talud
1T	N46°	75°
2T	N136°	75°
3Т	N226°	75°

Tabla 4.51:	Dirección de	Excavación de	Taludes	para Pilares	y Estribos
--------------------	--------------	---------------	---------	--------------	------------

Talud	Dirección de Buzamiento del Talud	Inclinación del Talud
4T	N316°	75°

En el análisis cinemático se evaluó la ocurrencia de fallas del tipo planar, cuña y vuelco para ambas márgenes del río Chili. En la margen izquierda el estribo y el pilar del puente están localizados sobre la gabrodiorita. En la margen derecha el pilar se encuentra sobre la tonalita y el estribo se encuentra sobre la toba volcánica. Para cada caso, se realizó el análisis cinemático tomando en consideración las familias principales identificadas en el análisis estereográfico.

En función de la orientación del talud y de la posición de los polos de las familias o de la intersección de los planos respecto a zonas críticas establecidas en el análisis cinemático, se definieron zonas de bajo, moderado y alto riesgo de ocurrencia de estas fallas.

En todos los casos de análisis se utilizó un ángulo de inclinación propuesto del talud de corte de 75° debido a que la roca es de buena resistencia, y adicionalmente en la zona de pilares un talud de corte de 55° promedio debido al talud natural expuesto hacia el río Chili. En las discontinuidades de la gabrodiorita y la tonalita gnéisica se utilizó un ángulo de fricción de las discontinuidades de 31° y en las discontinuidades de la toba volcánica se utilizó un ángulo de fricción de 30°, como valor promedio basado en los ensayos de corte directo en las discontinuidades naturales o simuladas de las tres litologías.

<u>Falla planar</u>

Para las fallas planares se utilizaron 1 a 2 desviaciones estándar de 5 a 10 grados para determinar el radio de influencia de cada polo, en función de la importancia de cada familia de discontinuidades. Luego, los polos de las orientaciones promedio de cada familia de juntas se compararon con su posición relativa a la "envolvente de exposición" de cada cara de banco analizada.

<u>Falla en cuña</u>

Para el análisis de fallas en cuña se definió una desviación de 5 a 10 grados alrededor de la intersección de familias definiendo una cuña. Este punto de intersección fue comparado con su ubicación relativa al "círculo del ángulo de fricción".

El riesgo de ocurrencia de falla planar o tipo cuña fue calificado con un puntaje en función de la posibilidad de pérdida de la cresta del talud. Estas posibilidades se definieron como baja, moderada, alta y muy alta, dependiendo del puntaje alcanzado.

Falla por volteo

Este análisis permite evaluar el potencial de riesgo que existe cuando las estructuras presentan rumbos sub-paralelos a la superficie del talud y presentan grandes buzamientos. Este análisis solo se realizó en la toba por la presencia de familias casi verticales. Para las fallas por volteo se utilizaron 1 a 2 desviaciones estándar de 5 a 10 grados para determinar el radio de influencia de cada polo. Luego los polos de las orientaciones promedio de cada familia se compararon con la zona de riesgo de volteo de cada talud analizado.

Los resultados del análisis se muestran en la Tabla 4.52. Para este análisis se utilizó la información proveniente del análisis estereográfico y se consideró las posibles fallas producto de la intersección de familias principales y/o secundarias. Los gráficos del análisis son presentados en el Anexo C.3.

Ubicación	Litología	Dirección de Buzamiento del Talud (°)	Inclinación del Talud (°)	Tipo de Falla	Riesgo
		16	75	Planar	Bajo
		40	/5	Cuña	Bajo
		126	75	Planar	Bajo
Estribo	Cabradiarita	130	75	Cuña	Bajo
Izquierdo	Gabrodiorita	226	75	Planar	Moderado
		220	75	Cuña	Bajo
		216	75	Planar	Bajo
		310	/5	Cuña	Moderado
			75	Planar	Moderado
		16	15	Cuña	Moderado
		40	55	Planar	Moderado
			55	Cuña	Bajo
			75	Planar	Moderado
		126	75	Cuña	Bajo
		150	55	Planar	Moderado
	Cobrodiorito		55	Cuña	Bajo
	Gabroulonia		75	Planar	Alto
		226	75	Cuña	Moderado
		220	55	Planar	Alto
			55	Cuña	Moderado
		316	75	Planar	Moderado
			15	Cuña	Moderado
			55	Planar	Bajo
Pilar			55	Cuña	Moderado
Izquierdo			75	Planar	Alto
		46	15	Cuña	Bajo
		40	55	Planar	Moderado
			55	Cuña	Bajo
			75	Planar	Bajo
		136	15	Cuña	Bajo
		150	55	Planar	Nulo
	Tonalita		55	Cuña	Nulo
	Tonuntu		75	Planar	Bajo
		226	, .	Cuña	Bajo
		0	55	Planar	Nulo
			55	Cuña	Nulo
			75	Planar	Alto
		316	, 0	Cuña	Alto
		510	55	Planar	Alto
			55	Cuña	Alto

Tabla 4.52: Resumen del Análisis Cinemático	para la Excavación en Pilares	y Estribos
---	-------------------------------	------------

Ubicación	Litología	Dirección de Buzamiento del Talud (°)	Inclinación del Talud (°)	Tipo de Falla	Riesgo
			75	Planar	Moderado
		10	/5	Cuña	Bajo
		40	55	Planar	Bajo
			55	Cuña	Nulo
			75	Planar	Bajo
		136	75	Cuña	Bajo
		150	55	Planar	Bajo
	Gabrodiorita		55	Cuña	Bajo
	Gabroulonia		75	Planar	Alto
		226	15	Cuña	Moderado
		220	55	Planar	Bajo
			55	Cuña	Bajo
Pilar Derecho		316	75	Planar	Moderado
			15	Cuña	Alto
		510	55	Planar	Bajo
				Cuña	Alto
			75	Planar	Moderado
		46	, c	Cuña	Moderado
			55	Planar	Nulo
				Cuña	Moderado
		136	75	Planar	Moderado
				Cuña	Moderado
			55	Planar	Bajo
	Tonalita			Cuna	Bajo
			75	Planar	Moderado
		226		Cuna	Alto
			55	Planar	Moderado
				Cuna	Moderado
			75	Planar	Moderado
		316		Dlanar	Nulo
			55	Flallal	Moderado
				Dlanar	Nulo
		16	75	F Iallai Cuña	Nulo
		40	15	Volteo	Moderado
				Planar	Baio
Fstribo		136	75		Nulo
Derecho	Tufo	150	15	Volteo	Moderado
Derectio				Planar	Nulo
		226	75		Nulo
		220	15	Volteo	Moderado
		316	75	Planar	Nulo
		510	15	i iuliui	1 1010

Ubicación	Litología	Dirección de Buzamiento del Talud (°)	Inclinación del Talud (°)	Tipo de Falla	Riesgo
				Cuña	Nulo
				Volteo	Moderado

El estribo y pilar de la margen izquierda se prevé que se apoyen sobre gabrodiorita; del resumen se aprecia que la orientación de buzamiento del talud de 226° presenta un riesgo alto para el pilar izquierdo, por lo que se recomienda en esa zona excavar un talud hasta un máximo de 60 grados para que disminuya el potencial de falla planar por la familia P2 en dicha cara, o explanar ese lado de la plataforma como se indica en los esquemas del anexo de Figuras.

El pilar de la margen derecha se encuentra apoyado sobre la tonalita, por lo que se realizó el análisis considerando las familias definidas para esta litología. Para disminuir considerablemente el riesgo de falla planar en estas orientaciones se debe realizar un corte de talud de 60° de inclinación máxima.

El estribo de la margen derecha se encuentra apoyado sobre el tufo volcánico. Debido a que presenta familias sub-verticales se analizó también el modo de falla por vuelco. Se observó que para las orientaciones de 46°, 136° y 316° existe un riesgo bajo de falla por volteo. No se encontró riesgo de falla planar y cuña para el estribo de la margen derecha sobre tufo.

Las Tablas 4.53 y 4.54 resumen los análisis de equilibrio límite para los casos de alto potencial de falla planar y en cuña determinados en el análisis cinemático, para las alternativas de puente en arco y de voladizos sucesivos, respectivamente. Estas tablas también describen las recomendaciones que deben seguirse para mejorar las condiciones

de estabilidad del talud. Se calcularon los valores del factor de seguridad sin refuerzo y con refuerzo. En todos los casos se obtuvieron valores del factor de seguridad por debajo de 1,0 sin refuerzo, por lo que los taludes fueron reforzados con anclajes para estabilizar el bloque hasta obtener un valor del F.S. mayor a 1,1 en condiciones pseudo-estáticas. Los análisis realizados se presentan en el Anexo C.3.

Tabla 4.53: Resumen del Análisis de Fallas en los Taludes de Corte en Pilares –Puente en Arco

Zona Litología		Dirección de Buzamie nto del Talud	Inclinaci ón del Talud	Tipo de Falla	Famili as Critic	Potenci al de	F.S.	F.S.	Recomendac
		(°)	(°)	Proba ble	as	Falla	Pseud o- estátic o	con Ancla je	
Pilar Izquier Tonalita do		46	75	Plana	S1	Alto	0,45	1,36	Usar 5 pernos de anclaje de 6 m de longitud espaciados a 1.5 m.
	Tonalita	46	75	Plana	P1	Alto	0,20	1,36	Usar 3 pernos de anclaje de 6 m de longitud espaciados a cada 1,5 m.
		316	75	Plana	P2	Alto	0,62	1,33	Cambiar el ángulo de corte del talud a 1/1 H/V. Usar 3 pernos de anclaje de 6 m de longitud espaciados cada 1,5 m.

Zona	Litología	Dirección de In Buzamie ó nto del 7 Talud	Inclinaci ón del Talud	Tipo de Falla	Famili as Critic	Potenci al de	F.S.	F.S.	Recomendac
		(°)	(°)	Proba ble	as	Falla	Pseud o- estátic o	con Ancla je	1011
		316	75	Cuña	P1/P2	Alto	0,5	2,4	Cambiar el ángulo de corte del talud a 1/1 H/V. Usar 1 perno de anclaje de 6 m de longitud espaciado a cada 1,5 m.
Pilar Derech o		226	75	Plana	S1	Alto	0,21	1,22	Usar 3 pernos de anclaje de 6 m de longitud espaciados a cada 1,5 m.
	Gabrodior ita	316	75	Plana	P1	Alto	0,26	1,52	Usar 4 pernos de anclaje de 6 m de longitud espaciados a 1,5 m.
	114	316	75	Cuña	P1/P3	Alto	0,57	1,22	Cambiar el ángulo de corte del talud a 1/2 H/V y usar 6 pernos de anclaje de 6 m de longitud espaciados a cada 1,5 m.

Zona	Litología	DirecciónInclinacideInclinaciBuzamieón delTto delTaludTaludFalud	Tipo de Falla	Po Famili as la	Potenci al de	F.S.	F.S.	Recomendac	
		(°)	(°)	Proba ble	as	Falla	Pseud o- estátic o	con Ancla je	1011
	Tonalita	226	75	Plana	S1	Alto	0,26	1,57	Usar 4 pernos de anclaje de 6 m de longitud espaciados a cada 1,5 m. O cambiar el ángulo de corte del talud a 1/2 H/V y usar 2 pernos de anclaje de 6 m espaciados a 1,5 m.
		226	75	Cuña	P1/P2	Alto	1,33		Usar shotcrete en los 8 primeros metros del corte

Tabla 4.54: Resumen del Análisis de Fallas en los Taludes de Corte en Pilares – Puentede Voladizos Sucesivos

Zona	Litología	Dirección de Buzamient o del Talud (°)	Inclinació n del Talud (°)	Tipo de Falla Probabl e	Familia s Critica s	Potencia l de Falla	F.S. Pseudo - estático	F.S. con Anclaj e	Recomendació n
Pilar Izquierdo	Tonalita	46	75	Plana	P1	Alto	0,20	1,36	Usar 3 pernos de anclaje de 6 m de longitud espaciados a cada 1,5 m

Zona	Litología	Dirección de Buzamient o del Talud (°)	Inclinació n del Talud (°)	Tipo de Falla Probabl e	Familia s Critica s	Potencia l de Falla	F.S. Pseudo - estático	F.S. con Anclaj e	Recomendació n
		316	75	Plana	Р2	Alto	0,62	1,33	Cambiar el ángulo de corte del talud a 1/1 H/V y hacer uso de 3 pernos de anclaje de 6 m de longitud, espaciados a cada 1,5 m.
		316	75	Cuña	P1/P2	Alto	0,5	2.4	Cambiar el ángulo de corte del talud a 1/1 H/V. Usar pernos de anclaje de 6 m espaciados a 1,5 m.
Pilar Derecho		226	75	Plana	S 1	Alto	0,21	1,22	Usar 3 pernos de anclaje de 6 m de longitud espaciados a cada 1,5 m.
	Gabrodio	316	75	Plana	P1	Alto	0,26	1,52	Usar 4 pernos de anclaje de 6 m de longitud espaciados a cada 1,5 m.
	rita	316	75	Cuña	P1/P3	Alto	0,57	1,22	Cambiar el ángulo de corte del talud a 1/2 H/V. Usar 6 pernos de anclaje de 6 m de longitud espaciados a cada 1,5 m.
	Tonalita	226	75	Plana	S1	Alto	0,26	1,58	Usar 4 pernos de anclaje de 6 m de longitud espaciados a cada 1,5 m.

Los análisis han considerado distribuciones de pernos de roca de 32 mm de diámetro fijados con lechada de cemento, con una longitud de anclaje mínima de 6,0 a 8,0 m, y una fuerza promedio de 10 t/m en cada perno de roca. En los casos en que no se considere

utilizar el sostenimiento, se podrá evaluar la posibilidad de hacer cortes con menor pendiente, en el rango de 45° a 63° .

4.3 Prueba de hipótesis

De acuerdo con los resultados, la evaluación gemecánica del macizo rocoso si influye en la construcción del puente la Cultura, ya que se conoce el comportamiento geomecainico de la roca que se tiene como base de la cimentación del puente la cultura. Además, conociendo las características litológicas y estructurales se puede definir los taludes de corte para la construcción del puente, y las propiedades físicas de los materiales nos indican la resistencia de estos por lo cual nos inidca el retiro o mejoramiento de estos. Conociendo la estabilidad del macizo rocoso se puede garantizar la estabilidad de la estructra proyectada.

4.4 Discusión de resultados

La evaluación geomecánica del macizo rocoso determinó el nivel de cimentación de la estructura proyectada. Además, los resultados están dentro de los márgenes establecidos para este tipo de construcción.

4.4.1 Preparación del terreno de fundación

En esta sección se presenta las recomendaciones para la preparación del terreno de fundación:

Excavaciones

La construcción de las plataformas proyectadas en las diferentes zonas donde se construirán los apoyos para el Puente de la Cultura requerirá la excavación mayoritariamente en roca granodiorita y tonalita gnéisica, la cual se encuentra meteorizada y fracturada y clasifica como roca regular a buena (Clase III-IV), según el sistema RMR (antes de corregir este parámetro por la influencia de la orientación de las discontinuidades). Por otra parte, la toba clasifica como una roca regular (Clase III).

De acuerdo con la evaluación del macizo rocoso, es posible utilizar los tractores D&R hasta profundidades máximas de 20 m en la zona del estribo derecho. A mayores profundidades que las indicadas será necesario el uso de voladura controlada, precorte y el uso del martillo neumático.

En general, para taludes de corte temporales con alturas menores a 5 m, se recomienda las siguientes inclinaciones:

En general, para taludes de corte temporales con alturas menores a 5 m, se recomienda las siguientes inclinaciones:

- En roca: 0,25:1 (H:V)
- En suelo: 1,0:1 (H:V)

Estos valores son considerados preliminares y deben ser re-evaluados en el campo durante las excavaciones, tomando en cuenta en todo momento la seguridad del personal. Para taludes de corte, temporales y permanentes, más altos de 5 m, en general se recomiendan las siguientes inclinaciones:

- En roca: 0,5:1 (H:V) sin refuerzo
- En suelo: 2,0:1 (H:V)

En las Figuras 4.19 y 4.20 se muestran los esquemas de los cortes en roca y refuerzo de los taludes en el pilar de la margen izquierda y derecha, respectivamente, para la alternativa de puente en arco. En las Figuras 4.21 y 4.22 se muestran los esquemas de los cortes en roca y refuerzo de los taludes en el pilar de la margen izquierda y derecha,

respectivamente, para la alternativa de puente de voladizos sucesivos. En estos esquemas se indica la instalación de pernos de anclaje y shotcrete en algunos de los taludes de corte para la cimentación del puente.

Se recomienda la instalación de mallas electrosoldadas y ancladas como una medida de prevención contra la caída de rocas durante la etapa de construcción.

Figura 4.19: Esquema de cortes en roca y refuerzo de taludes - Pilar Margen Izquierdo (Alternativa Puente Arco).

Figura 4.20: Esquema de cortes en roca y refuerzo de taludes - Pilar Margen Derecha (Alternativa Puente Arco).

Figura 4.21: Esquema de cortes en roca y refuerzo de taludes - Pilar Margen Izquierdo (Alternativa Puente de Voladizos Sucesivos).

Figura 4.22: Esquema de cortes en roca y refuerzo de taludes - *Pilar Margen Derecha (Alternativa Puente de Voladizos Sucesivos).*

De acuerdo con los resultados se recomienda realizar la ripabilidad siguiendo los parámetros expuestos en la Tabla 4.55 el cual muestra un resumen de las condiciones de ripabilidad y maquinaria recomendada a utilizar en la zona del proyecto.

Sector	Litología	Prof.	RMR Básico	Dureza	Ripabilidad	Maquinaria Recomendada
		(m)		(R)		Dozer
		0,0-11,0	Regular	4,0-5,0	V1	
		11,0- 14,0	Regular	4,0-5,0	V1	
Pilar	Tonalita Gráisica	14,0- 21,0	Buena	40-,5,0	V1	
Izquierdo	Ulleisica	21,0- 25,6	Buena	4,0-5,0	V1	
		25,6- 28,0	Buena	5,0	V1	
	Tonalita Gnéisica	0-9,0	Mala/ Regular	2,5-3,0	V1	
Estribo		9-16,8	Regular	3,0-4,0	V1	
Izquierdo		16,8- 23,7	Regular	4,0-5,0	V1	
		23,7- 28,0	Buena	4,0-5,0	V1-V2	
		0,0–4,8	Regular	2,0-3,0	V1	
Pilar	Tonalita	4,8-8,2	Regular	3,0-4,0	V1	
Derecho	Gnéisica	8,2–19,6	Buena	4,0-5,0	V1	
Dereeno	Gliciblea	19,6– 25,7	Buena	5,0–6,0	V2	
		0,0–9,3	Regular	1,0-2,0	Rip	D8R
		9,3–16,7	Regular	1,0-2,0	Rip	D8R
Estribo Derecho	Tufo volcánico	16,7– 21,2	Regular	1,0-2,0	Rip	D8R
		21,2– 25,0	Buena	1,0-2,0	Rip-V2	D8R

Tabla 4.55: Condiciones de Ripabilidad y Maquinaria Recomendada

Abreviatura:

V1: Voladura para roca suelta (Tipo I)

V2: Voladura para roca fracturada (Tipo II)

Rip: Ripeado

En el tufo volcánico se puede cortar y remover el material mediante ripeado hasta los 21 m. En todos los demás casos, se manifiesta la necesidad de utilizar explosivos para el corte de los taludes y niveles de fundación. Por otro lado, debido a temas de producción en el corte con voladura y por temas específicos de construcción de dichos taludes es necesario utilizar voladura controlada y precorte, como muestra la tabla en dichas zonas específicas. Finalmente, en la zona de desplante se recomienda el uso de un martillo neumático para terminar la excavación.

Mejoramiento del terreno

En los casos en que se encontrase depósitos eólicos, rellenos antrópicos, roca residual, roca muy meteorizada y fracturada (RQD < 25%) o zonas de falla (como la observada en la zona del pilar izquierdo), en la zona de apoyo de las estructuras, se recomienda la remoción completa de este material de la superficie, hasta una profundidad de 1 m como mínimo, para proceder a su reemplazo con concreto simple de resistencia f'c = 175 kg/cm2. El ingeniero supervisor deberá indicar en qué casos proceder con este mejoramiento local del terreno para la cimentación.

4.4.2 Anclaje en roca

Según los resultados del análisis cinemático, en el caso de cimentaciones apoyadas sobre roca y sujetas a esfuerzos de tensión, se recomienda la construcción de anclajes para asegurar un contacto apropiado. Los anclajes deben consistir en perforaciones en la roca de al menos 10 a 15 m. Se colocará una barra de refuerzo de 50 a 75 mm de diámetro (mínimo) en los agujeros y se extenderá como mínimo 1m por encima de la superficie del terreno. La perforación deberá ser rellenada con grout. El extremo expuesto de la barra deberá ser doblado en 90° y será parte de la platea de cimentación de la estructura. Los anclajes serán ubicados uniformemente en la platea. Durante la construcción de la

cimentación, se debe verificar la cantidad de anclajes a instalar, basándose en las condiciones de carga y los esfuerzos de corte generados en la cimentación. Se pueden encontrar pautas generales para el análisis de sistemas de anclajes de tensión en "Rock Foundations, Engineering and Design", de la USACE Engineer Manual, 1994.

En el caso de preverse fuerzas horizontales importantes que generen potencial de deslizamiento de la cimentación, se deberá considerar la inclusión de dowells o pilotes cortos a ser diseñados en la ingeniería de detalle del proyecto.

4.4.3 Inyección de lechada en la roca

Como un método de mejoramiento localizado del terreno en áreas de roca de muy mala calidad o dañada por la voladura se requiere utilizar la técnica de inyección de lechada por presión en la roca para incrementar la capacidad portante al nivel de la cimentación después de la voladura, tomando como guía los resultados de los ensayos de permeabilidad realizados. En caso el terreno sea muy fracturado tal que cause derrumbes en el pozo, se puede emplear el método descendente, es decir se perfora un tramo y se inyecta inmediatamente antes de continuar el siguiente tramo o etapa hasta llegar a la profundidad total. En este caso cuando finaliza la inyección de una zona, se hace un lavado de la lechada en el pozo (aproximadamente a las 2 horas) para evitar tener que reperforar el cemento fraguado. En un mismo pozo para perforar una zona inferior de una previamente inyectada y lavada se deben esperar aproximadamente 24 horas. Las presiones de trabajo para las inyecciones deberán contemplar la carga litostática sobre el tramo a inyectar a fin de evitar el hidrofracturamiento, para el tramo más próximo a la superficie la presión no deberá ser mayor a 2 kg/cm2.

El prisma de inyección debajo del nivel de cimentación se recomienda que alcance una profundidad igual a 1,5 veces el ancho de la cimentación, con una base inferior también

igual a 1,5 veces el ancho de la cimentación. Este volumen deberá ser verificado por el ingeniero supervisor de acuerdo con las condiciones observadas en terreno.

4.4.4 Taludes de corte

Los análisis muestran que algunos taludes de corte sobre las rocas tonalita y granodiorita gnéisica requieren algún tipo de sostenimiento o la combinación de ellos debido al análisis realizado como lo muestran las Tablas 4.52 y 4.53. Estos tipos de sostenimiento tienen que ser implementados durante la fase de construcción.

Para la alternativa de puente en arco, en el pilar derecho para la zona de gabrodiorita y el corte con una dirección de talud de 316° se recomienda echar los taludes a 63° (H:V 1:2), de igual manera para la zona de tonalita y una dirección de talud de 226° se recomienda cortar los taludes a 63° (H:V 1:2). Adicionalmente se deberá colocar reforzamiento con anclajes como se recomienda en la tabla 4.53.

Para la alternativa de puente de voladizos sucesivos, en el pilar izquierdo para la zona de tonalita y el corte con una dirección de talud de 316° se recomienda cortar los taludes a 45° (H:V 1:1), de igual manera para la zona de gabrodiorita y una dirección de talud de 316° se recomienda cortar los taludes a 63° (H:V 1:2). Adicionalmente se deberá colocar reforzamiento con anclajes como se recomienda en la tabla 4.53. En los anclajes de roca para los taludes de corte se recomienda hacer uso de varillas de acero de 32 mm de diámetro, inyectadas con cemento, con longitudes mínimas de anclaje sobre la roca de 5 m o más.

En las Figuras 4.21 a 4.22 se muestran esquemas de los cortes en roca para las alternativas de puente en arco y de voladizos sucesivos, para los pilares de la margen izquierda y derecha.

4.4.5 Parámetros de diseño para corrosión

La agresividad a la que estará sometida el concreto se presenta en la Tabla 4.56 se muestran los rangos de valores de concentración de sales, sulfatos y cloruros que se pueden presentar en el material de fundación, así como su consecuente efecto en las propiedades del concreto.

 Tabla 4.56:
 Límites permisibles de contenido de Sulfatos, Sales Solubles Totales y

 Cloruros

Elementos Químicos	p.p.m.	Grado de Alteración	Observaciones		
	0 - 1 000	Leve			
Sulfatos (*)	1 000 - 2 000	Moderado	Ocasiona un ataque químico al		
	2 000 - 20 000	Severo	concreto de la cimentación.		
	> 20 000	Muy Severo			
			Ocasiona problemas de		
Cloruros	>6 000	Perjudicial	corrosión de armaduras o		
			elementos metálicos.		
Salas Salublas			Ocasiona problemas de pérdida		
Totales	>15 000	Perjudicial	de resistencia mecánica por		
			problema de lixiviación.		

Notas:

p.p.m: Partes por millón, equivalente a mg/kg

(*) Comité ACI 318-83

De acuerdo con los valores mostrados en la Tabla 4.56, y los resultados reportados de los ensayos químicos realizados en muestras de testigos de roca en el estribo y los pilares izquierdos y derecho, y del estribo derecho, se observa que:

Para el estribo y los pilares izquierdos y derecho que:

 Las concentraciones de sulfatos presentes son menores de 47 ppm, lo cual implica que se desarrollará un ataque químico de intensidad muy leve al concreto de la cimentación;
- Las concentraciones de cloruros presentes son menores a 39 ppm, con excepción del sondaje AUS-PC-01 donde la concentración es de 470 ppm. Son valores muy bajos y, por tanto, no se espera una influencia perjudicial de la gabrodiorita y tonalita gnéisica en la corrosión del refuerzo; y
- La concentración de sales solubles totales (SST) presentes en la gabrodiorita y tonalita gnéisica son menores a 1 077 ppm. En ese sentido, no se espera una influencia perjudicial de la gabrodiorita y tonalita gnéisica en la resistencia mecánica del concreto.

Para el estribo derecho (zona de toba) se tiene que:

- Las concentraciones de sulfatos presentes en la toba varían de 133 a 3 764 ppm, lo cual implica que se podría desarrollar un ataque químico de intensidad leve a severa al concreto de la cimentación en contacto con la toba;
- La concentración de cloruros presentes en la toba varía de 13 a 4 287 ppm. En ese sentido, no se espera una influencia perjudicial de la toba en la corrosión del refuerzo; y
- La concentración de sales solubles totales (SST) presentes en la toba varía de 300

 a 14 172 ppm respectivamente. En ese sentido, no se espera una influencia
 perjudicial de la toba en la resistencia mecánica del concreto.

Por lo anteriormente expuesto, se puede concluir que no hay problemas de corrosión para el estribo izquierdo, pilar derecho y pilar izquierdo. Sólo en el estribo derecho del puente, cuya cimentación estará en contacto con la toba, presentará problemas de ataque químico severo en su estructura. Tomando como referencia las consideraciones mostradas en 4.9.5, se recomienda la utilización de cemento tipo V para la elaboración del concreto.

CONCLUSIONES

La evaluación geomecánica realizada para el puente la Cultura permite llegar a las siguientes conclusiones:

Las características litológicas y estructurales del macizo rocoso son los siguientes:

- El macizo rocoso sobre el cual se cimentarán los estribos y pilares del Puente de la Cultura corresponde a una secuencia litológica conformada por gabrodioritas gnéisicas, tonalitas gnéisicas y diques, de edad Jurásico inferior, y sobreyaciendo en discordancia, secuencias piroclásticas del Volcánico Sencca, del Pliopleistoceno. Cubriendo en parte estas unidades, se presentan depósitos aluviales, coluviales, y eólicos.
- Las gabrodioritas y tonalitas gnéisicas se presentan en ambas márgenes del río.
 La presencia de diques es más notoria en el estribo derecho. Cubriendo a estas secuencias se presenta una delgada cobertura de materiales aluviales, coluviales, eólicos y cenizas volcánicas.
- El Volcánico Sencca se presenta sólo en el estribo derecho. Está conformado por un nivel poco compacto de arena fina con clastos líticos color rojizo a negro y fragmentos de pómez. Le sigue una toba blanquecina a marrón claro, de matriz fina, con fragmentos de pómez y lava de colores claros y oscuros, en bancos gruesos, poco a moderadamente fracturado, con un espesor promedio de 54 m. Le sigue un horizonte no consolidado de arena gruesa, marrón claro, con fragmentos líticos de color oscuro, de espesor promedio 17 m, que descansa sobre la tonalita gnéisica. Hacia los flancos, el espesor del Sencca aumenta hasta los 140 m.

- En el aspecto de la geología estructural, se han registrado fallas locales inactivas de rumbo NO-SE, NE-SO y ESE-ONO, en general de alto ángulo, con relleno de roca molida y óxidos de fierro, con registro de algunas estrías de falla que indican un fallamiento inverso, originado por esfuerzos compresivos. De acuerdo con el registro de perforaciones se han delineado fallas de rumbo predominante NO-SE y NE-SO, con buzamientos de 40° a 45° al SO y NO, que tiende a aumentar en profundidad. En algunos sectores estas estructuras se subdividen en ramales. El sistema de diaclasamiento principal en los intrusivos es NO-SE, NE-SO y N-S. En las rocas del volcánico Sencca, se presentan juntas verticales y horizontales que configuran bloques bien desarrollados, no habiéndose registrado evidencias de fallamiento. No se han registrado fallas activas, que sugieran amenaza al emplazamiento del puente proyectado.
- A partir de los registros de las perforaciones diamantinas orientadas realizadas en los estribos y apoyos centrales del puente proyectado, se concluye que el perfil estratigráfico del terreno de cimentación está conformado en la margen izquierda por rocas gabrodiorita y tonalita gnéisica muy duras y moderadamente fracturadas, con un RMR de regular a bueno, excepto en los primeros 10 a 15 m, en que se encuentran medianamente duras y muy fracturadas, con un RMR de malo a regular. En esta margen las perforaciones han cortado fallas sub-horizontales de espesor entre 0,6 y 2,0m. En la margen derecha, en la ubicación del pilar, el macizo rocoso está conformado predominantemente por tonalitas gnéisicas y algunos tramos de gabrodiorita gnéisica, ambas duras y moderadamente fracturadas, con un RMR regular a bueno, excepto en los primeros 10 m, en que se encuentran más fracturadas con un RMR regular. En esta conformado predominantemente por tonalitas gnéisicas y algunos tramos de gabrodiorita gnéisica, ambas duras y moderadamente fracturadas, con un RMR regular a bueno, excepto en los primeros 10 m, en que se encuentran más fracturadas con un RMR regular. En esta conformado predominantemente por tonalitas gnéisicas y algunos tramos de gabrodiorita gnéisica, ambas duras y moderadamente fracturadas, con un RMR regular a bueno, excepto en los primeros 10 m, en que se encuentran más fracturadas con un RMR regular. En esta conformado predominantemente por tonalitas primeros 10 m, en que se encuentran más fracturadas con un RMR regular. En esta presente por tonalitas con un RMR regular a bueno, excepto en los primeros 10 m, en que se encuentran más fracturadas con un RMR regular. En esta por porteo de porteo

este sector se han observado fallas y diques sub-verticales. En el estribo derecho, el perfil estratigráfico está conformado por toba volcánica hasta los 75 m, seguido de tonalitas gnéisicas hasta el final de la profundidad investigada.

- Los ensayos de permeabilidad del tipo Lugeon o Lefranc realizados en las rocas intrusivas con fines de evaluar la inyectabilidad de estas rocas a nivel de la cimentación, indican que en general la permeabilidad disminuye con la profundidad, con un valor de la media geométrica de la permeabilidad para la gabrodiorita gnéisica de 4.15x10-4 cm/s (32 UL), con un rango de magnitud entre 7.19x10-5 y 4.08x10-3 cm/s (5,5 a 313 UL); y para la tonalita gnéisica el valor de la media geométrica es de 6.73x10-5 cm/s (5,2 UL), con un rango de magnitud entre 4.26x10-5 y 1.09x10-4 cm/s (3,3 a 8,4 UL). En las tobas no fue posible realizar ensayos de permeabilidad in situ, debido al rápido descenso del nivel del agua en los sondajes por la naturaleza porosa de la roca.
- Se ha observado una buena correlación entre los valores medidos in situ del módulo elástico horizontal y los valores de RMR en los sondajes realizados para estas mediciones.

Las propiedades físicas de los materiales que fomran parte de la cimentación del puente La Cultura son los siguientes:

En términos de resistencia de la roca intacta, la estimación de campo con el martillo de geólogo, los ensayos de rebote con el martillo Schmidt y los ensayos de carga puntual indican una resistencia alta a muy alta para la gabrodiorita y tonalita gnéisica, de R5 a R6; en tanto para la toba volcánica se obtiene una resistencia baja, en el orden de R2.

- El peso específico de la gabrodiorita y tonalita gnéisica varía de 26 a 27 kN/m3, en tanto que el peso específico de la toba volcánica es en promedio del orden de 14 kN/m3. La porosidad en la tonalita gnéisica es del orden de 1%, y en la gabrodiorita gnéisica es de 0,8%, en tanto que en la toba volcánica es de 30%. La absorción en la tonalita gnéisica es de 0,4% y en la gabrodiorita gnéisica es de 0,3%, mientras que en la toba volcánica es de 21%.
- Los ensayos de compresión no confinada indican una resistencia promedio del orden de 83 MPa para la tonalita gnéisica, en el rango de 126 a 185 MPa para la gabrodiorita gnéisica, y de 14 MPa promedio para la toba volcánica.
- Los ensayos de compresión triaxial indican un parámetro mi del criterio de falla de Hoek y Brown de 20 a 29 para la tonalita gnéisica, de 19 a 28 para la gabrodiorita gnéisica, y de 14 en promedio para la toba volcánica.
- Los ensayos de corte directo en discontinuidades indican un valor promedio de 27° para la gabrodiorita y tonalita gnéisica en condición simulada, y de 31° en condición natural. Para la toba volcánica se obtuvo un valor promedio de 27° en condición simulada.
- Los ensayos químicos realizados en muestras de roca indican un bajo potencial de ataque químico en la tonalita y gabrodiorita gnéisica; en tanto que la toba volcánica produciría un efecto leve a moderado.
- Las muestras de toba volcánica en condición inalterada, ensayadas mediante compresión triaxial CU con medición de presión de poros, indican valores promedio de cohesión y ángulo de fricción medidos en esfuerzos efectivos de 33 kPa y 36,9°, respectivamente, mientras que estos parámetros medidos en

esfuerzos totales son de 172 KPa y 22,0°, respectivamente. Además, la permeabilidad de este material medida en una celda de pared flexible indica una permeabilidad en el orden de 3x10-5 cm/s. La carga de pre-consolidación de este material es de 130 a 150 kPa.

- Los ensayos químicos en muestras de suelo volcánico residual indican alto contenido de sulfatos, cloruros y sales solubles totales en algunos casos, por lo que no se recomienda el contacto directo de estos suelos con estructuras de concreto, a menos que se utilice un cemento tipo V y se tomen medidas para la protección de la armadura de refuerzo.
- El análisis estereográfico realizado a partir de las estructuras orientadas en los taladros y en superficie, indican que existe un patrón de discontinuidades similar en ambas márgenes del río para las litologías gabrodiorita gnéisica y tonalita gnéisica, con buzamientos generalmente altos (mayores a 50°). En cuanto a las estructuras de la toba volcánica, ésta presenta orientaciones diferentes, presentando disyunción columnar, característico de este tipo de roca, con ángulos sub-verticales y también presenta una familia sub-horizontal, particularidad que ofrece una seudo- estratificación.
- Se asumió un valor del factor de disturbancia D = 1 para la gabrodiorita gnéisica y la tonalita gnéisica debido a que será necesaria voladura para dichos materiales, en tanto que para la toba se asumió un factor de disturbancia de 0,2 debido a que para la excavación en este material será suficiente utilizar maquinaria pesada;
- Los valores de capacidad de carga admisible de la cimentación analizados por los métodos de USACE (1994), Bowles (1996) y Serrano y Olalla (2001), indican en

general valores superiores a las cargas estimadas en cada apoyo del puente, con algunas excepciones para el método de Serrano y Olalla, que resulta muy conservador, por lo tanto, las condiciones de cimentación del puente son favorables. La capacidad de carga admisible en la roca intrusiva está en el rango de 1,4 MPa a 3,0 MPa entre los 5 y 10 m de profundidad, y crece de 10,3 a 14,0 MPa a los 15 m de profundidad. Para la toba volcánica se estima una capacidad de carga admisible de 1,1 MPa entre 5 y 10 m de profundidad de cimentación;

Los análisis cinemáticos realizados con las familias de estructuras existentes en cada sector indican que existe el potencial de fallas planares y en cuña, que podrían afectar los cortes en roca para la cimentación de los apoyos centrales. La verificación de este potencial mediante análisis específicos para falla planar y cuña confirma la existencia de factores de seguridad menores que la unidad, proponiéndose para este caso el refuerzo de estos bloques mediante la aplicación de pernos de anclaje y shotcrete, y en algunos casos tendiendo el talud. Se ha establecido en general taludes de corte de 75° con bancos de 10 m, y bermas de 2,5 m;

Las condiciones de estabilidad del macizo rocoso son las siguientes:

Los análisis de estabilidad en condición reforzada han considerado distribuciones de pernos de roca de 32 mm de diámetro inyectados con cemento, con una longitud de anclaje mínima de 6,0 a 8,0 m, y una fuerza promedio de 10 t/m en cada perno de roca. Además, se ha recomendado la aplicación de shotcrete en los bancos superiores, donde se espera encontrar roca más fracturada. En los casos en que no se considere utilizar refuerzo, se deberá evaluar la posibilidad de hacer cortes con menor inclinación, en el rango de 45° a 63°; Los análisis esfuerzo-deformación realizados en una sección longitudinal al puente no indican concentraciones de esfuerzos ni deformaciones significativas en ninguno de los apoyos del puente, para la geometría y condiciones de carga analizadas.

Según los parámetros de diseño para corrosión:

Por lo expuesto en el ítem 4.9.5, se puede indicar que no hay problemas de corrosión para el estribo izquierdo, pilar derecho y pilar izquierdo. Sólo en el estribo derecho del puente, cuya cimentación estará en contacto con la toba, presentará problemas de ataque químico severo en su estructura. Se recomienda la utilización de cemento tipo V para la elaboración del concret

RECOMENDACIONES

- A partir del perfil estratigráfico del terreno de fundación y tomando en consideración la calidad del macizo rocoso medida en función del RQD y RMR, se recomienda que la mínima profundidad de cimentación para los apoyos del puente sea de 10 a 15 m en los apoyos centrales y de 5 a 10 m en los estribos.
- Se recomienda realizar el mejoramiento del Terreno según el siguiente detalle: En los casos en que se encontrase depósitos eólicos, rellenos antrópicos, roca residual, roca muy meteorizada y fracturada (RQD < 25%) o zonas de falla (como la observada en la zona del pilar izquierdo), en la zona de apoyo de las estructuras, se recomienda la remoción completa de este material de la superficie, hasta una profundidad de 1 a 2 m como mínimo.
- Se recomienda la preparación del Terreno de Fundación de acuerdo a lo descrito en el ítem 4.9.1.
- Para los taludes de corte se recomienda lo siguiente:
 - En general, para taludes de corte temporales con alturas menores a 5 m, se recomienda las siguientes inclinaciones:
 - En roca: 0,25:1 (H:V)
 - En suelo: 1,0:1 (H:V)
 - Para taludes de corte, temporales y permanentes, más altos de 5 m, en general se recomiendan las siguientes inclinaciones:
 - En roca: 0,5:1 (H:V) sin refuerzo
 - En suelo: 2,0:1 (H:V)

- Se recomienda realizar anclaje en roca en el caso de cimentaciones apoyadas sobre roca y sujetas a esfuerzos de tensión, se recomienda la construcción de anclajes para asegurar un contacto apropiado. Los anclajes deben consistir en perforaciones en la roca de al menos 10 a 15 m. Se colocará una barra de refuerzo de 50 a 75 mm de diámetro (mínimo) en los agujeros y se extenderá como mínimo 1m por encima de la superficie del terreno. La perforación deberá ser rellenada con grout. El extremo expuesto de la barra deberá ser doblado en 90° y será parte de la platea de cimentación de las estructuras. Los anclajes serán ubicados uniformemente en la platea.
- Durante la construcción de la cimentación, se debe verificar la cantidad de anclajes a instalar, basándose en las condiciones de carga y los esfuerzos de corte generados en la cimentación. Se pueden encontrar pautas generales para el análisis de sistemas de anclajes de tensión en "Rock Foundations, Engineering and Design", de la USACE Engineer Manual, 1994.
- En el caso de preverse fuerzas horizontales importantes que generen potencial de deslizamiento de la cimentación, se deberá considerar la inclusión de dowells o pilotes cortos.
- Se recomienda realizar la inyección de Lechada en la Roca en caso el terreno sea muy fracturado tal que cause derrumbes en el pozo, se puede emplear el método descendente, es decir se perfora un tramo y se inyecta inmediatamente antes de continuar el siguiente tramo o etapa hasta llegar a la profundidad total.
- Recomendaciones de Taludes de Corte: Para la alternativa de puente en arco, en el pilar derecho para la zona de gabrodiorita y el corte con una dirección de talud de 316° se recomienda echar los taludes a 63° (H:V 1:2), de igual manera para la zona

de tonalita y una dirección de talud de 226° se recomienda cortar los taludes a 63° (H:V 1:2).

Para la alternativa de puente de voladizos sucesivos, en el pilar izquierdo para la zona de tonalita y el corte con una dirección de talud de 316° se recomienda cortar los taludes a 45° (H:V 1:1), de igual manera para la zona de gabrodiorita y una dirección de talud de 316° se recomienda cortar los taludes a 63° (H:V 1:2). En los anclajes de roca para los taludes de corte se recomienda hacer uso de varillas de acero de 32 mm de diámetro, inyectadas con cemento, con longitudes mínimas de anclaje sobre la roca de 5 m o más.

BIBLIOGRAFIA

Acosta, H. y otros. Actividad tectónica del sistema de fallas Incapuquio durante la formación de la cuenca Arequipa en el Jurásico.

Barton, N., Lien, R. & Lunde, J. (1974). Engineering classification of rock masses for the design of tunnel support. Rock Mechanics 6(4).

Bieniawski, Z.T. (1989). Engineering Rock Mass Classifications, John Wiley.

Carlotto, V. Evolución Tectónica y Metalogenética de la Litosfera del sur del Perú: resultado de la acreción de Bloques Aloctonos.

García, W. (1968). Geología de los Cuadrángulos de Mollendo y La Joya, Boletín N° 19, Servicio de Geología y Minería.

Hoek, E., Carranza-Torres, C., and Corkum, B. (2002), "Hoek-Brown Failure Criterion - 2002 Edition", RocScience.

INRENA, 2003. Evaluación y ordenamiento de los recursos hídricos de la Cuenca del río Chili.

ISRM (2007). The Complete ISRM Suggested Methods for Rock Characterization, Testing and Monitoring: 1974-2006 (eds R Ulusay & JA Hudson). ISRM Turkish National Group, Ankara, Turkey.

Palmström A.: *Application of the volumetric joint count as a measure of rock mass jointing*. Int. symp. on Fundamentals of Rock Joints, Björkliden, Sweden, 1985, pp. 103 – 110.

Palmström, A.: *RMi – a rock mass characterization system for rock engineering purposes.* PhD thesis, University of Oslo, Department of Geology, 1995. 405 p.

Palmström A.: *RMi* (1995). *a system for characterizing rock mass strength for use in rock engineering*. Journal of Rock Mechanics and Tunnelling Technology, Vol. 1, Number 2, pp. 69 – 108.

Rocscience (2008), Dips 5.1: Graphical and Statistical Analysis of Orientation Data.

Rocscience (2009), RocLab 1.0: Analysis of Rock Strength.

Romana M. (1985). New adjustment ratings for application of Bieniawski classification to slopes. Proc. Int. Symp. on the Role of Rock Mechanics: 49-53.

Romana M. (1995). The geomechanical classification SMR for slope correction. Proc. Int. Congress on Rock Mechanics 3: 1085-1092.

UNSA, 2000. Mapa Geológico del Cuadrángulo de Arequipa, escala 1/50,000. Hojas 3s-II y 3-s-III.

Vargas, E. 1970. Geología del Cuadrángulo de Arequipa, Boletín N° 24, Servicio de Geología y Minería.

Anexos

Anexos A.1 Registro Fotográfico

Foto 1.- Vista panorámica de la Penillanura de Arequipa, conformada por los Volcánicos Sencca, disectada por el río Chili y numerosas quebradas.

Foto 2.- Vista panorámica que muestra la Cordillera de Ladera, el Valle Encañonado del rio Chili, y la Penillanura de Arequipa. Al fondo se aprecia zona del proyecto.

Foto 3.- Vista aguas arriba del valle encañonado del río Chili, al fondo se aprecia la zona del proyecto. En la margen izquierda se aprecian las rocas intrusivas y la margen derecha se aprecian potentes capas del

Foto 4.- Vista de depósitos aluviales conformando terrazas (T1). Margen derecha del río Chili.

Foto 5.-Vista de las terrazas T3 y ladera coluvial de fuerte pendiente. Río Chili, en afloramientos del Volcanico Sencca.

Foto 6.- Vista de terrazas aluviales T1 sobre en afloramientos del Volcanico Sencca (lado izquierdo) y gabrodiorita (lado derecho).

Foto 7.-Afloramiento de gabrodioritas en la margen izquierda y derecho en la zone del provesto

Foto 8.- Afloramiento de granodiorita. Se aprecia una disyunción catafilar.

Foto 9.- Dique aplitico que intruyen a las gabrodioritas.

Foto 10. Dique aplitico sub horizontal 0.60 m de potencia.

Foto 11.- Falla inversa ubicada en coordenadas UTM, WGS84 E 209866 y N 8183451, con relleno de roca molida muy alterada óxidos de hierro.

Foto 12.- Falla inversa ubicada en coordenadas UTM, WGS84 E 212685 y N 8183109, con potencia de 1.50 m, presenta labor minera artesanal

Foto 13.- Falla inversa ubicada en coordenadas UTM, WGS84 E 209542 y N 8181833, con relleno de roca molida y muy alterada,

Foto 14.- Falla inversa ubicada en coordenadas UTM, WGS84 E 210831 y N 8182518, con relleno de roca molida y muy

Foto 15.- Falla inversa adyacente vía férrea, ubicada en coordenadas UTM, WGS84 E 210420 y N 8182960, con relleno de

Foto 16.- Falla geológica ubicada en coordenadas UTM, WGS84 E 210867 y N 8182849, se observacontacto Tonalita con Gabrodiotita,

Foto 17.- Afloramiento del Sencca con disyunción columnar,

Foto 18.- Manantial MN-01, ubicado en la naciente de la quebrada

Foto 19.- Contacto discordancia erosional entre el Volcánico Sonoco y al intrusivo morgon dorocho río Chili

Foto 20.- Contacto discordancia erosional entre el Sencca y el intrusivo.

Foto 19.- Falla inversa ubicada estribo derecho con coordenadas UTM, WGS84 E 210862 y N 8183152, presenta relleno de roca

Foto 20.- Vista aguas abajo falla inversa estribo derecho descrita en foto 19.

Anexos B

Estaciones Geomecánicas

Valoración del Macizo Rocoso RMR

Coorden	adas	Inicia Fina	N81 N81	83182.6 E210 83201.9 E210	708.8 691.7			Estudio	Evaluacio	luación Geomecánica del Puente de la Cultura														
	N Estad	° ción		Orient	ación de l	a Cara Buzamien	0	Desde	Tramo	Tramo Hasta	Pará		Valoración del Macizo Rocoso (RMR) Rango de Valores								Valor			
	E-0	E-01		N155		85 NE		0m	1	25.0m							Valor Est	imado	2					-
				Tipo de R	оса			Fr	ecuencia Fr	racturas (Jv	RESISTENCIA CO	OMPRESIVA (MPa)	>250	(15)	100-250	(12)	50-100	(7) X	25-50	(4)	<26(2) <5(1)	<1(0)	1	7
									N* Fract	t. / ml.	ROD %		90-100	(20)	75-90	(17) X	50-75	(13)	25-50	(8)	<25	(3)	2	17
	Gabrodiorita			100%				1.0	7		ESPACIAMIENTO	(m)	×2	(20)	0,6-2	(15) X	0.2-0.6	(10)	0.06-0.2	(8)	< 0.06	(5)	3	15
Na	Tipo	Orientad	ción	Espaciamiento	JRC	Re	lleno	JCS	Come	entarios		PERSISTENCIA	<1m	(6)	1-3 m	(4)	3-10m	(2) X	10-20 m	(1)	> 20 m	(0)	4A	2
rilia 1	Estrue.	Dir. Buz. 25	Buzamiento 70	0.40	4.6	Tipo Ox/En	Espesor mm	Mpa 141			CONDICION	ABERTURA	Cerrada Muy rugosa	(6)	<0.1mm Runosa	(5)	0.1-1.0mm Lic rucosa	(4) X (3) X	1-5 mm Lisa	(1)	> 5 mm Espeio de falla	(0)	4B 4C	4
2	JE	219	70	0.40	2-4	Ox	1a2	110			JUNTAS	RELLENO	Limpio	(6)	Duro < Smm	(4) X	Durce 5mm	(2)	Suave <	5 mm (1)	Suave > 5 mm	(0)	4D	4
3	JF	113	15	0.65	2-5	Ox/Cal	182	130				ALTERACION	Sana	(6)	Lig. Alterada.	(5) X	Mod Alterada.	(3)	Muy Alte	ada. (2)	Descompuest	(0)	4E	4
4	JF	272	48	0.85	2-4	Ox	1 a 2	135			AGUA SUBTERR	ÂNEA	Seco	(15)	Humedo	(10)	Saturado	(7)	Goteo	(4)	Flujo	(0)	5	15
												75 00			Valor Tot	al RMI	R (suma de	valora	ción de	1 al 5)				
		2														Cla	ise de Maciz	Rocos	0				- 7	4
	1										3	12-00	RM	R	100 - 81		80 - 61	60 -	41	40 - 21	20 - 0		1	ι.
3	1 - S	÷				10							DESCRIP	PCION	I MUY BUE	NA .	II BUENA	III REG	ULAR	IV MALA	V MUY M	ALA		
_		11 I	PROYECC	IÓN ESTEREOGR	ÁFICA DE	LA ESTACIÓ	N					OTOGRAFÍA D	E LA ESTAC	CIÓN										_
			N ESTACIÓN GEOMEGÁNICA 01							and the second s						Abreviatura del Tipo de Roc								
Direction 10 De Direction							A RA									Gn Gneis								
																Gb Gabro								
1 m 70 / 025																	To Topalita							
2 m 70 / 219 3 m 15 / 113																	Gabrodiorita							
W 22 26 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5						Abreviatura Abreviatur Espaciamiento Tipos de R									aturas le Rel	ıras de Relleno								
												1 >		m	Ox	Óxia	io							
		Level Ana Level Ana												2	0.6 - 2 m Ep		Ep	Epid	ota					
			1 mg	31 The 31 Lines										3	3 0.2 - 0.6 m		Arc	Arci	ıla					
			3											4 0.06 -		0.2 m	Pnz	Pan	20 					
_																1. T			5	< 0.0	6 M	Cal	Calc	ita
	Grado	>			Índic	e de Alter Descripció	ición 1			Grado	Índice de Identificad		e Resistencia ción de Campo				Rango F Comp.	Resis. Mpa		Abreviat EP	uras de Tipe Plano de e	o de Es stratifica	struct Ición	uras
1	0	ANIA	Ningún si	lingún signo de alteración en el material rocoso. Quizás ligera decoloración sobre						P1 Del	leznable con golpes firmes con la j		ounta de martillo de geólog		geólogo, puede	llogo, puede 1.0			1 0	JS	Familia de ju	nta secu	undaria	
· .	3	ANA	superficie	s de discontinuida	des principa	ies				ra	sgarse con una na				1,0-5	,0		JU	Junta única					
ii i	LIC	GERA	La decolo	ración indica altera	ación, del mi	aterial rocosc	y superficies	de discontinuida	ides. El	R2 Puede rasgarse con dificultad con una navaja. Se indenta superficialmente con 5 - 25					1 6	JF	Familia	Familia de juntas						
_			material n	ocoso descolorido	extremadan	iente es ma:	s debii que en	su condición sa	na.	la punta de una picota						4 1-	JP	Familia de junta principal						
1	MOD	ERADA	Menos de roca sana	la mitad del mater	rial rocoso e resenta con	esta descomp no un marco	uesto y/o de continuo o co	sintegrado a un s mo núcleo rocos	suelo la	R3 No puede ser rasgado o pelado con una navaja el especimen se puede fracturar con un simple golpe de la picota 25 - 5						50	I - F	FL	Falla Familia de fallar					
_			Mác de la	mitad dol matorial	record oct	docompuo	sto vío docinte	lo La	R4 I a muestra se rompe con más de un polpe de la picota 50 - 10							00	4 1-	F Familia de fallas						
1	MUY A	LTERADA	roca sana	o decolorada se p	resenta con	to un núcleo	rocoso.	egrado a un sue	10. La	R5 EI	especimen requie	nen requiere muchos colber		ara ser	er fracturado		100 - 3	250	1 1	CZ	Cr	alla		
_			Todo el m	Todo el material rocoso esta descompuesto y/o desintegrado a suelo. La estructura original								lo es rasgado o s	o solo se rompe esquirlas de la muestra con						1 F	VT	V	eta		-
2	DESCUMPUESTA de la masa rocosa aun se conserva intacta.									R6 el	el martillo						U		VF	Familia	de veta	5	-	
_										<u> </u>														
	Jv" = (Jur	ntas /m3)	5	6 7 8	9 10	11 12	13 14 15	5 16 17 18	19 20 21	22 23 2	4 25 26 27	28												_
	RQD	(%)	99	95.2 91.9 88.6	85.3 82	78.7 75.4	72 69 66	62 59 56	52 49 45.	7 42 39 3	6 33 29 25.9	23 Come	ntarios	resenc	ia esporádica c	e calcita	en tracturas.							

Por: N.Q

Coordenadas Inicial N8183140.5 E 210618.0 Estudio Evaluación Geomecánica del Puente de la Cultura N8183153.0 E 210606.6 Final Orientación de la Cara Valoración del Macizo Rocoso (RMR) Tramo Rango de Valores Estación Azimut Buzamlento Desde Hasta Parámetros Valo E-03 N125 Т 17.0m Valor Estimado Frecuencia Fracturas (Jv) Tipo de Roca 1 4 ESISTENCIA COMPRESIVA (ME (12) 50-100 RQD % 2 8 25-8 100% SPACIAMIENTO (3 10 Gabrodiorita (15) 0.2-0.6 (10) X 0.06-0.2 (8) < 0.06 1-3 m <0.1mm Rugosa Duro < 5mm) X 3-10m 0.1-1.0mm Lig.rugosa (2) 1D-20 m (4) 1 - 5 mm (3) X Usa Orientación Espaciamiento > 20 m 4A 4 JRC Comentarios CONDICIÓN (1) x > 5 mm (1) Espejo de falla (1) Suave > 5 mm Dir. Buz. - 5 mm Tipo Espesor m Mna rrada 4 Estruc 1 129 0.21 6-8 DE OSIDAD 3 JF 2 a 3 uy rugosa 228 56 D.17 4-6 Ox/Ep 3 a 4 JUNTAS RELLENO х Duro> 5mm Suave < 5 mm 4D 4 JF npio 0.75 JF 351 45 2-4 Ox 2 a 3 ALTERACION Lig, Alterada, X Mod Alterada. Muy Alterada. 4E 5 AGUA SUBTER (15) X Humedo (10) Saturad (7) Goteo (4) Fluio 5 15 Valor Total RMR (suma de valoración de 1 al 5) Clase de Macizo Rocoso GSI 45-50 54 RMR 100 - 81 80 - 61 20-0 40-21 DESCRIPCION I MUY BUENA II BUENA III REGULAR IV MALA V MUY MALA PROYECCIÓN ESTEREOGRÁFICA DE LA ESTACIÓN OTOGRAFIA DE LA ESTACIÓN Abreviatura del Tipo de Roca Gneis Gabro ID Dp / Directio Tufo Volcáni 1 m 32 / 129 2 m 56 / 228 3 m 45 / 351 Tonalita Gabrodiorita Gd Abreviaturas de Abreviatura Tipos de Relleno Espaciamiento Ov. Óxido Equal Area Lower Hemisph 35 Poles 35 Entries 0.6 - 2 m Ep Epidota 0.2 - 0.6 m Arc Arcilla 0.06 - 0.2 m Panizo 4 Pnz < 0.06 m Cal Calcita ndice de Alteración ndice de Resistencia Abreviaturas de Tipo de Estructura Rango Resis. Grado Grado Identificación de Campo Comp. Mpa Descripción Plano de estratificación lingún signo de alteración en el material rocoso. Quizás ligera decoloración sobre eleznable con golpes firmes con la punta de martillo de geólogo,puede .15 Familia de junta secundaria SANA R1 1,0-5,0 uperficies de discontinuidades principales asgarse con una navaia Junta única amilia de juntas . F a decoloración indica alteración, del material rocoso y superficies de discontinuidades. El uede rasgarse con dificultad con una navaia. Se indenta superficialmente co R2 LIGERA 5 - 25 aterial rocoso descolorido extremadamente es más débil que en su condición sana. punta de una picota Familia de junta principal .P lenos de la mitad del material rocoso esta descompuesto y/o desintegrado a un suelo la lo puede ser rasgado o pelado con una navaja el especimen se puede Falla MODERADA R3 25 - 50 oca sana o decolorada se presenta como un marco continuo o como núcleo rocoso. fracturar con un simple golpe de la picota Familia de fallas llás de la mitad del material rocoso esta descompuesto y/o desintegrado a un suelo. La R4 La muestra se rompe con más de un golpe de la picota 50 - 100 Foliacion IV MUY ALTERAD ca sana o decolorada se presenta como un inúcleo rocoso especimen requiere muchos golpes de picota para ser fracturado 100 - 25 Cizalla fodo el material rocoso esta descompuesto y/o desintegrado a suelo. La estructura original El espaciamiento solo es rasgado o solo se rompe esquirlas de la muestra co 1/T Veta ESCOMPUE: R6 > 250 le la masa rocosa aun se conserva intacta. el martillo Familia de vetas 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 Comentarios La estación presenta vetillas de Qz de potencia de hasta 0.1m. "Jv" = (Juntas /m3) RQD (%) 99 95.2 91.9 88.6 85.3 82 78.7 75.4 72 69 66 62 59 56 52 49 45.7 42 39 36 33 29 25.9 23

N.Q

Por:

Coordenadas Inicial N 8183031.3 E210586.7 Estudio Evaluación Geomecánica del Puente de la Cultura Final N8183018.1 E 210570.6 Orientación de la Cara Valoración del Macizo Rocoso (RMR) Tramo Estación Azimut Desde Hasta Parámetros Rango de Valores Valor E-06 N240 80 NO 0m 21.0m Valor Estimado Frecuencia Fracturas (Jv) Tipo de Roca ISTENCIA COMPRESIVA (15) 100-2 (12) X (4) 1 12 (7) 25-5 (20) (17) X 25 (8) 2 17 Gabrodiorita 100% 3 15 (20) 0,6-2 (15) X 0.2-0.6 (10) 0.06-0.2 (8)) 1-3 m <0.1mm Rugosa (4) 3-10m (5) 0.1-1.0mm (5) Lig.rugosa) X 10-20 m) 1 - 5 mm) X Lisa (1) > 20 m (1) X > 5 mm (1) Espejo de falla (1) Suave > 5 mm Orientación Espaciamiento ICS 4A 2 JRC Comentarios CONDICIÓN Dir. Buz. Bua Mpa Tipo -5 mm 4B 1 JF 27 61 1.10 4-6 Ox/Ep 3 a 4 113 DE 4C 3 2 JF 147 48 0.28 2-4 Ox/Ep 2 a 3 110 JUNTAS Duro < 5mm X Juro> 5mm Suave < 5 mm 4D 4 249 1.37 4-6 Ox/Ep 3a4 130 3 JF 71 Lig. Alterada X fod Alterada (3) Muy Alterada. (2) Seconnouesta (0) 4E 5 296 2.17 4 JF 48 4-6 Ox/Ep 3a4 136 UA SUBTER (15) X Humedo (10) Saturado (7) Goteo (4) 5 15 Valor Total RMR (suma de valoración de 1 al 5) Clase de Macizo Rocoso 74 GSI 75-80 RMR 100 - 81 80-61 60-41 40-21 20 - 0 DESCRIPCION I MUY BUENA II BUENA III REGULAR IV MALA V MUY MALA PROYECCIÓN ESTEREOGRÁFICA DE LA ESTACIÓN FOTOGRAFÍA DE LA ESTACIÓN Abreviatura del Tipo de Roca ESTACIÓN GEOMECÂNICA 08 Gn Gneis Gb Gabro Orientations ID Dip / Directio Tv Tufo Volcánic 1 m 61/027 2 m 48/147 3 m 71/249 4 m 48/296 To Tonalita Gabrodiorita Gd Abreviaturas de Abreviatura Espaciamiento Tipos de Rellend 1 Ox Óxido > 2 m Equal Area Lower Hemisphon 27 Poles 27 Entres 2 0.6 - 2 m Ep Epidota 3 0.2 - 0.6 m Arc Arcilla 4 0.06 - 0.2 m Pnz Panizo Cal Calcita 5 < 0.06 m ndice de Alteración Índice de Resistencia Abreviaturas de Tipo de Estructuras Rango Resis. Grado Grado Comp. Mpa Descripción Identificación de Campo EP Plano de estratificación .15 Familia de junta secundaria Ningún signo de alteración en el material rocoso. Quizás ligera decoloración sobre Deleznable con golpes firmes con la punta de martillo de geólogo,puede SANA R1 1,0 - 5,0 aperficies de discontinuidades principales rasgarse con una navaia JU Junta única JF Familia de juntas La decoloración indica alteración, del material rocoso y superficies de discontinuidades. El Puede rasgarse con dificultad con una navaja. Se indenta superficialmente cor 11 LIGERA R2 5 - 25 naterial rocoso descolorido extremadamente es más débil que en su condición sana. punta de una picota JP Familia de junta principal fenos de la mitad del material rocoso esta descompuesto y/o desintegrado a un suelo la No puede ser rasgado o pelado con una navaja el especimen se puede FL Falla Ш MODERADA R3 25 - 50 roca sana o decolorada se presenta como un marco continuo o como núcleo rocoso. racturar con un simple golpe de la picota FF Familia de fallas 50 - 100 R4 La muestra se rompe con más de un golpe de la picota FN Foliacion Más de la mitad del material rocoso esta descompuesto y/o desintegrado a un suelo. La N MUY ALTERADA oca sana o decolorada se presenta como un núcleo rocoso. R5 El especimen requiere muchos golpes de picota para ser fracturado 100 - 250 CZ Cizalla V Todo el material rocoso esta descompuesto y/o desintegrado a suelo. La estructura original El espaciamiento solo es rasgado o solo se rompe esquirlas de la muestra co Veta DESCOMPUEST R6 > 250 V de la masa rocosa aun se conserva intacta. el martillo VF Familia de vetas 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 Comentarios La estación presenta óxidos y epidota en fracturas. "Jv" = (Juntas /m3) 99 95.2 91.9 88.6 85.3 82 78.7 75.4 72 69 66 62 59 56 52 49 45.7 42 39 36 33 29 25.9 23 RQD (%)

N.Q

Por:

Coordenadas Inicial N8183119.9 E 210712.0 Estudio Evaluación Geomecánica del Puente de la Cultura N8183127.6 E210695.0 Final Orientación de la Cara Valoración del Macizo Rocoso (RMR) Tramo Estación Azlmut Desde Hasta Parámetros Rango de Valores **Buzamlento** Valor E-09 N108 0m 19.0m Valor Estimado 75 NF Frecuencia Fracturas (Jv) Tipo de Roca SISTENCIA COMPRESIVA (MP (12) 50-100 (7) X 1 7 (15) 100-2 (20) 75 2 13 SPACIAMIENT (5) 3 10 Gabrodiorita 100% (20) 0,6-2 (15) 0.2-0.6 10) X 0.06-0.2 (8) < 0.06 Espaciamiento) 1-3 m <0.1mm Rugosa 4) 3-10m 5) 0.1-1.0mm 5) Lig.rugosa Orientación 10-20 m > 20 m 4A 2 4B 1 JRC Comentarios CONDICIÓN (1) × 5 mm (1) Espejo de falla (1) Suave > 5 mm Dir. Buz. Buzamlento -5 mm Estruc Тіро Espesor m Mpa rrada 0.34 4-6 Ox/Ep DE uy rugosa X Lisa 4C 3 JF JF 345 35 0.24 4-6 Ox/Ep 3a4 123 JUNTAS ELLENO Duro < 5mm Duro> 5mm) Suave < 5 mm 4D 4 oigmi (6 0.31 Ox/Ep X JF 11 54 6-8 4 a 4 63 ALTERACION 6) Lig Alterada Mod Alterada Muv Alterada. (2) Descompuesta 0) 4E 5 (15) X Humedo (10) Saturado (7) Goteo 5 15 Valor Total RMR (suma de valoración de 1 al 5) Clase de Macizo Rocoso 60-65 60 GSI RMR 100 - 81 80 - 61 20 - 0 40 - 21 DESCRIPCION I MUY BUENA II BUENA III REGULAR I V MALA V MUY MALA PROYECCIÓN ESTEREOGRÁFICA DE LA ESTACIÓN FOTOGRAFÍA DE LA ESTACIÓN Abreviatura del Tipo de Roca ESTACIÓN GEOMECÁNICA 09 Gneis Orientations ID Dip / Direction Gabro Tufo Volcáni 1 m 36 / 199 2 m 36 / 346 3 m 54 / 011 Tonalita Gabrodiorita Gd Abreviatura Abreviaturas de Espaciamiento Tipos de Relleno Ox Óxido > 2 m 0.6 - 2 m Ep Epidota Equal Area Lower Hemispher 25 Poles 25 Entries 0.2 - 0.6 m Arc Arcilla 0.06 - 0.2 m Pnz Panizo 4 < 0.06 m Cal Calcita 5 ndice de Alteración Índice de Resistencia Abreviaturas de Tipo de Estructura Rango Resis. Grado Grado Identificación de Campo Comp. Mpa Descripción Plano de estratificación .15 Familia de junta secundaria ingún signo de alteración en el material rocoso. Quizás ligera decoloración sobre eleznable con golpes firmes con la punta de martillo de geólogo,puede SANA R1 1,0-5,0 uperficies de discontinuidades principales sgarse con una navaia Junta única Familia de juntas a decoloración indica alteración, del material rocoso y superficies de discontinuidades. El uede rasgarse con dificultad con una navaja. Se indenta superficialmente c R2 LIGERA 5 - 25 aterial rocoso descolorido extremadamente es más débil que en su condición sana. punta de una picota Familia de junta principal .IP fenos de la mitad del material rocoso esta descompuesto y/o desintegrado a un suelo la o puede ser rasgado o pelado con una navaja el especimen se puede Falla MODERADA R3 25 - 50 oca sana o decolorada se presenta como un marco continuo o como núcleo rocoso. racturar con un simple golpe de la picota Familia de falla lás de la mitad del material rocoso esta descompuesto y/o desintegrado a un suelo. La R4 La muestra se rompe con más de un golpe de la picota 50 - 100 Foliacion IV MUY ALTERADA oca sana o decolorada se presenta como un inúcleo rocoso especimen requiere muchos golpes de picota para ser fracturado 100 - 25 Cizalla odo el material rocoso esta descompuesto y/o desintegrado a suelo. La estructura original l espaciamiento solo es rasgado o solo se rompe esquirlas de la muestra co VT Veta ESCOMPUES R6 > 250 le la masa rocosa aun se conserva intacta. I martillo Familia de vetas 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 Comentarios Presencia de falla potencia 0.05m "Jv" = (Juntas /m3) 99 95.2 91.9 88.6 85.3 82 78.7 75.4 72 69 66 62 59 56 52 49 45.7 42 39 36 33 29 25.9 23 RQD (%)

N.Q

Por

Coordenadas Inicial N8183090.3 E210748.5 Estudio Evaluación Geomecánica del Puente de la Cultura N8183104.9 E210738.6 Final Orientación de la Cara Valoración del Macizo Rocoso (RMR) Tramo Estación Azimut Buzamiente Desde Hasta Parámetros Rango de Valores Valor E-12 N140 Ωm 18.0m Valor Estimado Frecuencia Fracturas (Jv) Tipo de Roca SISTENCIA COMPRESIVA (MI (15) 100-2 (12) 50-100 (7) X (4) 1 7 20 % (20) 7 (8) 2 13 100% PACIAMIENTO 3 10 Gabrodiorita (20) 0,6-2 (15) 0.2-0.6 (8) (4) X 3-10m (5) 0.1-1.0mm (5) Lig.rugosa Espaciamiento (6) 1-3 m 6) <0.1mm 6) Rugosa Orientación 2) 10-20 m 1) 20 m 4A 4 JRC Comentarios Тіро CONDICIÓN 1) X > 5 mm Espejo de falla Dir. Buz. Buzamlento -5 mm Espesorm Mpa 4B 1 4C 3 Estruc 0.32 4-6 Ox/Ep 384 103 DE X Lisa JE 228 51 0.28 2-4 Ox/Ep 3 a 4 136 JUNTAS ELLENO Duro < 5mm) X Duro> 5mm Suave < 5 mm (1) Suave > 5 mm (0) 4D 4 JE 5) X Mod Alterada 4E 5 ALTERACION 6) Lig. Alterada. Muy Alterada. (2) escompuesta SUA SUBTER (16) X Humedo (10) Saturado (7) Goteo (4) 5 15 Valor Total RMR (suma de valoración de 1 al 5) Clase de Macizo Rocoso 62 GSI 60-65 RMR 100 - 81 60-41 40-21 20 - 0 DESCRIPCION I MUY BUENA II BUENA III REGULAR IV MALA V MUY MALA PROYECCIÓN ESTEREOGRÁFICA DE LA ESTACIÓN OTOGRAFIA DE LA ESTACIÓN Abreviatura del Tipo de Roca Gn Gneis Orientations ID Dip / Direction Gabro Tufo Volcán T 1 m 60 / 006 2 m 51 / 228 Tonalita a Gabrodiorita Abreviatura Abreviaturas de Espaciamiento Tipos de Rellend Ov. Óvido 1 0.6 - 2 m Ep Epidota Equal Area ower Hamispha 30 Poles 30 Entries 0.2 - 0.6 m Arc Arcilla 3 0.06 - 0.2 m Panizo Pnz 4 5 < 0.06 m Cal Calcita ndice de Alteración Índice de Resistencia Abreviaturas de Tipo de Estructuras Rango Resis. Grado Grado Comp. Mpa Descripción Identificación de Campo Plano de estratificación eleznable con golpes firmes con la punta de martillo de geólogo,puede lingún signo de alteración en el material rocoso. Quizás ligera decoloración sobre .15 Familia de junta secundaria SANA R1 1,0 - 5,0 uperficies de discontinuidades principales sgarse con una navaia Junta única Familia de juntas a decoloración indica alteración, del material rocoso y superficies de discontinuidades. El uede rasgarse con dificultad con una navaia. Se indenta superficialmente ci R2 LIGERA 5 - 25 naterial rocoso descolorido extremadamente es más débil que en su condición sana. punta de una picota æ Familia de junta principal fenos de la mitad del material rocoso esta descompuesto y/o desintegrado a un suelo la o puede ser rasgado o pelado con una navaja el especimen se puede FL Falla MODERADA R3 25 - 50 oca sana o decolorada se presenta como un marco continuo o como núcleo rocoso. acturar con un simple golpe de la picota Familia de fallas lás de la mitad del material rocoso esta descompuesto y/o desintegrado a un suelo. La R4 La muestra se rompe con más de un golpe de la picota 50 - 100 Foliacion IV MUY ALTERAD oca sana o decolorada se presenta como un inúcleo rocoso l especimen requiere muchos golpes de picota para ser fracturad 100 - 250 Cizalla odo el material rocoso esta descompuesto y/o desintegrado a suelo. La estructura original El espaciamiento solo es rasgado o solo se rompe esquirlas de la muestra co VT Veta ESCOMPUE: R6 > 250 de la masa rocosa aun se conserva intacta. el martillo Familia de vetas 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 Comentations La estación presenta óxidos y epídota en fracturas. "Jv" = (Juntas /m3) RQD (%) 99 95 2 91 9 88 6 85 3 82 78 7 75 4 72 69 66 62 59 56 52 49 45 7 42 39 36 33 29 25 9 23

N.Q

Por

N.Q Por Coordenadas Inicial N8182963.4 E 210519.4 Estudio Evaluación Geomecánica del Puente de la Cultura N 8182958.3 E210499.2 Final Orientación de la Cara Valoración del Macizo Rocoso (RMR) Tramo Rango de Valores Estación Azimut Buzamlento Desde Hasta Parámetros Valor E-15 N250 Ωm 20.0m Valor Estimado Tipo de Roca Frecuencia Fracturas (Jv (15) 100-250 (12) 50-100 (7) X 25-50 (4) <25(2) <5(1) 1 7 2 17 RQD % (20) 75-9 (13) 25 (8) <25 100% SPACIAMIENT 3 15 (20) 0,6-2 X 0.2-0.6 (10) 0.06-0.2 (8) < 0.06 (6) 1-3 m (6) <0.1mm (6) Rugosa (2) X 10-20 m (4) 1 - 5 mm (3) X Lisa Espaciamiento (4) 3-10m (5) 0.1-1.0n (5) Ug.rugo 4A 2 Orientación) > 20 m JRC Comentarios (1) > 20 m (1) > 5 m (1) Espejo de falla (1) Suave > 5 mm CONDICIÓN).1-1.0mm Dir. Buz. Buz Estruc Tipo Espesor Mpa rrada 48 1 0.76 4-6 Ox/Ep 133 DE CORIDAD. uy rugosa Ligirugosa 3 JF 108 69 1.07 4-6 Ox/Ep >5 111 JUNTAS RELLENO Duro < 5mm х Duro> 5mm (2) Suave < 5 mm 4D 4 JF npio 0.93 R)) 4E 5 JF 331 57 4-6 Ox/Ep 3a4 120 ALTERACION (6) Lig Alterada. Mod Alterada (3) Muy Alterada. (2) Descompuesta GUA SUBTER (15) X Humedo (10) Saturado (7) Goteo (4) Fluin 5 15 Valor Total RMR (suma de valoración de 1 al 5) Clase de Macizo Rocoso 69 GSI 70-75 RMR 100 - 81 60 - 41 20-0 40 - 21 DESCRIPCION I MUY BUENA II BUENA III REGULAR IV MALA V MUY MALA PROYECCIÓN ESTEREOGRÁFICA DE LA ESTACIÓN FOTOGRAFIA DE LA ESTACIÓN Abreviatura del Tipo de Roca ESTACIÓN GEOMECÁNICA 15 Gneis Gabro Dip / Direction Tufo Volcáni 1 m 86 / 360 2 m 69 / 106 3 m 57 / 331 Tonalita Gabrodiorita Abreviaturas de Abreviatura Espaciamiento Tipos de Rellend Ox Óxido > 2 m 0.6 - 2 m Ep Epidota Equal Area over Herrispher 28 Poles 28 Entrine 0.2 - 0.6 m Arc Arcilla 0.06 - 0.2 m Pnz Panizo 4 THE STATES < 0.06 m Cal Calcita 5 ndice de Alteración Índice de Resistencia Abreviaturas de Tipo de Estructuras Rango Resis. Grado Grado Identificación de Campo Comp. Mpa Descripción Plano de estratificación lingún signo de alteración en el material rocoso. Quizás ligera decoloración sobre leznable con golpes firmes con la punta de martillo de geólogo,puede JS Familia de junta secundari SANA R1 1,0-5,0 uperficies de discontinuidades principales soarse con una navaia .1 Junta única Familia de juntas uede rasparse con dificultad con una navaja. Se indenta superficialmente co a decoloración indica alteración, del material rocoso y superficies de discontinuidades. El R2 LIGERA 5 - 25 aterial rocoso descolorido extremadamente es más débil que en su condición sana. punta de una picota Familia de junta principal .P lenos de la mitad del material rocoso esta descompuesto y/o desintegrado a un suelo la o puede ser rasgado o pelado con una navaja el especimen se puede FL Falla MODERADA R3 25 - 50 oca sana o decolorada se presenta como un marco continuo o como núcleo rocoso. fracturar con un simple golpe de la picota FF Familia de fallas vlás de la mitad del material rocoso esta descompuesto y/o desintegrado a un suelo. La R4 La muestra se rompe con más de un golpe de la picota 50 - 100 Foliacion IV MUY ALTERAD oca sana o decolorada se presenta como un inúcleo rocoso l especimen requiere muchos golpes de picota para ser fracturado 100 - 25 Cizalla l'odo el material rocoso esta descompuesto y/o desintegrado a suelo. La estructura original l espaciamiento solo es rasgado o solo se rompe esquirlas de la muestra co 1/T Veta DESCOMPUE R6 > 250 le la masa rocosa aun se conserva intacta. el martillo Familia de vetas 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 Comentarios a estación presenta familias con presencia de diques de Oz. "Jv" = (Juntas /m3) RQD (%) 99 95.2 91.9 88.6 85.3 82 78.7 75.4 72 69 66 62 59 56 52 49 45.7 42 39 36 33 29 25.9 23
Coordenadas Inicial N8183049.4 E210786.4 Estudio Evaluación Geomecánica del Puente de la Cultura Final N8183032.5 E 210783.6 Orientación de la Cara Valoración del Macizo Rocoso (RMR) Tramo Estación Desde Parámetros Azimut Buza Hasta Rango de Valores Valor E-19 N215 45 NO 0m 17.50m Valor Estimado Frecuencia Fracturas (Jv) Tipo de Roca SISTENCIA COMPRESIVA (N 1 7 (15) 100-25 50-100 (7) X 25-(20) 75-90 (8) 2 17 Tonalita 100% PACIAMIENTO (m (10) X 0.06-0.2 3 10 (20) 0,6-2 (15) 0.2-0.6 (8) (8) 1-3 m (6) <0.1mm (6) Rugosa (4) 3-10m (5) 0.1-1.0r (5) Lig.rug (1) > 20 m (1) X > 5 mm (1) Espejo de falla Cino Orientación Espaciamiento 2) X 10-20 m 4A 2 JRC Comentarios Tipo CONDICIÓN 48 1 40 3 Dir. Buz. Buz: Mpa Estruc. Espe 1-1.0mm -5 mm 1 JF 83 30 0.47 4-6 Ox/Ep 3 a 4 83 DE Lig rugosa) X Lisa 2 JF 208 74 0.44 4-6 Ox/Ep > 5 121 JUNTAS Duro < 5mm х uro> 5mm (2) Suave < 5 mm (1) Suave > 5 mm 4D 4 LENO 345 82 1.08 4-6 Ox/Ep >5 107 3 JF (6) Lig. Alterada. Mod Alterada. (3) Muy Alterada. (2) 4E 5 escomouesta (15) X Humedo (10) Saturado (7) Goten (4) 5 15 Valor Total RMR (suma de valoración de 1 al 5) Clase de Macizo Rocoso 64 GSI 70-75 RMR 100 - 81 80 - 61 60 - 41 40 - 21 20-0 DESCRIPCION IMUYBUENA IIBUENA IIIREGULAR IVMALA VMUYMALA PROYECCIÓN ESTEREOGRÁFICA DE LA ESTACIÓN OTOGRAFÍA DE LA ESTACIÓN Abreviatura del Tipo de Roca ESTACIÓN GEOMECÁNICA 19 Gn Gneis Gabro Gb ID Dip / Direction Τv Tufo Volcanico 1 = 30 / 083 2 = 74 / 208 3 = 82 / 345 То Tonalita Gd Gabrodiorita Ahreviatura Abreviaturas de Espaciamiento Tipos de Rellend Ox Óxido > 2 m 1 2 0.6 - 2 m Ep Epidota Equal Area ower Herrisphe 28 Poles 28 Entries 3 0.2 - 0.6 m Arc Arcilla 0.06 - 0.2 m Pnz Panizo 4 < 0.06 m Cal Calcita 5 ndice de Alteración Índice de Resistencia Abreviaturas de Tipo de Estructuras Rango Resis. Grado Grado Identificación de Campo Comp. Mpa Descripción Plano de estratificación EP JS Familia de junta secundaria Ningún signo de alteración en el material rocoso. Quizás ligera decoloración sobre Deleznable con golpes firmes con la punta de martillo de geólogo.puede SANA R1 1,0 - 5,0 1 superficies de discontinuidades principales rasgarse con una navaia JU Junta única JF Familia de juntas La decoloración indica alteración, del material rocoso y superficies de discontinuidades. El Puede rasgarse con dificultad con una navaja. Se indenta superficialmente co LIGERA . R2 5 - 25 naterial rocoso descolorido extremadamente es más débil que en su condición sana. punta de una picota JP Familia de junta principal denos de la mitad del material rocoso esta descompuesto y/o desintegrado a un suelo la No puede ser rasgado o pelado con una navaja el especimen se puede fracturar con un simple golpe de la picota FL Falla ш MODERADA R3 25 - 50 roca sana o decolorada se presenta como un marco continuo o como núcleo rocoso. Familia de fallas FF R4 La muestra se rompe con más de un golpe de la picota 50 - 100 FN Foliacion Más de la mitad del material rocoso esta descompuesto y/o desintegrado a un suelo. La N MUY ALTERAD oca sana o decolorada se presenta como un núcleo rocoso. R5 El especimen requiere muchos golpes de picota para ser fracturado 100 - 250 CZ Cizalla VT Todo el material rocoso esta descompuesto y/o desintegrado a suelo. La estructura original El espaciamiento solo es rasgado o solo se rompe esquirlas de la muestra co Veta V DESCOMPUESTA R6 > 250 Familia de vetas de la masa rocosa aun se conserva intacta. el martillo VF 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 99 952 91.9 88.6 85.3 82 78.7 75.4 72 69 66 62 59 66 52 49 45.7 42 39 36 33 29 25 9 23 Comentarios Presencia de vetilia de O2. potencia 0.04m. "Jv" = (Juntas /m3) RQD (%)

Por:

N.Q

N.Q Coordenadas Inicial N8182961.3 E210775.6 Estudio Evaluación Geomecánica del Puente de la Cultura N8182979.5 E210771.1 Final Orientación de la Cara Valoración del Macizo Rocoso (RMR Tramo Estación Azimut **Buzamiente** Desde Hasta Parámetros Rango de Valores Valor E-23 N140 58 NE 0m 19.0m Valor Estimado Frecuencia Fracturas (Jv) Tipo de Roca TENCIA COMPRESIVA (M (7) X : 1 7 (15) 100-2 (12) 50-100 (20) (8) 2 13 Gabrodiorita 100% 20) 0.6-3 (15) 0.2-0.6 80 > (8) 3 10 Y Espaciamiento (6) 1-3 m 6) <0.1mm 6) Rugosa 4) X 3-10m 0.1-1.0n Lig.rugo 2) 10-20 m 4) 1 - 5 mm 3) X Lisa Orientación) > 20 m 4A 4 JRC Comentarios (1) \$ 20 m (1) \$ 5 mm (1) Espejo de falla (1) Suave > 5 mm CONDICIÓN 1-1.0mm Dir. Buz. Buzamlento Tipo Espesor m Mpa errada 5 mm 48 Estruc 1 JF 29 84 0.25 4-6 Ox/Ep 3 a 4 131 DE ORIDAD Lig.rugosa 3 ruge 287 41 0.26 4-6 Ox/Ep 2 a 3 115 JUNTAS ELLENO Duro < 5mm х Duro> 5mm Suave < 5 mm 4D 4 JF 2 mpia L'TERACION 5) Lig Alterada X And Alterada Muy Alterada. (2) Descrimouesta 4E 5 GUA SUBTER (15) X Humedo (10) Saturado (7) Goter 5 15 Valor Total RMR (suma de valoración de 1 al 5) Clase de Macizo Rocoso 62 GSI 50-55 RMR 100 - 81 60 - 41 40 - 21 20 - 0 80 - 61 DESCRIPCION I MUY BUENA II BUENA III REGULAR IV MALA V MUY MALA PROYECCIÓN ESTEREOGRÁFICA DE LA ESTACIÓN FOTOGRAFÍA DE LA ESTACIÓN Abreviatura del Tipo de Roca ESTACIÓN GEOMECÁNICA 23 Gn Gneis Orientations ID Dip / Direction Gh Gabro Tufo Volcánico Τv 1 m 84 / 029 2 m 41 / 287 Tonalita To Gabrodiorita Gd Abreviatura Abreviaturas de Tipos de Rellend Espaciamiento Ox Óxido 1 > 2 m 0.6 - 2 m Ep Epidota Equal Area Lower Hemisphe 25 Poles 25 Entries 0.2 - 0.6 m Arc Arcilla 3 0.06 - 0.2 m Pnz Panizo 4 Cal Calcita 5 < 0.06 m dice de Alteración Índice de Resistencia Abreviaturas de Tipo de Estructuras Rango Resis. Grado Grado Identificación de Campo Comp. Mpa EP Plano de estratificación Descripción JS Familia de junta secundaria Ningún signo de alteración en el material rocoso. Quizás ligera decoloración sobre Deleznable con golpes firmes con la punta de martillo de geólogo,puede SANA R1 1,0 - 5,0 superficies de discontinuidades principales rasgarse con una navaia .111 Junta única JF Familia de juntas a decoloración indica alteración, del material rocoso y superficies de discontinuidades. El Puede rasgarse con dificultad con una navaja. Se indenta superficialmente cor Ш LIGERA R2 5 - 25 naterial rocoso descolorido extremadamente es más débil que en su condición sana. punta de una picota JP Familia de junta principal fenos de la mitad del material rocoso esta descompuesto y/o desintegrado a un suelo la No puede ser rasgado o pelado con una navaja el especimen se puede FL Falla Ш MODERADA R3 25 - 50 roca sana o decolorada se presenta como un marco continuo o como núcleo rocoso. fracturar con un simple golpe de la picota FF Familia de fallas 50 - 100 R4 La muestra se rompe con más de un golpe de la picota FN Foliacion Más de la mitad del material rocoso esta descompuesto y/o desintegrado a un suelo. La IV MUY ALTERADA oca sana o decolorada se presenta como un núcleo rocoso. R5 El especimen requiere muchos golpes de picota para ser fracturado 100 - 250 CZ Cizalla Todo el material rocoso esta descompuesto y/o desintegrado a suelo. La estructura original El espaciamiento solo es rasgado o solo se rompe esquirlas de la muestra co VT Veta DESCOMPUEST/ R6 > 250 V de la masa rocosa aun se conserva intacta. el martillo VF Familia de vetas 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 Comentarios La estación presenta fracturamiento moderado. "Jv" = (Juntas /m3) RQD (%) 99 95.2 91.9 88.6 85.3 82 78.7 75.4 72 69 66 62 59 56 52 49 45.7 42 39 36 33 29 25.9 23

Por:

Coordenadas Inicial N8183253.5 E211106.6 Estudio Evaluación Geomecánica del Puente de la Cultura N8183241.4 E211127.0 Final Orientación de la Cara Valoración del Macizo Rocoso (RMR) Tramo Estación Azlmut Buzamlento Desde Hasta Parámetros Rango de Valores Valor E-26 N150 Ωm 24.0m Valor Estimado Frecuencia Fracturas (Jv) Tipo de Roca ESISTENCIA COMPRESIVA (MPa (12) 50-100 (7) 25-5 (4) X 1 4 (15) 100-250 QD % (20) (13) (8) 2 17 ESPACIAMIENTO (m (10) 0.06-0.2 (8) < 0.06 3 15 Tufo Volcanico 100% (20) 0,6-2 (15) X 0.2-0.6 1-3 m <0.1mm Rugosa Duro < 5mm (2) X 10-20 m (1) > 20 m (4) 1 - 5 mm (1) X > 5 mm (3) X Lisa (1) X > 5 mm (2) Suave < 5 mm</td> 1) Suave > 5 mm Suave > 5 mm Espaciamiento (4) 3-10m (5) 0.1-1.0mm (5) Lig.rugosa 4A 2 Orientación ICS JRC Comentarios CONDICIÓN Dir. Buz. Buzamlento Tipo Estruc Espesor m Mpa rrada 48 1 40 3 0.97 4-6 DE JE uy rugosa 168 86 0.65 4-6 Ox 1 a 2 40 JUNTAS ELLENO х Duro> 5mm 4D 4 JF npio 0.72 6-8 X (3) Muy Alterada. (2) (0) 4E 5 JF. 198 6 Ox 1a2 38 LITERACION. Lig Alterada. Mod Alterada)escompuesta (15) X Humedo (10) Saturado (7) Goteo (4) Fluid 5 15 Valor Total RMR (suma de valoración de 1 al 5) Clase de Macizo Rocoso 66 GSI 75-80 RMR 100 - 81 60 - 41 20 - 0 40-21 DESCRIPCION I MUY BUENA II BUENA III REGULAR IV MALA V MUY MALA PROYECCIÓN ESTEREOGRÁFICA DE LA ESTACIÓN FOTOGRAFIA DE LA ESTACIÓN Abreviatura del Tipo de Roca ESTACIÓN GEOMECÂNICA 26 Gneis 1 Gabro ID Dip / Direction Tufo Volcán 1 m 85/275 2 m 86/168 3 m 06/198 Tonalita Gabrodiorita Abreviaturas de Abreviatura Tipos de Relleno Espaciamiento Ox Óxido ≥2 m 0.6 - 2 m Ep Epidota Equal Area Lower Hemisph 20 Poles 20 Entries 15 0.2-0.6 m Arc Arcilla 0.06 - 0.2 m Pnz Panizo 4 5 < 0.06 m Cal Calcita Índice de Alteración Índice de Resistencia Abreviaturas de Tipo de Estructuras Rango Resis. Grado Grado Identificación de Campo Comp. Mpa Descripción Plano de estratificación JS Familia de junta secundaria ingún signo de alteración en el material rocoso. Quizás ligera decoloración sobre eleznable con golpes firmes con la punta de martillo de geólogo,puede SANA R1 1,0 - 5,0 uperficies de discontinuidades principales asgarse con una navaia . Junta única Familia de juntas a decoloración indica alteración, del material rocoso y superficies de discontinuidades. El Puede rasgarse con dificultad con una navaia. Se indenta superficialmente c R2 LIGERA 5 - 25 aterial rocoso descolorido extremadamente es más débil que en su condición sana. unta de una picota Familia de junta principal JP enos de la mitad del material rocoso esta descompuesto y/o desintegrado a un suelo la lo puede ser rasgado o pelado con una navaja el especimen se puede Falla MODERADA R3 25 - 50 oca sana o decolorada se presenta como un marco continuo o como núcleo rocoso. fracturar con un simple golpe de la picota Familia de fallas F lás de la mitad del material rocoso esta descompuesto y/o desintegrado a un suelo. La R4 La muestra se rompe con más de un golpe de la pic 50 - 100 Foliacion IV MUY ALTERADA oca sana o decolorada se presenta como un núcleo rocoso R5 El especimen requiere muchos golpes de picota para ser fracturado 100 - 250 Cizalla odo el material rocoso esta descompuesto y/o desintegrado a suelo. La estructura original El espaciamiento solo es rasgado o solo se rompe esquirlas de la muestra co V Veta DESCOMPUE R6 > 250 de la masa rocosa aun se conserva intacta. el martillo Familia de vetas 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 26 99 95.2 91.9 86.8 85.3 82 78.7 75.4 72 69 66 62 59 56 52 49 45.7 42 39 36 33 29 25.9 23 "Jv" = (Juntas /m3) Comentarios Presencia de fracturas con buzamientos altos. RQD (%)

N.Q

Por:

Valoración del Macizo Rocoso RMR

Coorde	nadas	Inicia	al N81	33321.2 E210	1955.5			Estudio	Evaluación Geomeca	ánica del Puente de	la Cultura							Por:	N.Q					
	N Esta	⊧ina ∣º ción	I N81	33301.3 E210 Orient Azimut	1966.1 ación de l	de la Cara Buzamiento			Tramo Hasta	Pari	Parámetros			Valoración del Macizo Rocoso (RMR) Rango de Valores								Valor		
	E-2	29	N150			70 SO		Om	23.0m			Valor Estima							22				-	
				Tipo de R	oca			ŀ	recuencia Fracturas (.	IV) RESISTENCIA C	OMPRESIVA (MPa)	>250	(15)	100-250	(12)	50-100	(7)	25-50	(4)	<25(2) <5(1) <	1(0) X	1	0	
									N* Fract. / ml.	RQD %	RQD %		(20)	75-90	(17)	50-75	(13)	25-50	(8)	<25	(3)	2	13	
	Tufo Volcánic			100%		-	-		11	ESPACIAMIENT	ESPACIAMIENTO (m)		(20)	0,6-2	(15) X	0.2-0.6	(10)	0.06-0.2	2 (8)	< 0.06	(5)	3	15	
No	Tipo	Orienta	ción	1 Espaciamiento		Re	elleno	JCS	Comentarios	100000000000000000000000000000000000000	PERSISTENCIA	<1m	(6)	1-3 m	(4) X	3-10m	(2)	10-20 m	n (1)	> 20 m	(0)	4A	4	
Familia	Estruc.	Dir. Buz.	Buzamlente	III.	10	Tipo	Espesor mm	Mpa		CONDICION	ABERTURA	Cerrada	(6)	<0.1mm	(5)	0.1-1.0mm	(4)	1-5 m	m (1)	> 5 mm	(0)	4B	1	
1	dF F	140	70	1.03	4-0	OX OX	182	100		DE	RUGUSIDAD	Muy rugosa	(6)	Rugosa	(0)	Lig rugosa	(3)	Lisa	(1)	Espejo de faita	(0)	40	3	
2	JF.	290	02	1.23	24	0.	142			JUNIAS	RELLENO	Limpio	(6)	Luro < Smm	(4) X	Duros Sinn	(2)	Suave «	(1) and (1)	Suave > 5 mm	(0)	40	4	
3	JF-	235	21	1.25	2.4	DufCel	182	-			ALTERACION	Door	(0)	Uy: Alteraua.	(c)	Roburada	(3)	Muy Ab	eraua; (2)	Descompuesta	(0)	4E	0	
4	-16 17	00 190	01	1.63	4-0	0 OKrcal 182 - AGUA SUBTERMANEA					ANEA	Secu	(10) X	Walar To	tol DMD	Saturado	LV.	Guieu	(4) 0.1 ol 5.)	Filuju	(u)	0	15	
9	JF	100	01	1.07				-			50-55			Ch		ase de Macizo Roc		cionu	eratij					
	<u> </u>	<u> </u>								- GSI			MD	100 9	1	20 61	60	41	40 21	20.0	_	60)	
-		-	-									DESCE	PIPCION	I MIN BU	ENIA	IL BLIENA	III REC	S II AD	40-21 B/ MALA	V MLIY MAI	A	~~		
-		-	PROVECC	ÓN ESTEREOCR					-	_	EOTOCRAFIA D	ELA ESTA	ACIÓN	TNOT DO		II DOLINA	III KLO	JOLAN	IV INPALIA	VINCTINA	~		_	
										0		LALON					Abreviatura del Tino de Roca							
N ESTACIÓN GEOMECÁNICA 29								The Party of Concession in Concession in which the		and the second		1000	AND A DESCRIPTION OF	AT 210		100	Gn	Parteria	Gneis	ue nou	-	-		
5 Orientations							1.11 12	and the second s								Gh			-					
ID Dip/Direction							1 at Ling	and the second s								Ty Tufo Volcánico								
1 m 76/140							the state of the	A A A A A A A A A A A A A A A A A A A								To	To Tonalita							
3 = 27 / 226						13 S - H	1 I have a set								Gd	Gd Gabrodiorita								
4 m 56 / 085 5 m 61 / 100							A PARTICIPAL SALES													-				
	W 20 6 38,1P					and the second second	and the second of the second o									w								
							1 1 150	the second					-		Abreviati	ira A	breviati	aturas de						
		7-1							Same and a state of the second			1				1 and the	a sea to a		spaciami	nento npos d		ue Relieno		
		15	Act	HOISE	1 L				and the first							1	1 >2		m C	x	Óxido	,		
		X	X		Equal	Vea			and the state	the state of	SE C	U. JA			A A		2	0.6 -	2 m E	p	Epidota	a		
		X	1	11		Lower Herrisphere 15 Poles			and the second second		the state	-Station	-		1 mars	and the second second		3	0.2 - 0	0.6 m A	IC	Arcilla	1	
			a shires							and the second se		And a state of the second state of the			the second	100	4	0.06 -	0.2 m P	nz	Panizo	o		
																		5	< 0.0	6m C	al	Calcita	a	
	Grade		Índice de Alteración Grado Índice de Resistencia Rango R											Resis.		Abreviat	uras de Tipo	de Estr	uctur	as				
	Graat				l I)escripció	n		Identi			ición de (Comp.	Мра		EP	Plano de est	ratificació	n	_				
i i	SANA		Ningún sig	vingún signo de alteración en el material rocoso. Quizás ligera decoloración sob-					a Deleznable con golpes firme			n la punta de martillo de geólogo,puede				10-	5.0	1 4	JS	Familia de junt	a secund	aria	_	
	-		superficies de discontinuidades principales							rasgarse con una n	arse con una navaja						- >-	4 4	JU	Junta u	inica		_	
11	110	GERA	La decoloración indica alteración. del material rocoso y superficies de discontinuid						lades. El R2 Puede rasgarse con dificultad con un				na navaja. Se indenta superficialmente con				25	1 1	JF	Familia d	e juntas		_	
		ourse,	material rocoso descolorido extremadamente les más debil que en su condición s						ana.	la punta de una pic	unta de una picota							4 4	JP	Familia de jur	ita princij	Jal	_	
ш	MOD	DERADA	Menos de la mitad del material rocoso esta descompuesto y/o desintegrado a un					n suelo la R3	lo puede ser rasgado o pelado co		una navaja el especimen se puede				25 -	50	1 4	FL	Fal	a		_		
-			roca sana o decolorada se presenta como un marco continuo o como núcleo roco						fracturar con un simple golpe de la picota					10.00				4	FF	Familia d	e fallas		_	
IV	MUY ALTERADA Más de la mitad del material rocoso esta descompuesto y/o desintegrado a un suelo						ielo. La R4	R4 La muestra se rompe con más de un golpe de la picota 50 - 1							100	4	FN	Foliacion						
	roca sana o decolorada se presenta como un nucleo rocoso.							R5	R5 El especimen requiere muchos golpes de picota para ser fracturado						100 -	250	4	CZ	Cizalla			_		
v	DESCO	MPUESTA	Todo el material rocoso esta descompuesto y/o desintegrado a suelo. La estructu de la mara rocora aun se concenua interta						ra original R6	El espaciamiento so	solo se rompe esquirlas de la muestra con			> 250	50		VT	Vel	a		_			
			de la mas	a rocosa aun se co	unserva Inta	ua.				ei mannio								l l	VF	Familia de		vetas		
	1.d - / 1	alon ha?				44 40	40 44 45	40 47 4		04 05 00 07	00												_	
-	av" = (Jui RQD	(%)	5 99	o / 8 95.2 91.9 88.6	9 10 85.3 82	11 12 78.7 75.4	13 14 15 72 69 66	62 59 50	5 19 20 21 22 23 5 52 49 45.7 42 39	24 25 26 27 36 33 29 25	9 23 Come	ntarios	Presencia	a de óxidos re	ellenado fi	racturas.								

Por: N.Q

Coordenadas Inicial N8183202.6 E210876.1 Estudio Evaluación Geomecánica del Puente de la Cultura N8183214.2 E210876.1 Final Orientación de la Cara Valoración del Macizo Rocoso (RMR Tramo Estación Azlinut Desde Parámetros Rango de Valores Buzamlento Hasta Valor N160 15.0m Valor Estimado Tipo de Roca Frecuencia Fracturas (Jv) ISTENCIA COMPRESIVA (MP 50-100 (7) X 25-50 1 7 (15) 100-25 QD % (20) 75-9 2 13 (13) X 25-5 SPACIAMIENTO (m 3 10 Tonalita 100% (20) 0,6-2 0.2-0.6 (10) X 0.06-0.2 (8) < 0.06 Espaciamiento (6) 1-3 m 6) <0.1mm 6) Rugosa (2) 10-20 m (4) 1 - 5 mm (3) X Lisa Orienta х > 20 m 4A 4 JRC Comentarios (2) 10-20 m (1) > 20 m (4) 1 - 5 mm (1) > 5 mm (3) X Lisa (1) Espejo de falla (2) Suave < 5 mm</td> (1) Suave > 5 mm CONDICIÓN 0.1-1.0mm X 48 Estruc Dir. Buz. тіро Espe Mpa rrada 0 0.30 4-6 Ox/Ep DE Lig.rugosa 3 JF uy rugos 4C 268 64 0.45 2-4 Ox/Ep >5 178 JUNTAS RELLENO Duro < 5mm х Duro> 5mm 4D 4 JF npio 125 0.77 4-6 Ox/Ep 150 Æ 71 >5 6) Lig Alterada Mod Alterada. (3) Muy Alterada. 4E 5 GUA SUBTER (15) X Humedo (10) Saturado (7) Goteo (4) Fluid 5 15 Valor Total RMR (suma de valoración de 1 al 5) Clase de Macizo Rocoso 60 61 GSI RMR 100 - 81 60 - 41 20-0 40-21 DESCRIPCION I MUY BUENA IV MALA V MILY MALA II BUENA III REGULAR PROYECCIÓN ESTEREOGRÁFICA DE LA ESTACIÓN FOTOGRAFÍA DE LA ESTACIÓN Abreviatura del Tipo de Roca ESTACIÓN GEOMECÁNICA 32 Orientations ID Dip / Direction Gabro Tufo Volcáni 1 m 83 / 016 2 m 64 / 268 3 m 71 / 125 Tonalita Gabrodiorita Gd Abreviatura Abreviaturas de Tipos de Relleno Espaciamiento Ox Óxido > 2 m Equal Area Lower Hemisphere 20 Poles 20 Entries 0.6 - 2 m Ep Epidota 0.2 - 0.6 m Arc Arcilla 0.06 - 0.2 m Panizo Pnz 4 Cal Calcita < 0.06 m ndice de Alteración Índice de Resistencia Rango Resis. Abreviaturas de Tipo de Estructura Grado Grado Identificación de Campo Comp. Mpa Descripción Plano de estratificación Familia de junta secundaria lingún signo de alteración en el material rocoso. Quizás ligera decoloración sobre eznable con golpes firmes con la punta de martillo de geólogo,puede .IS SANA R1 1,0-5,0 uperficies de discontinuidades principales soarse con una navaia .11 Junta única Familia de juntas a decoloración indica alteración, del material rocoso y superficies de discontinuidades. El uede rasgarse con dificultad con una navaja. Se indenta superficialmente c R2 5-25 LIGERA aterial rocoso descolorido extremadamente es más débil que en su condición sana. punta de una picota Familia de junta principal JP lenos de la mitad del material rocoso esta descompuesto y/o desintegrado a un suelo la lo puede ser rasgado o pelado con una navaja el especimen se puede EL Falla MODERADA R3 25 - 50 oca sana o decolorada se presenta como un marco continuo o como núcleo rocoso. fracturar con un simple golpe de la picota Familia de falla: R4 La muestra se rompe con más de un golpe de la picota 50 - 100 Foliacion vlás de la mitad del material rocoso esta descompuesto y/o desintegrado a un suelo. La IV. MUY ALTERAD oca sana o decolorada se presenta como un núcleo rocoso R5 especimen requiere muchos golpes de picota para ser fracturado 100 - 250 Cizalla Fodo el material rocoso esta descompuesto y/o desintegrado a suelo. La estructura original l espaciamiento solo es rasgado o solo se rompe esquirlas de la muestra co 1/T Veta ESCOMPUE: R6 > 250 le la masa rocosa aun se conserva intacta. I martillo Familia de vetas 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 99 95.2 91.9 86.8 85.3 82 78.7 75.4 72 89 66 62 59 66 52 49 45.7 42 39 36 33 29 25.9 23 "Jv" = (Juntas /m3) Comentarios La estación presenta óxidos y epídota en fracturas. RQD (%)

NQ

Por

N.Q Coordenadas Inicial N8183234.0 E210797.0 Estudio Evaluación Geomecánica del Puente de la Cultura N8183225.0 E210814.0 Final Orientación de la Cara Valoración del Macizo Rocoso (RMR) Tramo Estación Desde Hasta Parámetros Rango de Valores AzImut Buzamlento Valor E-35 N158 Ωm 18.Dm Valor Estimado 60 SC Frecuencia Fracturas (Jv Tipo de Roca ISTENCIA COMPRESIVA (M 50-100 (7) X 25-5 1 7 (15) 100-2 2 17 (20) 7 X (8) < 100% SPACIAMIENTO (m (5) 3 10 Tonalita (20) 0,6-2 (15) 0.2-0.6 (10) X 0.06-0.2 (8) < 0.06 4A 4 Espaciamiento 5) 1-3 m) <0.1mm) Rugosa) X 3-10m 0.1-1.0mm Ug.rugosa (2) 10-20 m (4) 1 - 5 mm (3) X Lisa Orientación > 20 m JRC Comentarios (2) 10-20 m (1) 2 20 m (4) 1 - 5 mm (1) X > 5 mm (3) X Lisa (1) Espejo de falla (2) Suave < 5 mm</td> (1) Suave > 5 mm CONDICIÓN Estruc Dir. Buz. Buz. m. Tipo Espesor mr Mpa rrada 48 1 0.57 4-6 Ox/Ep DE uy rugosa 4C 3 JF 2a3 JF 24 70 0.21 4-6 Оx 4a5 JUNTAS RELLENO Duro < 5mm х Duro> 5mm 4D 4 mpio (6 4-6 X. (0) 4E 5 Æ 15 47 0.20 Ox >5 ALTERACION 6) Lig Alterada. Mod Alterada. (3) Muv Alterada. (2) Descompuesta 0.81 JF 151 6-8 Ox/Fp 384 (15) X Humedo (10) Saturado (7) Goteo 5 15 Valor Total RMR (suma de valoración de 1 al 5) Clase de Macizo Rocoso 66 GSI 70-75 RMR 100 - 81 60 - 41 20-0 40-21 DESCRIPCION I MUY BUENA II BUENA III REGULAR I V MALA V MUY MALA PROYECCIÓN ESTEREOGRÁFICA DE LA ESTACIÓN FOTOGRAFÍA DE LA ESTACIÓN Abreviatura del Tipo de Roca ESTACIÓN GEOMECÁNICA 35 N Orientations ID Dip / Direction Gabro Tufo Volcáni 1 m 64 / 133 2 m 70 / 024 3 m 47 / 015 4 m 53 / 151 Tonalita Gabrodiorita Gd Abreviatura Abreviaturas de Tipos de Rellend Espaciamiento Ox Óxido >2m Equal Area Jower Hemispher 29 Poles 29 Entries 0.6 - 2 m Ep Epidota 0.2 - 0.6 m Arc Arcilla 0.06 - 0.2 m Pnz Panizo 4 Cal Calcita < 0.06 m 5 ndice de Alteración Índice de Resistencia Abreviaturas de Tipo de Estructuras Rango Resis. Grado Grado Identificación de Campo Descripción Comp. Mpa Plano de estratificación JS Familia de junta secundaria ingún signo de alteración en el material rocoso. Quizás ligera decoloración sobre eznable con golpes firmes con la punta de martillo de geólogo,puede SANA R1 1,0-5,0 uperficies de discontinuidades principales soarse con una navaia 11 Junta única Familia de juntas a decoloración indica alteración, del material rocoso y superficies de discontinuidades. El uede rasgarse con dificultad con una navaja. Se indenta superficialmente c R2 LIGERA 5 - 25 aterial rocoso descolorido extremadamente es más débil que en su condición sana. punta de una picota Familia de junta principal .P lenos de la mitad del material rocoso esta descompuesto y/o desintegrado a un suelo la lo puede ser rasgado o pelado con una navaja el especimen se puede Falla MODERADA R3 25 - 50 oca sana o decolorada se presenta como un marco continuo o como núcleo rocoso. fracturar con un simple golpe de la picota Familia de fallas Más de la mitad del material rocoso esta descompuesto y/o desintegrado a un suelo. La R4 La muestra se rompe con más de un golpe de la picota 50 - 100 Foliacion IV MUY ALTERAD oca sana o decolorada se presenta como un inúcleo rocoso especimen requiere muchos golpes de picota para ser fracturado 100 - 25 Cizalla fodo el material rocoso esta descompuesto y/o desintegrado a suelo. La estructura original l espaciamiento solo es rasgado o solo se rompe esquirlas de la muestra co **WT** Veta ESCOMPUE: R6 > 250 de la masa rocosa aun se conserva intacta. el martillo Familia de vetas 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 Comentarios La estación presenta óxidos y epidota en fracturas "Jv" = (Juntas /m3) RQD (%) 99 95.2 91.9 88.6 85.3 82 78.7 75.4 72 69 66 62 59 56 52 49 45.7 42 39 36 33 29 25.9 23

Por

N.Q Coordenadas Inicial N8183302.5 E210878.4 Estudio Evaluación Geomecánica del Puente de la Cultura N8183316.1 E210872.8 Final Orientación de la Cara Valoración del Macizo Rocoso (RMR) Tramo Estación Azimut Bu Desde Hasta Parámetros Rango de Valores Valor E-38 N155 60 NE 0m 15.0m Valor Estimado Т Frecuencia Fracturas (Jv) 1 7 Tipo de Roca SISTENCIA COMPRESIVA (MI (7) X 25-50 (4) (15) 100-25 (12) 50-100 25/21 <5/ (20) 75-9 (8) 2 13 X 25-Gabrodiorita 100% 3 10 12 (20) 0,6-2 10) X 0.06-0.2 (6) (4) X 3-10m (5) 0.1-1.0mm (5) Lig.rugosa Espaciamiento) 1-3 m <0.1mm Rugosa (2) 10-20 m (4) 1 - 5 mm (3) X Lisa 1) > 20 m 1) > 5 mm 1) Espejo de falla Tino Orientación ICS 4A 4 JRC Comentarios CONDICIÓN Mpa Dir. Buz. Buz Tipo rada -5 mm X 48 0 Fetrus JF 217 0.32 6-8 Ox/Ep >5 183 DE 3 2 JF 26 61 0.30 4-6 Ox/Ep >5 323 JUNTAS Duro < 5mm Juro> 5mm) X Suave < 5 mm (1) Suave > 5 mm 4D 2 180 50 0.53 6-8 Ox/Ep >5 108 3 JF Lig. Alterada. 5) **X** Vod Alterada (3) Muy Alterada (2) Deenomouesta (0) 4E 5 UA SURTER (15) X Humedo (10) Saturado (7) Goteo (4) F 5 15 Valor Total RMR (suma de valoración de 1 al 5) Clase de Macizo Rocoso 60 59 GSI RMR 100 - 81 80 - 61 60-41 40 - 21 20-0 DESCRIPCION I MUY BUENA II BUENA III REGULAR IV MALA V MUY MALA PROYECCIÓN ESTEREOGRÁFICA DE LA ESTACIÓN FOTOGRAFIA DE LA ESTACIÓN Abreviatura del Tipo de Roca ESTACIÓN GEOMECÁNICA 38 Gn Gneis Gb Gabro ID Dis / Direction Τv Tufo Volcánio 1 m 71 / 217 2 m 61 / 026 3 m 50 / 180 To Tonalita Gabrodiorita Gd Abreviatura Abreviaturas de Espaciamiento Tipos de Rellend 1 > 2 m Ox Óxido Equal Area Lower Hemispher 25 Poles 25 Entries 2 0.6 - 2 m Ep Epidota 3 0.2 - 0.6 m Arc Arcilla 0.06 - 0.2 m Pnz Panizo 4 Cal Calcita 5 < 0.06 m dice de Alteración Índice de Resistencia Abreviaturas de Tipo de Estructuras Rango Resis. Grado Grado Comp. Mpa Identificación de Campo Plano de estratificación Descripción EP .IS Familia de junta secundaria Ningún signo de alteración en el material rocoso. Quizás ligera decoloración sobre Deleznable con golpes firmes con la punta de martillo de geólogo,puede SANA R1 1,0 - 5,0 superficies de discontinuidades principales rasgarse con una navaia .11 Junta única Familia de juntas Puede rasgarse con dificultad con una navaia. Se indenta superficialmente con .15 La decoloración indica alteración, del material rocoso y superficies de discontinuidades. El н LIGERA R2 5 - 25 naterial rocoso descolorido extremadamente es más débil que en su condición sana. punta de una picota JP Familia de junta principal fenos de la mitad del material rocoso esta descompuesto y/o desintegrado a un suelo la No puede ser rasgado o pelado con una navaja el especimen se puede FL Falla ш MODERADA R3 25 - 50 roca sana o decolorada se presenta como un marco continuo o como núcleo rocoso. racturar con un simple golpe de la picota FF Familia de fallas 50 - 100 Más de la mitad del material rocoso esta descompuesto y/o desintegrado a un suelo. La R4 La muestra se rompe con más de un golpe de la picota Foliacion FI IV MUY ALTERADA roca sana o decolorada se presenta como un núcleo rocoso. R5 El especimen requiere muchos golpes de picota para ser fracturado 100 - 250 Cizalla C Todo el material rocoso esta descompuesto y/o desintegrado a suelo. La estructura original El espaciamiento solo es rasgado o solo se rompe esquirlas de la muestra co V Veta V DESCOMPUESTA R6 > 250 de la masa rocosa aun se conserva intacta. el martillo VF Familia de vetas 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 Comentarios La estación presenta óxidos y epidota en fracturas. "Jv" = (Juntas /m3) 99 95.2 91.9 88.6 85.3 82 78.7 75.4 72 69 66 62 59 56 52 49 45.7 42 39 36 33 29 25.9 23 RQD (%)

Por:

Coordenadas Inicial N8183225.8 E210745.0 Estudio Evaluación Geomecánica del Puente de la Cultura Final N8183158.5 E210804.9 Orientación de la Cara Valoración del Macizo Rocoso (RMR Tramo Estación Desde Azimut Buzamient Hasta Parámetros Rango de Valores Valor E-41 N140 85 SO 0m 90.0m Valor Estimado Tipo de Roca Frecuencia Fracturas (Jv) ISTENCIA COMPRESIVA (M 50-100 (7) X 1 7 2D % (20) (8) 2 17 Tonalita 100% SPACIAMIENTO 3 15 0.6.2 X 0.2-0.6 (10) X ((8) < 0.06) 1-3 m <0.1mm Rugosa Duro < 5mm (1) > 20 m (1) > 5 mm (1) Espejo de falla (1) Suave > 5 mm X 3-10m 0.1-1.0n Lig.rugo (2) 10-20 m (4) 1 - 5 mm (3) X Lisa X 4A 0 Orientación Espaciamiento Pallan JRC Comentarios CONDICIÓN Dir. Buz. Buz Tipo 0.1-1.0mm Estruc Esc Mpa X 48 0 ads JF 150 62 Ox DE .ig.rugosa 4C 3 rugose 2 JF 30 63 Ox JUNTAS X (2) Suave < 5 mm 4D 4 aro> 5mm 255 60 Ox 3 JF Lig Alterada X of Alte (3) Musc Alterarta 4E 5 UA SUBTER X Humedo Sat (7) Gi 5 15 Valor Total RMR (suma de valoración de 1 al 5) Clase de Macizo Rocoso 66 GSI 70-75 RMR 100 - 81 60 - 41 40 - 21 20 - 0 80-61 DESCRIPCION IMUYBUENA IIBUENA IIIREGULAR MMALA VMUYMALA PROYECCIÓN ESTEREOGRÁFICA DE LA ESTACIÓN FOTOGRAFÍA DE LA ESTACIÓN Abreviatura del Tipo de Roca ESTACIÓN GEOMECÁNICA 4 Gn Gneis Gb Gabro ID Dip / Direction Τv Tufo Volcánico 1 m 62 / 150 2 m 63 / 030 3 m 60 / 255 Tonalita То Gabrodiorita Gd Abreviatura Abreviaturas de Tipos de Relleno Espaciamiento > 2 m Ox Óxido 1 Equal Area ower Hemisphe 77 Poles 4 Entries 2 0.6 - 2 m Ep Epidota Arc Arcilla 0.2 - 0.6 m 3 0.06 - 0.2 m Pnz Panizo 4 < 0.06 m Cal Calcita 5 ndice de Alteración Índice de Resistencia Abreviaturas de Tipo de Estructuras Rango Resis. Grado Grado Identificación de Campo Comp. Mpa Descripción EP Plano de estratificación JS Familia de junta secundaria Ningún signo de alteración en el material rocoso. Quizás ligera decoloración sobre Deleznable con golpes firmes con la punta de martillo de geólogo,puede SANA R1 1,0 - 5,0 1 uperficies de discontinuidades principales rasgarse con una navaja Junta única JF Familia de juntas La decoloración indica alteración. del material rocoso y superficies de discontinuidades. El Puede rasgarse con dificultad con una navaja. Se indenta superficialmente co LIGERA R2 5 - 25 11 naterial rocoso descolorido extremadamente es más débil que en su condición sana. la punta de una picota JP Familia de junta principal fenos de la mitad del material rocoso esta descompuesto y/o desintegrado a un suelo la No puede ser rasgado o pelado con una navaja el especimen se puede FL Falla Ш MODERADA R3 25 - 50 fracturar con un simple golpe de la picota Familia de fallas roca sana o decolorada se presenta como un marco continuo o como núcleo rocoso. FF 50 - 100 R4 La muestra se rompe con más de un golpe de la picota FN Foliacion Más de la mitad del material rocoso esta descompuesto y/o desintegrado a un suelo. La IV MUY ALTERADA roca sana o decolorada se presenta como un núcleo rocoso. R5 El especimen requiere muchos golpes de picota para ser fracturado 100 - 250 CZ Cizalla VT DESCOMPUESTA Todo el material rocoso esta descompuesto y/o desintegrado a suelo. La estructura original de la masa rocosa aun se conserva intacta. El espaciamiento solo es rasgado o solo se rompe esquirlas de la muestra con Veta v R6 > 250 el martillo VE Familia de vetas 'Jv' = (Juntas /m3) 5 6 7 8 9 10 11 12 13 14 15 16 17 18 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 24 25 26 27 28 24 25 26 27 28 24 25 26 27 28 24 25 26 27 28 24 25 26 27 28 25 RQD (%)

Por: N.Q

Coordenadas Inicial N 8183276.1 E210802.7 Estudio Evaluación Geomecánica del Puente de la Cultura N8183257.6 E210812.1 Final Orientación de la Cara Valoración del Macizo Rocoso (RMR) Tramo Estación Azlmut Desde Hasta Parámetros Rango de Valores Buzamlente Valor E-44 N160 0m 21.0m Valor Estimado П Frecuencia Fracturas (Jv) Tipo de Roca 1 7 SISTENCIA COMPRESIVA (I (12) 50-100 (7) X 25-5 2 17 (20) X 100% SPACIAMIENTO (r 3 15 Gabrodiorita (15) X 0.2-0.6 (10) 0.06-0.2 (8) < 0.06 Orientación Espaciamiento 1-3 m <0.1mm Rugosa</pre> (4) 3-10m (5) 0.1-1.0mm (5) Lig.rugosa 10-20 m 1 - 5 mm 1 X Lisa 4A 2 4B 1 lipo RSISTEN > 20 m JRC Comentarios (1) X > 5 mm (1) Espejo de falla (1) Suave > 5 mm CONDICIÓN Dir. Buz. Buzamlento Tipo Estruc Espesor mr Mpa errada 0.57 4-6 Dx/Ep/Qz DE uy rugosa 4C 3 JF 49 x JF 352 42 0.74 6-8 Ox/Ep > 5 105 JUNTAS RELLENO Duro < 5mm Duro> 5mm) Suave < 5 mm (4D 4 oldri 1E 0.97 4E 5 JF 217 78 6-8 Ox/Ep >5 115 ALTERACION 5) Lig. Alterada. 5 X Mod Alterada. Muy Alterada. (2) Descom 0.43 Ox/Fp 122 JF 59 2-4 1 a 2 (15) X Humedo (10) Saturado (7) Goteo Fluio 5 15 Valor Total RMR (suma de valoración de 1 al 5) Clase de Macizo Rocoso 69 GSI 70-75 RMR 100 - 81 60 - 41 20 - 0 40-21 DESCRIPCION I MUY BUENA II BUENA III REGULAR IV MALA V MUY MALA PROYECCIÓN ESTEREOGRÁFICA DE LA ESTACIÓN FOTOGRAFÍA DE LA ESTACIÓN Abreviatura del Tipo de Roca ESTACIÓN GEOMECÁNICA 44 Gabro ID Dip / Directio Tufo Volcánio 1 m 49 / 197 2 m 42 / 352 3 m 78 / 217 4 m 59 / 251 Tonalita Gabrodiorita Gd Abreviatura Abreviaturas de Espaciamiento Tipos de Relleno Ox Óxido > 2 m Equal Area Lower Hemisphe 32 Poles 32 Entries 0.6 - 2 m Ep Epidota 0.2 - 0.6 m Arc Arcilla 0.06 - 0.2 m Panizo Pnz 4 < 0.06 m Cal Calcita 5 ndice de Alteración Índice de Resistencia Rango Resis. Abreviaturas de Tipo de Estructuras Grado Grado Identificación de Campo Comp. Mpa Descripción Plano de estratificación .15 Familia de junta secundaria ingún signo de alteración en el material rocoso. Quizás ligera decoloración sobre leznable con golpes firmes con la punta de martillo de geólogo,puede SANA R1 1,0-5,0 uperficies de discontinuidades principales asgarse con una navaia Junta única Familia de juntas a decoloración indica alteración, del material rocoso y superficies de discontinuidades. El Puede rasgarse con dificultad con una navaja. Se indenta superficialmente co R2 LIGERA 5 - 25 aterial rocoso descolorido extremadamente es más débil que en su condición sana. punta de una picota Familia de junta principal P enos de la mitad del material rocoso esta descompuesto y/o desintegrado a un suelo la lo puede ser rasgado o pelado con una navaja el especimen se puede Falla MODERADA R3 25 - 50 fracturar con un simple golpe de la picota oca sana o decolorada se presenta como un marco continuo o como núcleo rocoso. Familia de fallas lás de la mitad del material rocoso esta descompuesto y/o desintegrado a un suelo. La R4 La muestra se rompe con más de un golpe de la picota 50 - 100 Foliacion IV MUY ALTERAD oca sana o decolorada se presenta como un inúcleo rocoso especimen requiere muchos golpes de picota para ser fracturado 100 - 25 Cizalla odo el material rocoso esta descompuesto y/o desintegrado a suelo. La estructura original l espaciamiento solo es rasgado o solo se rompe esquirlas de la muestra co VT Veta ESCOMPUE: R6 > 250 le la masa rocosa aun se conserva intacta. el martillo Familia de vetas 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 Comentarios Presencia de dique de Qz, potencia de hasta 0.5m. "Jv" = (Juntas /m3) RQD (%) 99 95.2 91.9 88.6 85.3 82 78.7 75.4 72 69 66 62 59 56 52 49 45.7 42 39 36 33 29 25.9 23

N.Q

Por:

N.Q Por: Inicial N 8183352.2 E210779.5 Coordenadas Estudio Evaluación Geomecánica del Puente de la Cultura Final N8183335.3 E210785.1 Orientación de la Cara Valoración del Macizo Rocoso (RMR Tramo Estación Azimut Hasta Par Rango de Valores E-47 N160 55 SO Om 18.0m Valor Estimado Frecuencia Fracturas (Jv) Tipo de Roca ESISTENCIA COMPRESIVA (MPa) (15) 100-250 (12) 50-100 (7) X 25-50 (4) <25(2) <5(1) <1(0) 1 7 (20) RQD % (17) 50-75 (13) X 25-50 (8) 13 2 100% SPACIAMIENTO (m (15) X 0.2-0.6 (10) 0.06-0.2 (8) < 0.06 3 15 Gabrodiorita (20) 0.6-2 (4) 3-10m (5) 0.1-1.0mm (5) Lig.rugosa (2) X 10-20 m (4) 1 - 5 mm (3) X Lisa Espaciamiento (6) 1-3 m (6) <0.1mm (6) Rugosa Orientació PERSISTENCIA 1m 1) ≥ 20 m 4A 2 JRC Comentarios CONDICIÓN ABERTURA (1) X 5 mm 1) Espejo de falla Dir. Buz. Buzi Tipo Mpa Estruc m. Espesor m errada 48 1 24 82 0.58 4-6 Ox/Ep 4 a 5 140 DE 40 3 JF luy rugosa 280 55 0.24 4-6 Ox 1 a 2 115 JUNTAS RELLENO Duro < 5mm (4) X Duro> 5mm (2) Suave < 5 mm (1) Suave > 5 mm JF 4D 4 2 mpio 249 64 4-6 ALTERACION (5) X Mod Alterada. 3 JF 1.53 Ox 1a2 (6) Lig. Alterada. Muy Alterada. (2) Descompuesta 4E 5 JF 49 20 1.13 4-6 Ox 3a4 (15) X Humedo (10) Saturado (7) Goteo (4) Flujo 5 15 Valor Total RMR (suma de valoración de 1 al 5) Clase de Macizo Rocoso 65 GSI 65-70 RMR 100 - 81 60 - 41 20 - 0 80 - 61 40 - 21 DESCRIPCION I MUY BUENA II BUENA III REGULAR IV MALA V MUY MALA PROYECCIÓN ESTEREOGRÁFICA DE LA ESTACIÓN FOTOGRAFÍA DE LA ESTACIÓN Abreviatura del Tipo de Roca ESTACIÓN GEOMECÁNICA 47 Gn Gneis Gabro ID Die / Direction Gb Tufo Volcánico Tv 1 m 82 / 024 2 m 55 / 280 3 m 64 / 249 4 m 20 / 049 Tonalita To Gabrodiorita Gd Abreviatura Abreviaturas de Espaciamiento Tipos de Rellend > 2 m Ox Óxido 1 2 0.6 - 2 m Ep Epidota Equal Area 20 Poles 20 Entries 0.2 - 0.6 m Arc Arcilla 3 0.06 - 0.2 m Pnz Panizo 4 5 < 0.06 m Cal Calcita ndice de Alteración Índice de Resistencia Abreviaturas de Tipo de Estructuras Rango Resis. Grado Grado Descripción Identificación de Campo Comp. Mpa EP Plano de estratificación IS Ningún signo de alteración en el material rocoso. Quizás ligera decoloración sobre Deleznable con golpes firmes con la punta de martillo de geólogo,puede Familia de junta secundaria SANA R1 1,0 - 5,0 superficies de discontinuidades principales rasdarse con una navaia JU Junta única Familia de juntas La decoloración indica alteración, del material rocoso y superficies de discontinuidades. El Puede rasgarse con dificultad con una navaja. Se indenta superficialmente con JF LIGERA R2 5 - 25 naterial rocoso descolorido extremadamente es más débil que en su condición sana. a punta de una picota Familia de junta principal JP fenos de la mitad del material rocoso esta descompuesto y/o desintegrado a un suelo la No puede ser rasgado o pelado con una navaja el especimen se puede EL Falla Ш MODERADA R3 25 - 50 oca sana o decolorada se presenta como un marco continuo o como núcleo rocoso. fracturar con un simple golpe de la picota FF Familia de fallas R4 La muestra se rompe con más de un golpe de la picota 50 - 100 FN Foliacion Más de la mitad del material rocoso esta descompuesto y/o desintegrado a un suelo. La IV MUY ALTERADA oca sana o decolorada se presenta como un núcleo rocoso. R5 El especimen requiere muchos golpes de picota para ser fracturado 100 - 250 CZ Cizalla Todo el material rocoso esta descompuesto y/o desintegrado a suelo. La estructura original El espaciamiento solo es rasgado o solo se rompe esquirlas de la muestra co VT Veta V ESCOMPUES R6 > 250 de la masa rocosa aun se conserva intacta. el martillo VF Familia de vetas 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 99 95.2 91.9 88.6 85.3 82 78.7 75.4 72 69 66 62 59 66 52 49 45.7 42 39 36 33 29 25.9 33 "Jv" = (Juntas /m3) ROD (%)

Anexos C Análisis Estereográfico

Anexos C.1

Análisis Estereográfico en Estaciones

Figura C.1.1.- Estereograma de estructuras de las 46 estaciones de mapeo en el área de estudio.

Figura C.1.2.- Estereograma de estructuras por litología - Gabrodiorita.

Figura C.1.3.- Estereograma de estructuras por litología - Tonalita.

Figura C.1.4.- Estereograma de estructuras por litología - Tufo Volcánico.

Figura C.1.5.- Estereograma de estructuras para las estaciones de mapeo en la margen izquierda en la zona de estudio

Figura C.1.6.- Estereograma de estructuras para las estaciones de mapeo en la margen derecha en la zona de estudio

Figura C.1.7.- Estereograma de estructuras para las estaciones de mapeo en la margen izquierda en la zona de estudio – Gabrodiorita.

Figura C.1.8 - Identificación de las familias principales y secundarias de la gabrodiorita en la margen izquierda.

Figura C.1.9 – Diagrama de Roseta, margen Izquierda en la zona de estudio - Gabrodiorita

Figura C.1.10 - Estereograma de estructuras para las estaciones de mapeo en la margen izquierda en la zona de estudio – Tonalita.

Figura C.1.11.- Identificación de las familias principales y secundarias de la Tonalita en la margen izquierda.

Figura C1..12 – Diagrama de Roseta, margen Izquierda en la zona de estudio – Tonalita.

Figura C.1.13.- Estereograma de estructuras para las estaciones de mapeo en la margen derecha en la zona de estudio – Gabrodiorita.

Figura C.1.14 - Identificación de las familias principales y secundarias de la Gabrodiorita en la margen derecha.

Figura C.1.15 – Diagrama de Roseta, margen Derecha en la zona de estudio – Gabrodiorita.

Figura C.1.16.- Estereograma de estructuras para las estaciones de mapeo en la margen derecha en la zona de estudio – Tonalita.

Figura C.1.17 - Identificación de las familias principales y secundarias de la Tonalita en la margen derecha.

Figura C.1.18 – Diagrama de Roseta, margen Derecha en la zona de estudio – Tonalita.

Figura C.1.19.- Estereograma de estructuras para las estaciones de mapeo en la margen derecha en la zona de estudio – Tufo volcánico.

Figura C.1.20 - Identificación de las familias principales y secundarias en el tufo volcánico en la margen derecha.

Figura C.1.21 – Diagrama de Roseta, margen Derecha en la zona de estudio – Tufo Volcánico.

Anexos C.2

Análisis Estereográfico en Sondajes

Figura C.2.1.- Estereograma de estructuras por litología del taladro AUS-PC-01 ubicado en el estribo derecho.

Figura C.2.2.- Estereograma de estructuras por tipo de juntas del taladro AUS-PC-01.

Figura C.2.3.- Estereograma de estructuras por litología del taladro AUS-PC-02 ubicado en el estribo derecho.

Figura C.2.4.- Estereograma de estructuras por tipo de juntas del taladro AUS-PC-02.

Figura C.2.5.- Estereograma de estructuras por litología del taladro AUS-PC-03 ubicado en el pilar derecho.

Figura C.2.6.- Estereograma de estructuras por tipo de juntas del taladro AUS-PC-03.

Figura C.2.7.- Estereograma de estructuras por litología del taladro AUS-PC-04 ubicado en el pilar derecho.

Figura C.2.8 - Estereograma de estructuras por tipo de juntas del taladro AUS-PC-04.

Figura C.2.9 – Estereograma de estructuras por litología del taladro AUS-PC-05 ubicado en el pilar izquierdo.

Figura C.2.10 - Estereograma de estructuras por tipo de juntas del taladro AUS-PC-05.

Figura C.2.11.- Estereograma de estructuras por litología del taladro AUS-PC-05A ubicado en el pilar izquierdo.

Figura C.2.12 – Estereograma de estructuras por tipo de juntas del taladro AUS-PC-05A.

Figura C.2.13.- Estereograma de estructuras por litología del taladro AUS-PC-06 ubicado en el pilar izquierdo.

FIgura C.2.14 - Estereograma de estructuras por tipo de juntas del taladro AUS-PC-06.

Figura C.2.15 – Estereograma de estructuras por litología del taladro AUS-PC-07 ubicado en el estribo izquierdo.

Figura C.2.16.- Estereograma de estructuras por tipo de juntas del taladro AUS-PC-07.

Figura C.2.17 - Estereograma de estructuras por litología del taladro AUS-PC-08 ubicado en el estribo izquierdo.

Figura C.2.18 – Estereograma de estructuras por tipo de juntas del taladro AUS-PC-08.

Figura C.2.19 – Estereograma de estructuras de los taladros AUS-PC-01 y AUS-PC-02 para la toba del estribo derecho.

Figura C.2.20 – Estereograma de estructuras de los taladros AUS-PC-03 y AUS-PC-04 para la gabrodiorita gnéisica del pilar derecho.

Figura C.2.21 – Estereograma de estructuras de los taladros AUS-PC-03 y AUS-PC-04 para la tonalita gnéisica del pilar derecho.

Figura C.2.22 – Estereograma de estructuras de los taladros AUS-PC-05, AUS-PC-05A y AUS-PC-06 para la gabrodiorita gnéisica del pilar izquierdo.

Figura C.2.23 – Estereograma de estructuras de los taladros AUS-PC-05, AUS-PC-05A y AUS-PC-06 para la tonalita gnéisica del pilar izquierdo.

Figura C.2.24 – Estereograma de estructuras de los taladros AUS-PC-07 y AUS-PC-08 para la gabrodiorita gnéisica del estribo izquierdo.

Figura C.2.25 – Familia de estructuras de los taladros AUS-PC-07, AUS-PC-08 y el mapeo estructural de la margen izquierda para la gabrodiorita gnéisica del estribo izquierdo.

Figura C.2.26 – Familia de estructuras de los taladros AUS-PC-05, AUS-PC-05A, AUS-PC-06 y el mapeo estructural de la margen izquierda para la gabrodiorita gnéisica del pilar izquierdo.

Figura C.2.27 – Familia de estructuras de los taladros AUS-PC-05, AUS-PC-05A, AUS-PC-06 y el mapeo estructural de la margen izquierda para la tonalita gnéisica del pilar izquierdo.

Figura C.2.28 – Familia de estructuras de los taladros AUS-PC-03, AUS-PC-04 y el mapeo estructural de la margen derecha para la gabrodiorita gnéisica del pilar derecho.

Figura C.2.29 – Familia de estructuras de los taladros AUS-PC-03, AUS-PC-04 y el mapeo estructural de la margen derecha para la tonalita gnéisica del pilar derecho.

Figura C.2.30 – Familia de estructuras de los taladros AUS-PC-01, AUS-PC-02 y el mapeo estructural de la margen derecha para la toba del estribo derecho.

Anexos C.3 Análisis Cinemático en Sondajes

Anexos D

Sistemas de clasificación

y paráme	Cálc tros del cr	ulo del Índice de Masa iterio de rotura de Hoek - INGRESO DE DAT	n Rocosa, RMi Brown para el macizo OS	o rocoso	
Solicitado:		*****			
Proyecto: Evaluación Geomecán	ica Puente de	e la Cultura			
Estación Nº: 01					
Roca: Gabrodiorita					
Calculado: A.A.					Valores de Entrada
Resistencia a la Compresión Uniaxial	de la Roca Int	acta (MPa)		σ _c =	100
Constante de Hoek-Brown				m, =	25.8
Factor de Condición de Rugosidad		lisa y plana = 1; li	sa y ondulada = 2; rugosa y plana = 2	factor jR =	2
Factor de Condición de Alteración	1	fresca = 1, revestido de calcita = 3, revestido d	e arcilla = 3, relleno de arcilla = 6 - 10	factor jA =	3
Factor de Tamaño y Terminación		juntas muy cortas = 6; juntas	cortas = 2 - 4; juntas medianas = 1 - 2	factor jL =	1
Terminación de Junta			continuo = 1; discontinuo = 2		1
		Volumen de Bloque (m ³)	(ingresar datos en m3)	Vb =	
Tamaño de Bloque, Densidad de	(Solo ingrese uno de los parámetros)	Designación de Calidad de Roca		RQD =	
Juntas, o grado de juntas		Número de Juntas Volumétrico Jv =		7	
		Espaciamiento Promedio de Juntas (*) (m) Sa =			
Forma de los bloques		cúbica = 27; ligeramente larga o plana= 3	6; larga o plana = 76; muy larga o plana	a=250 β=	27
(*) Espaciamiento promedio Sa = (S	1 + S2 +)/n	(S1, S2.: Espaciamientos de cada famil	a de juntas establecida; n = núme	ro de familias	de juntas establecidas)
		CÁLCULOS			
Indiaa da Masa Rasasa				RMi =	5.889
indice de masa Rocosa			clasifica	ción RMi:	alta
		- Berner and States I and		<i>s</i> =	0.003467804
Parámetros del criterio de rotura rocoso	a para Hoek	- Brown para el macizo	m _b no d	listurbado =	4.211503505
			m	disturbado =	2.277891776

y paráme	Cálc tros del cr	ulo del Índice de Masa iterio de rotura de Hoek - INGRESO DE DAT	a Rocosa, RMi Brown para el macizo 'OS	o rocoso	
Solicitado:					
Proyecto: Evaluación Geomecán	ica Puente de	e la Cultura			
Estación Nº: 05					
Roca: Gabrodiorita Calculado: A.A.		*****	******		Valores de Entrada
Resistencia a la Compresión Uniaxial	de la Roca Int	acta (MPa)		σ _c =	50
Constante de Hoek-Brown				m _i =	25.8
Factor de Condición de Rugosidad		lisa y plana = 1; li	sa y ondulada = 2, rugosa y plana = 2	factor jR =	2
Factor de Condición de Alteración	1	fresca = 1; revestido de calcita = 3; revestido d	e arcilla = 3, relleno de arcilla = 6 - 10	factor jA =	3
Factor de Tamaño y Terminación		juntas muy cortas = 6; juntas	cortas = 2 - 4; juntas medianas = 1 - 2	factor jL =	1
Terminación de Junta			continuo = 1; discontinuo = 2		1
		Volumen de Bloque (m ³)	(ingresar datos en m3)	Vb =	
Tamaño de Bloque, Densidad de	(Solo ingrese uno de los parámetros)	Designación de Calidad de Roca		RQD =	
Juntas, o grado de juntas		Número de Juntas Volumétrico		Jv =	15
		Espaciamiento Promedio de Juntas	(') (m)	Sa =	
Forma de los bloques		cúbica = 27, ligeramente larga o plana= 3	6; larga o plana = 76; muy larga o plana	a = 250 β =	27
(*) Espaciamiento promedio Sa = (S	1 + S2 +)/n	(S1, S2 Espaciamientos de cada famil	a de juntas establecida; n = núme	ro de familias	de juntas establecidas)
		CÁLCULOS			
Indice de Masa Rocosa				RMi =	1.176
Indice de Masa Rucusa			clasifica	ción RMi:	media
2		- Barris Barris Barris		<i>s</i> =	0.000553579
Parámetros del criterio de rotura rocoso	a para Hoek	- Brown para el macizo	m _b no d	listurbado =	2.341192346
			m _b	disturbado =	1.037700568

y paráme	Cálc tros del cr	ulo del Índice de Masa iterio de rotura de Hoek - INGRESO DE DAT	Rocosa, RMi Brown para el macizo OS	rocoso	
Solicitado:					
Proyecto: Evaluación Geomecáni	ica Puente de	e la Cultura			
Estación Nº: 09					
Roca: Gabrodiorita Calculado: A.A.					Valores de Entrada
Resistencia a la Compresión Uniaxial	de la Roca Int	acta (MPa)		σ _c =	80
Constante de Hoek-Brown				m _i =	25.8
Factor de Condición de Rugosidad		lisa y plana = 1; lis	sa y ondulada = 2, rugosa y plana = 2	factor jR =	2
Factor de Condición de Alteración		resca = 1, revestido de calcita = 3, revestido de	e arcilla = 3, relleno de arcilla = 6 - 10	factor jA =	3
Factor de Tamaño y Terminación		juntas muy cortas = 6; juntas	cortas = 2 - 4; juntas medianas = 1 - 2	factor jL =	1
Terminación de Junta			continuo = 1; discontinuo = 2		1
		Volumen de Bloque (m ³)	(ingresar datos en m3)	Vb =	
Tamaño de Bloque, Densidad de	(Solo ingrese uno de los parámetros)	Designación de Calidad de Roca		RQD =	
Juntas, o grado de juntas		Número de Juntas Volumétrico		Jv =	11
		Espaciamiento Promedio de Juntas	(') (m)	Sa =	
Forma de los bloques		cúbica = 27; ligeramente larga o plana= 3	6, larga o plana = 75; muy larga o plana	= 250 β =	27
(*) Espaciamiento promedio Sa = (S	1 + S2 +)/n	(S1, S2. Espaciamientos de cada famil	a de juntas establecida; n = núme	ro de familias	de juntas establecidas)
		CÁLCULOS			
Indiaa da Maas Raasaa				RMi =	2.734
indice de Masa Rocosa			clasifica	ción RMi:	media
				<i>s</i> =	0.001168073
Parámetros del criterio de rotura rocoso	a para Hoek	- Brown para el macizo	m _b no d	isturbado =	2.973103684
			m	disturbado =	1.428994419

y paráme	Cálc tros del cr	ulo del Índice de Masa iterio de rotura de Hoek - INGRESO DE DAT	n Rocosa, RMi Brown para el macizo 'OS	o rocoso	
Solicitado:					
Proyecto: Evaluación Geomecán	ica Puente de	e la Cultura			
Estación Nº: 13					
Roca: Gabrodiorita Calculado: A.A.		*****	*****		Valores de Entrada
Resistencia a la Compresión Uniaxial	de la Roca Int	acta (MPa)		σ _c =	80
Constante de Hoek-Brown				m _i =	25.8
Factor de Condición de Rugosidad		lisa y plana = 1; li	sa y ondulada = 2, rugosa y plana = 2	factor jR =	2
Factor de Condición de Alteración		fresca = 1, revestido de calcita = 3, revestido d	e arcilla = 3, relleno de arcilla = 6 - 10	factor jA =	3
Factor de Tamaño y Terminación		juntas muy cortas = 6; juntas	cortas = 2 - 4; juntas medianas = 1 - 2	factor jL =	1
Terminación de Junta			continuo = 1; discontinuo = 2		1
		Volumen de Bloque (m ³)	(ingresar datos en m3)	Vb =	
Tamaño de Bloque, Densidad de	(Solo ingrese uno de los parámetros)	Designación de Calidad de Roca		RQD =	
Juntas, o grado de juntas		Número de Juntas Volumétrico		Jv =	11
		Espaciamiento Promedio de Juntas	(') (m)	Sa =	
Forma de los bloques		cúbica = 27, ligeramente larga o plana= 3	6; larga o plana = 75; muy larga o plana	a = 250 β =	27
(*) Espaciamiento promedio Sa = (S	1 + S2 +)/n	(S1, S2., Espaciamientos de cada famil	a de juntas establecida; n = núme	ro de familias	de juntas establecidas)
		CÁLCULOS			
Indica da Masa Rosaca				RMi =	2.734
muice de Masa Rocosa			clasifica	ción RMi:	media
		- Barris Barris Barris		<i>s</i> =	0.001168073
Parámetros del criterio de rotura rocoso	a para Hoek	- Brown para el macizo	m _b no d	listurbado =	2.973103684
			<i>m</i> _b	disturbado =	1.428994419

y paráme	Cálc tros del cr	ulo del Índice de Masa iterio de rotura de Hoek - INGRESO DE DAT	n Rocosa, RMi Brown para el macizo OS	o rocoso	
Solicitado:					
Proyecto: Evaluación Geomecán	ica Puente de	e la Cultura			
Estación Nº: 17					
Roca: Gabrodiorita					V. I
Calculado: A.A.					valores de Entrada
Resistencia a la Compresión Uniaxial	de la Roca Int	acta (MPa)		σ _c =	80
Constante de Hoek-Brown				m, =	25.8
Factor de Condición de Rugosidad		lisa y plana = 1; li	sa y ondulada = 2; rugosa y plana = 2	factor jR =	2
Factor de Condición de Alteración	1	fresca = 1; revestido de calcita = 3; revestido d	e arcilla = 3, relleno de arcilla = 6 - 10	factor jA =	4
Factor de Tamaño y Terminación		juntas muy cortas = 6; juntas	cortas = 2 - 4; juntas medianas = 1 - 2	factor jL =	1
Terminación de Junta			continuo = 1; discontinuo = 2		1
		Volumen de Bloque (m ³)	(ingresar datos en m3)	Vb =	
Tamaño de Bloque, Densidad de	(Solo ingrese uno de los parámetros)	Designación de Calidad de Roca		RQD =	
Juntas, o grado de juntas		Número de Juntas Volumétrico		Jv =	11
		Espaciamiento Promedio de Juntas	(') (m)	Sa =	
Forma de los bloques		cúbica = 27, ligeramente larga o plana= 3	6; larga o plana = 76; muy larga o plana	a = 250 β =	27
(*) Espaciamiento promedio Sa = (S	1 + S2 +)/n	(S1, S2.: Espaciamientos de cada famil	a de juntas establecida; n = núme	ro de familias	de juntas establecidas)
		CÁLCULOS			
la dia da Marco Danasa				RMi =	2.158
indice de Masa Rocosa			clasifica	ción RMi:	media
		- Barris Barris Barris		<i>s</i> =	0.000727906
Parámetros del criterio de rotura rocoso	a para Hoek	- Brown para el macizo	m _b no d	listurbado =	2.555547115
04049360037-2			m	disturbado =	1.166860914

y paráme	Cálc tros del cr	ulo del Índice de Masa iterio de rotura de Hoek - INGRESO DE DAT	a Rocosa, RMi Brown para el macizo 'OS	o rocoso	
Solicitado:		*****			
Proyecto: Evaluación Geomecán	ica Puente de	e la Cultura			
Estación Nº: 47					
Roca: Gabrodiorita					V. 1
Calculado: A.A.					Valores de Entrada
Resistencia a la Compresión Uniaxial	de la Roca Int	acta (MPa)		σ _c =	80
Constante de Hoek-Brown				m, =	25.8
Factor de Condición de Rugosidad		lisa y plana = 1; li	sa y ondulada = 2; rugosa y plana = 2	factor jR =	2
Factor de Condición de Alteración	1	fresca = 1; revestido de calcita = 3; revestido d	e arcilla = 3, relleno de arcilla = 6 - 10	factor jA =	3
Factor de Tamaño y Terminación		juntas muy cortas = 6; juntas	cortas = 2 - 4, juntas medianas = 1 - 2	factor jL =	1
Terminación de Junta			continuo = 1; discontinuo = 2		1
		Volumen de Bloque (m ³)	(ingresar datos en m3)	Vb =	
Tamaño de Bloque, Densidad de	(Solo ingrese uno de los parámetros)	Designación de Calidad de Roca		RQD =	
Juntas, o grado de juntas		Número de Juntas Volumétrico Jv =		11	
		Espaciamiento Promedio de Juntas	(*) (m)	Sa =	
Forma de los bloques		cúbica = 27; ligeramente larga o plana= 3	6; larga o plana = 76; muy larga o plana	a=250 β=	27
(*) Espaciamiento promedio Sa = (S	i1 + S2 +)/n	(S1, S2.: Espaciamientos de cada famil	a dejuntas establecida; n = núme	ro de familias	de juntas establecidas)
		CÁLCULOS			
Indiaa da Masa Rasasa				RMi =	2.734
inuice ue masa Rocosa			cla sifica	ción RMi:	media
		- Berner and States Line		<i>s</i> =	0.001168073
Parámetros del criterio de rotura rocoso	a para Hoek	- Brown para el macizo	m _b no d	listurbado =	2.973103684
			m	disturbado =	1.428994419

Anexos E Análisis Geotécnico Capacidad de carga admisible y calculo de asentamiento

		CAPACIDAD DE CARGA DE CIMENTACIONES					
		Alternativa 1: Puente e	en Arco				
		Estribo Izquierdo - Nivel de Ci	mentación 5 m.				
oyecto : Evaluación G	eomecánica Puente de	la Cultura	Ejecutado po	r :			
oyecto N° :			Revisado por	:			
oicación : Arequipa			Fecha	:			
Material de fundación =	Gabrodiorita 1	METODO DE SERRANO Y OLALLA (2001)	Parámetros H	loek y Brown			
VALOR GSI =	54		mb=	1.04759			
			s=	0.00047			
PARÁMETRO mi =	28						
	475		Parámetros g	eomecánicos de cálculo			
OCS(mpa) =	1/5		ß=	22 9160 Mpa			
Prof. fundación (m) =	5		ζ=	0.0034			
Peso especifico (KN/m3) =	26		Condiciones	de contorno			
Valor de $\alpha(0) =$	40		a1-	130 kPo			
	40		σ*1=	0.0091			
Valor de i (°) =	0		Nβ =	2.70			
			Fp =	35			
Disturbancia D =	1		Fm =	6.5			
	12 1		F =	227.5			
Prof. empotramiento (m) =	5	Carga de hundimiento = 61.795 MPa					
		Capacidad admisible = 0.272 MPa					
tas:		Capacidad admisible = 2.7 kg/cm ²					

		CAPACIDAD DE CARGA DE CIMEN	TACIONES	
		Alternativa 1: Puente en Ar	со	
		Pilar Principal (Margen Izquierda) - Nivel de	Cimentación 10 m	l.
Proyecto : Evaluación G	eomecánica Pu	ente de la Cultura	Ejecutado por	:
Proyecto N° :			Revisado por	:
Ubicación : Arequipa			Fecha	
Material de fundación =	Gabrodiorita 1	METODO DE SERRANO Y OLALLA (2001)	Parámetros Ho	oek y Brown
VALOR GSI =	54		mb=	1.04759
			s=	0.00047
PARAMETRO mi =	28		Parámetros ge	omecánicos de cálculo
UCS (Mpa) =	175	i l		
Prof fundación (m) =	10		β= 7=	22.9160 Mpa
	10		,-	0.0004
Peso especifico (KN/m3) =	26		Condiciones d	e contorno
Valor de α (°) =	50		σ1=	260 kPa
			σ *1 =	0.0148
Valor de i (°) =	0		Nβ = En =	3.00
Disturbancia D =	1		Fm =	6.5
			F =	227.5
Prof. empotramiento (m) =	10	Carga de hundimiento = 68.670 MPa		
		Capacidad admisible = 0.302 MPa		
Notas:		Capacidad admisible = 3.0 kg/cm ²		
UCS: Resistencia a la compresión l	No confinada.			

		CAPACIDAD DE CARGA DE CIME	NTACIONES	
		Alternativa 1: Puente en	Arco	
		Pilar Principal (Margen Derecha) - Nivel d	e Cimentación 10	m.
Proyecto : Evaluación G	eomecánica Pu	ente de la Cultura	Ejecutado po	or :
Proyecto N° :			Revisado po	r :
Jbicación : Arequipa			Fecha	:
Material de fundación =	Tonalita 1	METODO DE SERRANO Y OLALLA (2001)	Parámetros	Hoek y Brown
VALOR GSI =	52		mb=	0.64866
			s=	0.00034
PARÁMETRO mi =	20		Parámetros	noomocánicos do cálculo
UCS (Mpa) =	133		Farametros	geomecanicos de calculo
			β =	10.7841 Mpa
Prof. fundación (m) =	10	× ·	ζ =	0.0064
Peso especifico (KN/m3) =	26		Condiciones	de contorno
Valor de α (°) =	30		σ1=	260 kPa
			σ*1 =	0.0305
Valor de i (°) =	0		$N\beta =$	3.80
Disturbancia D =	1		Fm =	6.5
			- F =	227.5
Prof. empotramiento (m) =	10	Carga de hundimiento = 40.911 MPa		
		Capacidad admisible = 0.180 MPa		
lotas:		Capacidad admisible = 1.8 kg/cm ²		
JCS: Resistencia a la compresión N	No confinada.			

		CAPACIDAD DE CARGA DE CIMEN	TACIONES	
		Alternativa 1: Puente en Al	со	
		Estribo Derecho - Nivel de Cimenta	ación 5 m.	
Proyecto : Evaluación Ge	omecánica Pu	ente de la Cultura	Ejecutado po	or :
Proyecto N° :			Revisado po	r :
Ubicación : Arequipa			Fecha	:
Material de fundación =	Toba 2	METODO DE SERRANO Y OLALLA (2001)	Parámetros I	Hoek y Brown
VALOR GSI =	70		mb=	3.04076
			s=	0.02812
PARAMETRO mi =	10		Parámetros	reomecánicos de cálculo
UCS (Mpa) =	14		i ulunetioo g	geomesamoos de salouis
Deef fundación (m) -	-		β=	5.3213 Mpa
Prof. fundación (m) =	5	×	ς-	0.0243
Peso especifico (KN/m3) =	13		Condiciones	de contorno
Valor de a (º) =	30		σ1=	65 kPa
	50		σ*1=	0.0365
Valor de i (°) =	0		Nβ =	3.90
Disturbancia D =	0.2		Fp =	20
Disturbancia D -	0.2		F =	60
Prof. empotramiento (m) =	5	Carga de hundimiento = 20.624 MPa		
		Capacidad admisible = 0.344 MPa		
Notas:		Capacidad admisible = 3.4 kg/cm ²		
UCS: Resistencia a la compresión No	o confinada.			
		CAPACIDAD DE CARGA DE CI	MENTACIONES	
--	----------------------	---------------------------------------	-----------------	------------------------
		Alternativa 2: Puente de Volad	lizos Sucesivos	
		Estribo Izquierdo - Nivel de Cir	mentación 5 m.	
oyecto : Evaluación G	eomecánica Puente de	la Cultura	Ejecutado po	r :
oyecto N° :			Revisado por	:
bicación : Arequipa			Fecha	:
Material de fundación =	Gabrodiorita 1	METODO DE SERRANO Y OLALLA (2001)	Parámetros H	loek y Brown
VALOR GSI =	54		mb=	1.04759
			s=	0.00047
PARÁMETRO mi =	28			
LICS (Mpa) =	175		Parametros g	eomecánicos de cálculo
0C3 (Mpa) -	175		β=	22.9160 Mpa
Prof. fundación (m) =	5	×	ζ=	0.0034
_				
Peso específico (KN/m3) =	26		Condiciones	de contorno
Valor de α (°) =	10		σ1=	130 kPa
			σ*1 =	0.0091
Valor de i (°) =	0		Nβ =	4.10
	1.25		Fp =	35
Disturbancia D =	1		Fm =	6.5
Prof. empotramiento (m) =	5		F =	227.5
FIOL empotramiento (m) =	5	Carga de hundimiento = 93.877 MPa		
		Capacidad admisible = 0.413 MPa		
4		Capacidad admisible = $4.1 ka/am^2$		
nas: S: Posistonoia a la comprosión N	lo confinado	Capacidad admisible - 4.1 kg/cm		

	~	CAPACIDAD DE CARGA DE CIME	ENTACIONES	
		Alternativa 2: Puente de Voladizo	os Sucesivos	
	2	Pilar 1 (Margen Izquierda) - Nivel de C	imentación 10 m.	
Proyecto : Evaluación G	eomecánica Pue	ente de la Cultura	Ejecutado p	or :
Proyecto N° :			Revisado po	r :
Jbicación : Arequipa			Fecha	:
Material de fundación =	Gabrodiorita 1	METODO DE SERRANO Y OLALLA (2001)	Parámetros	Hoek y Brown
VALOR GSI =	54		mb=	1.04759
			s=	0.00047
PARAMETRO mi =	28		Parámetros	acomocánicos do cálculo
UCS (Mpa) =	175		Falametros	geomecanicos de calculo
			β =	22.9160 Mpa
Prof. fundación (m) =	10	× I	ζ=	0.0034
Peso especifico (KN/m3) =	26		Condiciones	de contorno
Valor de α (°) =	60		σ1=	260 kPa
			σ *1 =	0.0148
Valor de í (°) =	0		Nβ = En =	3.00
Disturbancia D =	1		Fm =	6.5
	i de la compañía de l		F =	227.5
Prof. empotramiento (m) =	10	Carga de hundimiento = 68.670 MPa		
		Capacidad admisible = 0.302 MPa		
Notas:		Capacidad admisible = 3.0 kg/cm ²		
JCS: Resistencia a la compresión l	No confinada.			

		CAPACIDAD DE CARGA DE CIMEN	TACIONES	
		Alternativa 2: Puente de Voladizos	Sucesivos	
		Pilar 2 (Margen Derecha) - Nivel de Cim	entación 10 m.	
Proyecto : Evaluación G	eomecánica Pu	ente de la Cultura	Ejecutado por	:
Proyecto N° :			Revisado por	:
Ubicación : Arequipa			Fecha	:
Material de fundación =	Tonalita 1	METODO DE SERRANO Y OLALLA (2001)	Parámetros Ho	ek y Brown
VALOR GSI =	52		mb=	0.64866
			s=	0.00034
PARAMETRO mi =	20		Darámatros no	macánicas de cálculo
UCS (Mpa) =	133		Farametros geo	Sinecanicos de calculo
			β =	10.7841 Mpa
Prof. fundación (m) =	10	×	ζ =	0.0064
Peso especifico (KN/m3) =	26		Condiciones de	contorno
Valor de α (°) =	40		σ1=	260 kPa
			σ*1 =	0.0305
Valor de I (°) =	0		Nβ = En =	3.70
Disturbancia D =	1		Fm =	6.5
			F =	227.5
Prof. empotramiento (m) =	10	Carga de hundimiento = 39.832 MPa		
		Capacidad admisible = 0.175 MPa		
Notas:		Capacidad admisible = 1.8 kg/cm ²		
UCS: Resistencia a la compresión l	No confinada.			

		CAPACIDAD DE CARGA DE CIMEN	TACIONES	
		Alternativa 2: Puente de Voladizos	Sucesivos	
		Estribo Derecho - Nivel de Cimenta	ción 5 m.	
Proyecto : Evaluación Ge	omecánica Pu	ente de la Cultura	Ejecutado por	:
Proyecto N° :			Revisado por	:
Ubicación : Arequipa			Fecha	
Material de fundación =	Toba 2	METODO DE SERRANO Y OLALLA (2001)	Parámetros Ho	ek y Brown
VALOR GSI =	70		mb=	3.04076
			s=	0.02812
PARAMETRO mi =	10		Darámatros no	omocánicos do cálculo
UCS (Mpa) =	14		Parametros geo	omecanicos de calculo
			β=	5.3213 Mpa
Prof. fundación (m) =	5	¥ ·	ζ =	0.0243
Peso especifico (KN/m3) =	13	PROFUNDIDAD (m) a	Condiciones de	e contorno
Valor de α (°) =	30		σ1=	65 kPa
			σ*1 =	0.0365
Valor de I (°) =	0		Nβ= Ep=	4.00
Disturbancia D =	0.2		Fm =	3
			F =	60
Prof. empotramiento (m) =	5	Carga de hundimiento = 21.156 MPa		
		Capacidad admisible = 0.353 MPa		
Notas:		Capacidad admisible = 3.5 kg/cm ²		
UCS: Resistencia a la compresión N	o confinada.			

Anexos F Planos

,	8		*11
	LEYENDA		
			-
	CARRETERA EXISTENTE CARRETERA PROYECTADA		
	FALLA INFERIDA		
	FALLA DEFINIDA		
	RUMBO Y BUZAMIENTO DE FALLA		-
	RUMBO Y BUZAMIENTO DE DIACLASAS		
		_	ş
		2	1
IGEN FUE OBTENIDA	DE GODGLE EARTH PRO		
		- 1	
			-
		- 3	
			2
		2	•T]
		3	
			-
			n
		-	
	AREQUIPA - PERU		
	EVALUACIÓN GEOMECÁNICA		
	PUENIE DE LA CULTURA		
PL	ANO ESTRUCTURAL LOCAL		
		1001	
00 000 NUMERO D	Plano 2	1	

				8			
	1.	L	EYENDA				
14	1994	CURVA	S DE NIVEL	DE LA SUPE	RFICIE		10
		CAMIN	DE ACCES	O EXISTENT	E E		
-		CAMIN	DE ACCES	IO ASFALTAI	DO		2
0	-	RIO	ADAC				-
-		- EJE DE	PUENTE				
		- CARRE	TERA PRON	ECTADA			0
	•01		RREA	DIGO: ALIE	20.04		8
	•	(AUSEN	VCO, 2013)	DIG0. A054	-0-01		*
	# ¹⁵	CALLIC (AUSEN	ATAS, CODI 4CO, 2012)	GO:TP_CV12	-15		
LS	-01	LÍNEA I (AUSEN	DE REFRACO VC0, 2012)	CIÓN SÍSMIC	A		
1-0	-	LÍNEA D (AUSEN	DE TOMOGR VCO, 2012)	AFÍA ELÉCT	RICA		~
		CIMENT	TACIÓN PRO	YECTADA			
		FALLA	INFERIDA DEFINIDA				
	A 75"	RUMBO	YBUZAME	NTO DE FAL	LA		
	MM-04	SONDA (AUSEN	UE MASW/M VCO, 2012)	AM, CÓDIGO	: MM-01		~
	C-16	ESTAC	IONES GEON	MECÁNICAS			
	OBM-3	PUNTO	S DE CONTR	ROL			
		UNIDAE UNIDAE DEPOS	GEOTECNI GEOTÉCNI ITO EÒLICO	ICA I CA I , CENIZAS V	OLCÁNICAS,		
			INLES, Y AN	IRUPICO			
		UNIDAR	ITO ALUMAL	CA III			
		DEPOS	ITO RESIDU	AL			
Т	p-Vse	BASAM TOBA a	ENTO ROCO R2	SO MAYOR	MENTE		125
Ktitolan		BASAM	GEOTÉCNI ENTO ROCO	ICA V DSO MAYORI	MENTE		*
- angli	Js-gbdi g	TONALI	ILA Y GABRO	JUIORITA GI	VEISICAS ≥ R2		
		DIQUE .	APLÍTICO GI	RANITO GNE	ISICO		
		DIQUE	APLÍTICO GI	RANITO GNE	5181CO		
			APLÍTICO GI	DENADA	S		
	(APLÍTICO GI	DENADA IONES	SUZAMIENT	D PROF.	
CÓDIGO AUS-PC-01	(NORTE 8 183 311,49	CUADRO I DE PE ESTE 210 959,96	APLÍTICO GI DE COOR RFORAC ELEV. 1 985,84	DENADA IONES AZIMUT ([°]) 190	S S BUZAMIENT (?) -60	D PROF. (m) \$0,00	
CÓDIGO AUS-PC-01 AUS-PC-02 AUS-PC-02	(NORTE 8 183 311,49 8 183 309,11 8 183 205,97	DIQUE . CUADRO I DE PE ESTE 210 959,96 210 959,32 210 870.37	APLÍTICO GI DE COOR RFORAC ELEV. 1 985,84 1 986,13 1 96642	DENADA IONES AZIMUT () 190 210 330	181C0 S 8UZAMIENT/ -00 -00 -00 -00	D PROF. (m) 80,00 80,00 80,00	
CÓDIGO AUS-PC-01 AUS-PC-02 AUS-PC-03 AUS-PC-04	NORTE 8 183 311,49 8 183 309,11 8 183 225,97 8 183 226,39	DIQUE . CUADRO I DE PE ESTE 210 959,96 210 959,32 210 870,37 210 871,90	APLÍTICO GI DE COOR RFORAC ELEV. 1 986,84 1 986,13 1 966,42 1 966,27	DENADA IONES AZIMUT E (*) 190 210 330 80	S S 8UZAMIENT (?) -60 -80 -80 -60	D PROF. (m) 80,00 80,00 80,00 80,00 80,00	
CÓDIGO AUS-PC-01 AUS-PC-02 AUS-PC-03 AUS-PC-04 AUS-PC-06A AUS-PC-06A	(NORTE 8 183 311,49 8 183 209,11 8 183 225,97 8 183 226,39 8 183 099,82 8 183 104,92	DIQUE : CUA DRO I DE PE ESTE 210 959,96 210 959,92 210 870,97 210 871,90 210 729,67 210 726,60	APLÍTICO 60 DE COOR RFORAC 1985,84 1986,13 1966,42 1966,27 1942,51 1941,34	DENADA IONES AZIMUT (°) 190 210 330 80 190 280	BUZAMIENTI (*) -80 -80 -80 -60 -60 -80	D PROF. (m) 80,00 80,00 80,00 80,00 80,00 80,00	2
CÓDIGO AUS-PC-01 AUS-PC-02 AUS-PC-03 AUS-PC-04 AUS-PC-06 AUS-PC-06 AUS-PC-07	NORTE 8 183 311,49 8 183 209,11 8 183 226,39 8 183 09,952 8 183 09,952 8 183 004,92 8 183 004,92	DIQUE : CUADRO I DE PE ESTE 210 959,96 210 959,92 210 870,97 210 871,90 210 729,67 210 726,60 210 626,977	APLÍTICO GI DE COOR RFORAC ELEV. 1 985,84 1 966,42 1 966,42 1 966,42 1 966,42 1 966,42 1 942,51 1 942,51 1 941,34 1 990,72	DENADA IONES AZIMUT E (?) 190 210 330 190 190 280 10	S S S S S S S S S S S S S S	D PROF. (m) 80,00 80,00 80,00 80,00 80,00 80,00 80,00 80,00	3
CÓDIGO AUS-PC-01 AUS-PC-02 AUS-PC-03 AUS-PC-04 AUS-PC-06 AUS-PC-06 AUS-PC-07 AUS-PC-08	(NORTE 8 183 311,49 8 183 209,11 8 183 209,11 8 183 225,97 8 183 226,39 8 183 09,982 8 183 104,92 8 183 014,92 8 183 014,92 8 183 014,92 8 183 014,92 8 183 014,95 8 183	DIQUE.	APLÍTICO GI DE COOR RFORAC ELEV. 1 985,84 1 986,13 1 966,42 1 966,42 1 941,54 1 941,54 1 941,34 1 990,72 1 990,88	DENADA IONES AZIMUT E (°) 190 210 330 80 190 280 10 100	S SUZAMIENT () -60 -60 -60 -60 -60 -60 -60 -60 -60 -60	D PROF. (m) 80,00 80,00 80,00 80,00 80,00 80,00 80,00 80,00 80,00	3
CÓDIGO AUS-PC-01 AUS-PC-02 AUS-PC-03 AUS-PC-04 AUS-PC-06 AUS-PC-06 AUS-PC-08	C NORTE 8 183 311,49 8 183 309,11 8 183 262,57 8 183 262,57 8 183 262,57 8 183 262,57 8 183 099,52 8 183 04,92 8 183 019,16	DIQUE, CUA DRO I DE PE ESTE 210 959,96 210 959,92 210 870,97 210 871,90 210 729,67 210 726,60 210 653,17 210 663,88	APLÍTICO GI CE COOR RFORAC ELEV. 1 985,84 1 986,13 1 966,42 1 966,27 1 942,51 1 941,54 1 990,72 1 990,88	DENADA DOENADA IONES AZIMUT E (?) 190 210 330 80 190 280 10 100	S S 302AMIENT (*) -60 -60 -60 -60 -60 -60 -80 -80	D PROF. (m) 80,00 80,00 80,00 80,00 80,00 80,00 80,00 80,00	
CÓDIGO AUS-PC-01 AUS-PC-02 AUS-PC-03 AUS-PC-04 AUS-PC-06 AUS-PC-06 AUS-PC-08	C NORTE 8 183 311,49 8 183 209,11 8 183 226,39 8 183 226,39 8 183 226,39 8 183 029,42 8 183 020,40 8 183 018,16	DIQUE, CUADRO I DE PE ESTE 210 959,96 210 959,92 210 870,97 210 871,90 210 729,67 210 729,67 210 653,88	APLÍTICO GI CE COOR RFORAC ELEV. 1 985,84 1 986,13 1 966,42 1 966,27 1 942,51 1 941,24 1 990,72 1 990,88	DENADA DENADA IONES AZIMUT E (?) 190 210 330 80 190 280 10 100	S S S S S S S S S S S S S S	D PROF. (m) 80,00 80,00 80,00 80,00 80,00 80,00 80,00 80,00 80,00	2 2
CÓDIGO AUS-PC-01 AUS-PC-02 AUS-PC-03 AUS-PC-04 AUS-PC-06 AUS-PC-07 AUS-PC-08	C NORTE 8 183 311,49 8 183 209,11 8 183 225,97 8 183 225,97 8 183 025,97 8 183 04,92 8 183 00,40 8 183 018,16	DIQUE, CUA DRO (DE PE ESTE 210 959,96 210 959,96 210 959,96 210 929,97 210 929,67 210 726,60 210 659,17 210 663,88	APLÍTICO GI CONCENTION OF CONCENTION CO	DENADA DOES AZIMUTE (190) 210 330 80 190 220 100	S S S S S S S S S S S S S S	D PROF. (m) 80,00 80,00 80,00 80,00 80,00 80,00 80,00	
CÓDIGO AUS-PC-01 AUS-PC-03 AUS-PC-04 AUS-PC-06A AUS-PC-06A AUS-PC-06 AUS-PC-08	C NORTE 8 183 311,49 8 183 225,97 8 183 225,97 8 183 263,98 8 183 099,82 8 183 009,82 8 183 009,82 8 183 009,82 8 183 019,16	DIQUE, CUADRO I DE PE 210 953,96 210 953,96 210 9729,67 210 6729,67 210 653,88	APLÍTICO 61 DE COOR RFORAC ELEV. 1 985,84 1 986,82 1 986,82 1 942,51 1 941,24 1 990,88	DENADA IONES AZIMUT E (?) 190 210 330 80 190 280 190 280 100	S BUZAMIENT(() 400 400 400 400 400 400 400 40	D PROF. (m) 80,00 80,00 80,00 80,00 80,00 80,00 80,00	
CÓDIGO AUS-PC-01 AUS-PC-02 AUS-PC-03 AUS-PC-04 AUS-PC-06 AUS-PC-08	C NORTE 8 183 311,49 8 183 209,11 8 183 225,97 8 183 262,97 8 183 099,82 8 183 049,92 8 183 020,40 8 183 019,16	DIQUE.	DE COORAC RF0A2C ELEV 1985;84 1995;84	DENADA DONES (1)00	S SUZAMIENT (*) -60 -60 -60 -60 -60 -60 -60 -60	D PROF. (m) 80,00 80,00 80,00 80,00 80,00 80,00 80,00 80,00	
CÓDIGO AUSPCO1 AUSPCO2 AUSPCO2 AUSPCO2 AUSPCO2 AUSPCO2 AUSPCO2	C NORTE \$183 301,49 \$183 309,11 \$183 225,97 \$183 205,97 \$183 104,92 \$183 104,92 \$183 104,92 \$183 004,40 \$183 004,40	URUE.	DE COOR RFORAC ELEV. 198584 198642 198642 198627 194251 194254 198072 194258	DENADA DENADA IONES ZAIMUT [(*) 190 190 100 100	S SUZAMIENT () -60 -60 -60 -60 -60 -60 -60 -60 -60 -60	D PROF. (m) 80,00 80,00 80,00 80,00 80,00 80,00 80,00 80,00	
CÓDIGO AUS-PC01 AUS-PC04 AUS-PC04 AUS-PC06A AUS-PC06A AUS-PC06 AUS-PC06 AUS-PC06	C NORTE \$133 311,49 \$133 309,11 \$133 226,39 \$133 226,39 \$133 226,39 \$133 204,92 \$133 004,92 \$133 004,92 \$134 004,92 \$134 004,92 \$134 004,92 \$134 004,92 \$135 004	URUE DIQUE	DE COOR RFORAC ELEV. 1 985,84 1 986,84 1 986,82 1 986,82 1 986,82 1 986,82 1 980,88	DENADA IONES AZIMUT (190 210 200 200 200 190 200 190 200 190 100	S SUZAMIENT (*) -80 -80 -80 -80 -80 -80 -80 -80 -80	D PROF. (m) 80,00 80,00 80,00 80,00 80,00 80,00 80,00 80,00	
CÓDIGO AUSPC01 AUSPC04 AUSPC04 AUSPC04 AUSPC06 AUSPC06 AUSPC08	C NORTE \$1132 311,49 \$1132 309,11 \$1132 226,39 \$1133 226,39 \$1133 226,39 \$1133 226,39 \$1133 226,39 \$1133 220,40 \$1133 2014,92 \$1133 2014,92 \$1133 2014,93 \$1133 2014,93 \$1134 2014,93 \$1145 2014,93 \$1	URUE URUE URUE URUE URUE URUE URUE URUE	DE COOR RFORAC ELEV. 1 985,84 1 966,82 1 966,82	DENADA IONES AZIMUT [190 190 190 190 200 190 190 100	S 3UZAMIENT (*) -60 -60 -60 -60 -60 -60 -60 -40	D PROF. (m) 80,00 80,00 80,00 80,00 80,00 80,00 80,00 80,00	
CÓDIGO AUSPC41 AUSPC42 AUSPC42 AUSPC42 AUSPC44 AUSPC44 AUSPC46 AUSPC46	C NORTE 8 183 311,49 8 183 225,97 8 183 225,97 8 183 226,39 8 183 099,82 8 183 009,82 8 183 009,82 8 183 009,82 8 183 009,82 8 183 019,16	DIQUE.	DE COOR RFORAC ELEV. 1985,84 1966,13 1966,27 1942,51 1942,51 1942,51 1942,55 1942,55 1942,55 1942,55 1942,55 1990,58	DENADA IONES AZIMUT (7) 210 210 210 200 190 190 190	S BUZAMIENT(() -60 -60 -60 -60 -60 -60 -60 -60	D PROF. (m) 80,000 80,000 80,000 80,000 80,000	
CÓDIGO AUS-PC40 AUS-PC40 AUS-PC40 AUS-PC40 AUS-PC40 AUS-PC40	C NORTE 8 183 311,49 8 183 309,11 8 183 225,97 8 183 262,97 8 183 09,82 8 183 09,82 8 183 02,40 8 183 019,16	DIQUE.	DE COOR RFORAC ELEV. 1985,84 1986,13 1966,27 1942,51 1942,51 1942,51 1942,51 1942,53 1942,54 1940,24 1990,28	DENADA (ONES AZIMUT (E 10 210 210 210 210 200 190 190 100	S SUZAMENT (?) -80 -80 -80 -80 -80 -80 -80 -80	D PROF. (m) 80,00 80,00 80,00 80,00 80,00 80,00 80,00 80,00	
CÓDIGO AUSPCOI AUSPCOI AUSPCOI AUSPCOI AUSPCOI AUSPCOI AUSPCOI	C NORTE 8 183 301,49 8 183 209,11 8 183 225,97 8 183 226,97 8 183 209,40 8 183 209,40 8 183 019,42 8 183 019,42	DIQUE.	DE COOR RFORAC ELEV. 1 985,84 1 986,18 1 966,27 1 942,51 1 942,51 1 942,51 1 942,51 1 942,53 1 942,54 1 943,24 1 990,58	DENADA IONES AZIMUT (5 10 210 210 210 210 210 230 10 10 10 100	S SUZAMIENT (7) -60 -60 -60 -60 -60 -60 -60 -60	D PROF. (m) 80,00 80,00 80,00 80,00 80,00 80,00 80,00 80,00	
CÓDIGO AUSPCOI AUSPCOI AUSPCOI AUSPCOI AUSPCOI AUSPCOI AUSPCOI	C NORTE \$183 311,49 \$183 209,11 \$183 226,37 \$183 226,37 \$183 209,82 \$183 104,92 \$183 104,92 \$183 019,16 \$183 009,12 \$183 018,16	DIQUE.	DE COOR RFORAC ELEV. 1 985,84 1 986,13 1 966,27 1 942,51 1 944,24 1 980,72 1 940,28 1 940,24 1 980,72	DENADA IONES AZIMUT (190 210 210 220 10 10 100	S SUZAMIENT () 480 480 480 480 480 480 480 480 480 480	D PROF. (m) 80,00 80,00 80,00 80,00 80,00 80,00 80,00	
CÓDIGO AUSPCOI AUSPCOI AUSPCOI AUSPCOI AUSPCOI AUSPCOI AUSPCOI AUSPCOI AUSPCOI	C NORTE \$183 311,49 \$183 309,11 \$183 226,39 \$183 226,39 \$183 226,39 \$183 204,92 \$183 004,92 \$183 004	DIQUE.	DE COOR RFORAC ELEV. 1 985,84 1 986,84 1 986,85 1 986,87 1 946,87 1 946,87 1 940,88 1 990,88	DENADA IONES AZIMUT (190 210 200 190 280 190 190 280 100	S SUZAMIENT () 400 400 400 400 400 400 400 400 400	D PROF. (m) 30,00 30,00 30,00 30,00 30,00 30,00 30,00	
CÓDIGO AUSPC41 AUSPC42 AUSPC42 AUSPC42 AUSPC42 AUSPC42 AUSPC42 AUSPC42 AUSPC42 AUSPC42 AUSPC42 AUSPC42	C NORTE \$133 301,149 \$133 209,112 \$133 226,39 \$133 226,39 \$133 009,92 \$133 014,92 \$133 014,92 \$133 014,92 \$133 014,92 \$133 018,16	DIQUE.	ARE 444 444 444 444 444 444 444 4	DENA DA DORS AZIMUT (190 210 200 190 210 220 100	ERU ERU ERU ERU ERU ERU ERU ERU	D PROF. (m) 80,00 80,00 80,00 80,00 80,00 80,00 80,00 80,00	
CÓDIGO AUS-PC40 AUS-PC40 AUS-PC40 AUS-PC40 AUS-PC40 AUS-PC40 AUS-PC40 AUS-PC40	C NORTE \$1133.211.49 \$133.209.11 \$133.226.39 \$133.099.92 \$133.099.92 \$133.099.92 \$133.014	DIQUE.	ARE PULIFICO 61 PEC COOR RFORAC ELEV. 1 985,84 1 986,13 1 986,14 1 986,13 1 986,14 1 980,14 1 9	CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT	BUZAMIENT (*) 400 400 400 400 400 400 400 400 400 40	D PROF. (m) 80,00 80,00 80,00 80,00 80,00 80,00 80,00	
CÓDIGO AUSPCOI AUSPCOI AUSPCOI AUSPCOI AUSPCOI AUSPCOI AUSPCOI PLANO U	C NORTE \$183 309,11 \$183 209,11 \$183 225,97 \$183 205,97 \$183 205,97 \$183 205,97 \$183 205,97 \$183 205,40 \$183 205,40\$ \$183 20	Dique.	ARL ARL ARL ARL ARL ARL ARL ARL	DENADA DORS AZIMUT (6 190 2300 190 280 100	BUZAMIENT CO SUZAMIENT CO SUZAMIENT CO SUZAMIENT	D PROF. (m) 80,00 80,00 80,00 80,00 80,00 80,00 80,00	
СÓDIGO AUSPC01 AUSPC04 AUSPC04 AUSPC04 AUSPC06 AUSPC06 AUSPC06 AUSPC06 AUSPC06	С NORTE \$183 309,11 \$183 209,12 \$183 225,97 \$183 225,97 \$183 226,97 \$183 209,12 \$183 209,12 \$183 209,12 \$183 201,01 \$183	DIQUE.	ARE FOR COOR RFORAC ELEV. 1 985,84 1 986,83 1 986,82 1 986,83 1 986,82 1 986,84 1 980,82 1 980,88 1 980,88 1 980,88 1 990,72 1 990,72 1 990,72 1 990,78 1 990,	CONS	BUZAMIENT S SUZAMIENT () 400 400 400 400 400 400 400 40	P PROF. (m) 80,00 80,00 80,00 80,00 80,00 80,00 80,00 80,00 80,00	

Figuras

Figura 1.- Correlación entre RQD y espaciamiento d ediscontinuidades de los sondajes AUS-PC-01 y AUS-PC-02.

Figura 2.- Correlación entre RQD y espaciamiento d ediscontinuidades de los sondajes AUS-PC-02A y AUS-PC-03.

Figura 3.- Correlación entre RQD y espaciamiento d ediscontinuidades de los sondajes AUS-PC-03B y AUS-PC-04.

Figura 4.- Correlación entre RQD y espaciamiento d ediscontinuidades de los sondajes AUS-PC-05 y AUS-PC-06A.

Figura 5.- Correlación entre RQD y espaciamiento d ediscontinuidades de los sondajes AUS-PC-07 y AUS-PC-08.

Figura 6.- Propiedades geomecánicas AUS-PC-01.

Figura 7.- Propiedades geomecánicas AUS-PC-02.

Figura 8.- Propiedades geomecánicas AUS-PC-03.

Figura 9.- Propiedades geomecánicas AUS-PC-04.

Figura 10.- Propiedades geomecánicas AUS-PC-05.

Figura 11.- Propiedades geomecánicas AUS-PC-06.

Figura 12.- Propiedades geomecánicas AUS-PC-07.

Figura 13.- Propiedades geomecánicas AUS-PC-08.

ESTRIBO IZQUIERDO – GABRODIORITA GNEISICA

Figura 14.- Estadística de Rugosidad – Gabrodiorita Gnéisica. Datos del logueo orientado.

Figura 15.- Estadística de Espesor – Gabrodiorita Gnéisica. Datos del logueo orientado.

Figura 16.- Estadística de Forma – Gabrodiorita Gnéisica. Datos del logueo orientado.

Figura 17.- Estadística de Condición de Juntas – Gabrodiorita Gnéisica. Datos del logueo orientado.

PILAR IZQUIERDO – GABRODIORITA GNEISICA

Figura 18.- Estadística de Rugosidad – Gabrodiorita Gnéisica. Datos del logueo orientado.

Figura 19.- Estadística de Condición de Junta – Gabrodiorita Gnéisica. Datos del logueo orientado.

PILAR IZQUIERDO - TONALITA GNEISICA

Figura 20.- Estadística de Rugosidad – Tonalita Gnéisica. Datos del logueo orientado.

Figura 21.- Estadística de Condición de Junta – Tonalita Gnéisica. Datos del logueo orientado.

Figura 22.- Estadística de Forma – Gabrodiorita Gnéisica. Datos del logueo orientado.

PILAR DERECHO – TOBA GNEISICA

Figura 23.- Estadística de Rugosidad – Toba. Datos del logueo orientado.

Figura 24.- Estadística de Condición de Junta – Toba. Datos del logueo orientado.